Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T07:25:00.539Z Has data issue: false hasContentIssue false

9 - The expression of crustacean mating strategies

Published online by Cambridge University Press:  10 August 2009

Stephen M. Shuster
Affiliation:
Department of Biological Sciences Northern Arizona University Flagstaff, AZ 86011 USA
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

Three fundamental patterns of phenotypic expression exist for alternative mating strategies. These patterns include Mendelian strategies, developmental strategies, and behavioral strategies. Each pattern of expression is revealed by hormonal and neurological factors that regulate the timing and degree to which phenotypic differences appear; however, the nature of each regulatory mechanism depends fundamentally on its underlying mode of inheritance. The genetic architectures underlying such inheritance in turn depend on the circumstances in which mating opportunities arise, including the intensity of selection favoring distinct reproductive morphologies, and the predictability of mating opportunities within individual lifespans. This chapter concerns the nature of this variation and its possible causes, with illustrations from the Crustacea.

INTRODUCTION

Although crustaceans were among the first recorded examples of alternative mating strategies (Orchestia darwinii: Darwin 1874, p. 275; Tanais spp.: Darwin 1874, p. 262), there is currently no synthetic treatment of how such polymorphisms are expressed within this group. The apparent scarcity of reports of male polymorphism among crustaceans is unexpected given the frequency with which sexual selection has been demonstrated within this taxon (Holdich 1968, 1971, Manning 1975, Stein 1976, Thompson and Manning 1981, Knowlton 1980, Shuster 1981, Christy 1983, Hatziolos and Caldwell 1983, reviews in Salmon 1984, Koga et al. 1993). As explained below, when sexual selection occurs, alternative mating strategies are likely to evolve. This chapter provides an evolutionary framework for understanding the expression of alternative mating strategies, with illustrations from the Crustacea (Table 9.1).

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 224 - 250
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, L. G., Campanella, P. J., and Salmon, M. 1986. Natural history and social organization of the semiterrestrial grapsid crab, Pachygrapsus transversus (Gibbes). Journal of Experimental Marine Biology and Ecology 104, 153–170.CrossRefGoogle Scholar
Ahl, J. S. B. and Laufer, H. 1996. The pubertal molt in Crustacea revisited. Invertebrate Reproduction and Development 30, 177–180.CrossRefGoogle Scholar
Alcock, J. 2005. Animal Behavior, 8th edn. Sunderland, MA: Sinauer Associates.Google Scholar
Austad, S. N. 1984. A classification of alternative reproductive behaviors, and methods for field testing ESS models. American Zoologist 24, 309–320.CrossRefGoogle Scholar
Baeza, J. A. and Bauer, R. T. 2004. Experimental test of socially mediated sex change in a protandric simultaneous hermaphrodite, the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae). Behavioral Ecology and Sociobiology 55, 544–550.Google Scholar
Barki, A., Karplus, I., and Goren, M. 1992. Effects of size and morphotype on dominance hierarchies and resource competition in the freshwater prawn Macrobrachium rosenbergii. Animal Behaviour 44, 547–555.CrossRefGoogle Scholar
Bauer, R. T. 1986. Sex change and life history pattern in the shrimp Thor manningi (Decapoda: Caridea): a novel case of partial protandric hermaphroditism. Biological Bulletin 170, 11–31.CrossRefGoogle Scholar
