Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T15:20:39.974Z Has data issue: false hasContentIssue false

6 - Synthesis of amino acids

Published online by Cambridge University Press:  05 June 2012

G. C. Barrett
Affiliation:
Oxford Brookes University
D. T. Elmore
Affiliation:
University of Oxford
Get access

Summary

General

There is an abundant supply of l-enantiomers of most of the coded amino acids. These are made available through large-scale fermentative production in most cases, and also through processing of protein hydrolysates. The early sections of this chapter cover this aspect, However, laboratory synthesis methods are required for the provision of most of the other natural amino acids and for all other amino acids, so the main part of this chapter deals with established syntheses.

Commercial and research uses for amino acids

In addition to the provision of supplies of common amino acids, there are growing needs for routes to new amino acids, since pharmaceutically useful compounds of this class continue to be discovered, which must be free from toxic impurities and homochirally pure in this particular context. Important functions for close analogues of coded and other biologically significant amino acids include enzyme inhibition and retarding the growth of undesirable organisms (fungistatic, antibiotic and other physiological properties, possessed either by the free amino acids or by pep-tides containing them). Free amino acids that perform in this way are α-amino iso-butyric acid (an example of an a-methylated analogue of a coded amino acid), which has been proposed for the control of domestic wood-rotting fungi), and α-methyl-Dopa (α-methyl-3′,4′-dihydroxy-l-phenylalanine), a well-known treatment for Parkinson's disease. Similar success for new therapeutic amino acids, based on their enzyme-inhibition properties, is indicated for amino acids with a minimal structural change such as the substitution of a side-chain hydrogen atom by a fluorine atom.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×