Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: May 2018

3 - Forces and Equations of Motion

Summary

Introduction

The concept of force is central in Newtonian physics. This chapter describes the gravitational force and the electrostatic force, two of the fundamental forces of nature. We also discuss several phenomenological forces, for example friction. Such forces are commonly encountered in “everyday” physics and are approximately described by empirical equations. Because the concept of force is meaningful only if one knows how to solve problems involving forces, this chapter includes many examples in which Newton's laws are put into practice.

The problem of calculating motion from known forces frequently occurs in physics. For instance, a physicist who sets out to design a particle accelerator employs the laws of mechanics and knowledge of electric and magnetic forces to calculate how the particles will move in the accelerator. Equally important, however, is the converse process of deducing the physical interaction from observations of the motion, which is how new laws are discovered. The classic example is Newton's deduction of the inverse-square law of gravitation from Kepler's laws of planetary motion. A contemporary example is the effort to elucidate the interactions between elementary particles from high energy scattering experiments at the Large Hadron Collider at CERN in Geneva and at other high energy laboratories.

Unscrambling experimental observations to find the underlying forces can be complicated. In a facetious mood, the British cosmologist Arthur Eddington once said that force is the mathematical expression we put into the left-hand side of Newton's second law to obtain results that agree with observed motions. Fortunately, force has a more concrete physical reality.