Bauer, R. T. 1992. Repetitive copulation and variable success of insemination in the marine shrimp Sicyonia dorsalis (Decapoda: Penaeoidea). Journal of Crustacean Biology 12, 153–160.CrossRefGoogle Scholar
Bauer, R. T. 2000. Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. Journal of Crustacean Biology 20, 116–128.CrossRefGoogle Scholar
Bauer, R. T. 2002. The reproductive ecology of a protandric simultaneous hermaphrodite, the shrimp Lysmata wurdemanni (Decapoda: Caridea: Hippolytidae). Journal of Crustacean Biology 22, 742–749.CrossRefGoogle Scholar
Bauer, R. T. and VanHoy, R. 1996. Simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae): an undescribed sexual system in the decapod Crustacea. Marine Biology 132, 223–235.CrossRefGoogle Scholar
Belk, D. 1991. Anostracan mating behavior: a case of scramble-competition polygyny. In Bauer, R. T. and Martin, J. W. (eds.) Crustacean Sexual Biology, pp. 111–125. New York: Columbia University Press.Google Scholar
Bergström, B. I. 1997. Do protandric pandalid shrimp have environmental sex determination?Marine Biology 128, 397–407.Google Scholar
Bocquet, C. and Veuille, M. 1973. Le polymorphisme des variants sexuels des males chez Jaera (albifrons) ischiosetosa Forsman (Isopoda: Asellota). Archives de Zoologie Expérimentale et Générale 114, 111–128.Google Scholar
Boddeke, R., Bosschieter, J. R., and Goudswaard, P. C. 1991. Sex change, mating, and sperm transfer in Crangon crangon (L.). In Bauer, R. T. and Martin, J. W. (eds.) Crustacean Sexual Biology, pp. 164–182. New York: Columbia University Press.Google Scholar
Borash, D. J., Teoto-Nio, H., Rose, M. R., and Mueller, L. E. 2000. Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability. Journal of Evolutionary Biology 13, 181–187.CrossRefGoogle Scholar
Borowsky, B. 1980. The pattern of tube-sharing in Microdeutopus gryllotalpa (Crustacea: Amphipoda). Animal Behaviour 28, 790–797.CrossRefGoogle Scholar
Borowsky, B. 1984. Effects of receptive females' secretions on some male reproductive behaviors in the amphipod crustacean Microdeutopus gryllotalpa. Marine Biology 84, 183–187.CrossRefGoogle Scholar
Borowsky, B. 1985. Differences in reproductive behavior between two male morphs of the amphipod crustacean, Jassa falcata Montagu. Physiological Zoology 58, 497–502.CrossRefGoogle Scholar
Borowsky, B. 1989. The effects of residential tubes on reproductive behaviors in Microdeutopus gryllotalpa (Costa) (Crustacea: Amphipoda). Journal of Experimental Marine Biology and Ecology 8, 117–125.CrossRefGoogle Scholar
Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13, 115–155.Google Scholar
Briceno, R. D. and Eberhard, W. G. 1998. Medfly courtship duration: a sexually selected reaction norm changed by crowding. Ethology Ecology and Evolution 10, 369–382.CrossRefGoogle Scholar
Brusca, R. C. and Brusca, G. J. 2004. Invertebrates, 2nd edn. Sunderland, MA: Sinauer Associates.Google Scholar
Carpenter, A. 1978. Protandry in the freshwater shrimp, Paratya curvirostris (Heller, 1862) (Decapoda: Atyidae), with a review of the phenomenon and its significance in the Decapoda. Journal of the Royal Society of New Zealand 8, 343–358.CrossRefGoogle Scholar
Chace, F. A. Jr. 1972. The shrimps of the Smithsonian Bredin Caribbean expeditions, with a summary of the West Indian shallow-water shrimps (Crustacea: Natantia: Decapoda). Smithsonian Contributions to Zoology 998, 1–179.Google Scholar
Charlesworth, D. 1984. Androdioecy and the evolution of dioecy. Biological Journal of the Linnean Society 23, 333–348.CrossRefGoogle Scholar
Charlesorth, D. and Charlesworth, B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18, 237–268.CrossRefGoogle Scholar
Charnov, E. L. 1979. Natural selection and sex change in pandalid shrimp: test of a life history theory. American Naturalist 113, 715–734.CrossRefGoogle Scholar
Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Christy, J. H. 1983. Female choice in the resource defense mating system of the sand fiddler crab, Uca pugilator. Behavioral Ecology and Sociobiology 12, 160–180.CrossRefGoogle Scholar
Christy, J. H. and Salmon, M. 1991. Comparative studies of reproductive behavior in mantis shrimps and fiddler crabs. American Zoologist 31, 329–337.CrossRefGoogle Scholar
Clark, R. A. 1997. Dimorphic males display alternative reproductive strategies in the marine amphipod Jassa marmorata Holmes (Corophioidea: Ischyroceridae). Ethology 103, 531–553.CrossRefGoogle Scholar
Conlan, K. E. 1991. Precopulatory mating behavior and sexual dimorphism in the amphipod Crustacea. Hydrobiologia 223, 255–282.CrossRefGoogle Scholar
Correa, C. J. A. and Thiel, M. 2003. Population structure and operational sex ratio in the rock shrimp, Rynchocinetes typus (Decapoda: Caridea). Journal of Crustacean Biology 23, 849–861.CrossRefGoogle Scholar
Correa, C. J., Baeza, A., Dupre, E., Hinojosa, I. A., and Thiel, M. 2000. Mating behaviour and fertilization success of three ontogenetic stages of male rock shrimp Rynchocinetes typus (Decapoda: Caridea). Journal of Crustacean Biology 20, 628–640.CrossRefGoogle Scholar
Correa, C. J., Baeza, A., Hinojosa, I. A., and Thiel, M. 2003. Male dominance hierarchy and mating tactics in the rock shrimp, Rhynchocinetes typus (Decapoda: Caridea). Journal of Crustacean Biology 23, 33–45.CrossRefGoogle Scholar
Cowan, D. F. 1991. Courtship and chemical signals in the American lobster. Journal of Shellfish Research 10, 284.Google Scholar
Cowan, D. F. and Atema, J. 1990. Moult staggering and serial monogamy in American lobsters, Homarus americanus. Animal Behaviour 39, 1199–1206.CrossRefGoogle Scholar
Crow, J. F. 1986. Basic Concepts in Population, Quantitative and Evolutionary Genetics. San Francisco, CA: W. H. Freeman.Google Scholar
D'Apolito, L. M. and Stancyk, S. E. 1979. Population dynamics of Euterpina acutifrons (Copepoda: Harpacticoida) from North Inlet, South Carolina, with reference to dimorphic males. Marine Biology 54, 251–260.CrossRefGoogle Scholar
Darwin, C. R. 1874. The Descent of Man and Selection in Relation to Sex. London: John Murray.CrossRefGoogle Scholar
Dawkins, R. 1980. Good strategy or evolutionary stable strategy? In G. W. Barlow and Silverberg, J. (eds.) Sociobiology: Beyond Nature/Nurture? pp. 331–367. Boulder, CO: Westview Press.Google Scholar
Dempster, E. R. and Lerner, I. M. 1950. Heritability of threshold characters. Genetics 35, 212–236.Google ScholarPubMed
Denoel, M., Poncin, P., and Ruwet, J. -C. 2001. Alternative mating tactics in the alpine newt Triturus alpestris alpestris. Journal of Herpetology 35, 62–67.CrossRefGoogle Scholar
Dick, J. T. A. and Elmwood, R. W. 1995. Effects of natural variation in sex ratio and habitat structure on mate-guarding decisions in amphipods (Crustacea). Behaviour 133, 985–996.CrossRefGoogle Scholar
Diesel, R. 1989. Structure and function of the reproductive system of the symbiotic spider crab Inachus phalangium (Decapoda: Majidae): observations on sperm transfer, sperm storage, and spawning. Journal of Crustacean Biology 9, 266–277.CrossRefGoogle Scholar
Dominey, W. J. 1984. Alternative mating tactics and evolutionary stable strategies. American Zoologist 24, 385–396.CrossRefGoogle Scholar
Eberhard, W. G. 1979. The function of horns in Podichnus agenor (Dynastinae) and other beetles. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 231–258. New York: Academic Press.Google Scholar
Eberhard, W. G. 1982. Beetle horn dimorphism: making the best of a bad lot. American Naturalist 119, 420–426.CrossRefGoogle Scholar
Emlen, D. J. 1996. Artificial selection on horn length–body size allometry in the horned beetle, Onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 50, 1219–1230.CrossRefGoogle Scholar
Falconer, D. S. 1989. Introduction to Quantitative Genetics, 2nd edn. New York: Longman Scientific and Technical.Google Scholar
Ferveur, J. -F. 1997. The pheromonal role of cuticular hydrocarbons in Drosophila melanogaster. BioEssays 19, 353–358.CrossRefGoogle ScholarPubMed
Fisher, R. A. 1958. The Genetical Theory of Natural Selection, 2nd edn. New York: Dover.Google Scholar
Flaxman, S. M. 2000. The evolutionary stability of mixed strategies. Trends in Ecology and Evolution 15, 482–495.CrossRefGoogle Scholar
Forslund, P. 2003. An experimental investigation into status-dependent male dimorphism in the European earwig, Forficula auricularia. Animal Behaviour 65, 309–316.CrossRefGoogle Scholar
Fréchette, J. G., Corrivault, G. W., and Couture, R. 1970. Hermaphroditisme protérandrique chez une crevette de la famille des crangonidés, Argis dentata Rathbun. Le Naturaliste Canadien 97, 805–822.Google Scholar
Gadgil, M. 1972. Male dimorphism as a consequence of sexual selection. American Naturalist 106, 574–580.CrossRefGoogle Scholar
Gherardi, F. and Calloni, C. 1993. Protandrous hermaphroditism in the tropical shrimp Athanus indicus (Decapoda: Caridea) a symbiont of sea urchins. Journal of Crustacean Biology 13, 675–689.CrossRefGoogle Scholar
Gianola, D. and Norton, H. W. 1981. Scaling threshold characters. Genetics 99, 357–364.Google ScholarPubMed
Giorgi, D. and Rouquier, S. 2002. Identification of V1R-like putative pheromone receptor sequences in non-human primates: characterization of V1R pseudogenes in marmoset, a primate species that possesses an intact vomeronasal organ. Chemical Senses 27, 529–537.CrossRefGoogle ScholarPubMed
Gowaty, P. A. 1997. Sexual dialectics, sexual selection and variation in reproductive behavior. In Gowaty, P. A. (ed.) Feminism and Evolutionary Biology: Boundaries, Intersections and Frontiers, pp. 351–384. New York: Chapman and Hall.CrossRefGoogle Scholar
Gross, M. R. 1985. Disruptive selection for alternative life histories in salmon. Nature 313, 47–48.CrossRefGoogle Scholar
Gross, M. R. 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11, 92–97.CrossRefGoogle ScholarPubMed
Gross, M. R. and Repka, J. 1998. Game theory and inheritance of the conditional strategy. In Dugatkin, L. A. and Reeve, H. K. (eds.) Game Theory and Animal Behavior, pp. 168–187. Oxford, UK: Oxford University Press.Google Scholar
Haig, D. and Bergstrom, C. T. 1995. Multiple mating, sperm competition and meiotic drive. Journal of Evolutionary Biology 8, 265–282.CrossRefGoogle Scholar
Haq, S. M. 1965. Development of the copepod Euterpina acutifrons with special reference to dimorphism in the male. Proceedings of the Zoological Society of London 144, 175–201.CrossRefGoogle Scholar
Haq, S. M. 1972. Breeding of Euterpina acutifrons, a harpacticoid copepod, with special reference to dimorphic males. Marine Biology 15, 221–235.CrossRefGoogle Scholar
Haq, S. M. 1973. Factors affecting production of dimorphic males of Euterpina acutifrons. Marine Biology 19, 23–26.CrossRefGoogle Scholar
Harikrishnan, M. B., Kurup, M., and Sankaran, T. M. 1999. Differentiation of morphotypes in female population of Macrobrachium rosenbergii (de Man) on the basis of distance function analysis. Proceedings of the 4th Indian Fisheries Forum, 24–28 November, 1996, Kochi, Kerala, pp. 65–67.Google Scholar
Hatziolos, M. E. and Caldwell, R. L. 1983. Role reversal in courtship in the stomatopod Pseudosquilla ciliata (Crustacea). Animal Behaviour 31, 1077–1087.CrossRefGoogle Scholar
Hazel, W. N., Smock, R., and Johnson, M. D. 1990. A polygenic model of the evolution and maintenance of conditional strategies. Proceedings of the Royal Society of London B 242, 181–187.CrossRefGoogle ScholarPubMed
Holdich, D. M. 1968. Reproduction, growth and bionomics of Dynamene bidentata (Crustacea: Isopoda). Journal of Zoology (London) 156, 136–153.Google Scholar
Holdich, D. M. 1971. Changes in physiology, structure and histochemistry during the life history of the sexually dimorphic isopod, Dynamene bidentata (Crustacea: Peracarida). Marine Biology 8, 35–47.CrossRefGoogle Scholar
Howard, R. D., DeWoody, J. A., and Muir, W. M. 2004. Transgenic male mating advantage provides opportunity for trojan gene effect in a fish. Proceedings of the National Academy of Sciences of the United States of America 101, 2934–2938.CrossRefGoogle ScholarPubMed
Hunt, J. and Simmons, L. W. 2001. Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proceedingsof the Royal Society of London B 268, 2409–2414.CrossRefGoogle Scholar
Jennions, M. D. and Backwell, P. R. Y. 1998. Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness?Behavioral Ecology 9, 605–611.CrossRefGoogle Scholar
Jivoff, P. and Hines, A. H. 1998. Female behaviour, sexual competition and mate guarding in the blue crab, Callinectes sapidus. Animal Behaviour 55, 589–603.CrossRefGoogle ScholarPubMed
Jormalainen, V. 1998. Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. Quarterly Review of Biology 73, 275–304.CrossRefGoogle Scholar
Jormalainen, V. and Shuster, S. M. 1999. Female reproductive cycles and sexual conflict over precopulatory mate-guarding in Thermosphaeroma isopods. Ethology 105, 233–246.CrossRefGoogle Scholar
Jormalainen, V., Merilaita, S., and Tuomi, J. 1994. Male choice and male–male competition in Idotea baltica (Crustacea, Isopoda). Ethology 96, 46–57.CrossRefGoogle Scholar
Jormalainen, V., Shuster, S. M., and Wildey, H. 1999. Reproductive anatomy, sexual conflict and paternity in Thermosphaeroma thermophilum. Marine and Freshwater Behavior and Physiology 32, 39–56.CrossRefGoogle Scholar
Karplus, I., Malecha, S. R., and Sagi, A. 2000. The biology and management of size variation. In New, M. and Valenti, W. C. (eds.) Freshwater Prawn Culture, pp. 259–289. Bet-Dagan, Israel: Agricultural Research Organization.CrossRefGoogle Scholar
Knowlton, N. 1980. Sexual selection and dimorphism in two demes of a symbiotic, pair-bonding snapping shrimp. Evolution 34, 161–173.CrossRefGoogle ScholarPubMed
Koga, T. 1998. Reproductive success and two modes of mating in the sand-bubbler crab Scopimera globosa. Journal of Experimental Marine Biology and Ecology 229, 197–207.CrossRefGoogle Scholar
Koga, T., Henmi, Y., and Murai, M. 1993. Sperm competition and the assurance of underground copulation in the sand-bubbler crab, Scopiemera globosa (Brachyura: Ocypodidae). Journal of Crustacean Biology 13, 134–137.CrossRefGoogle Scholar
Kurdziel, J. P. and Knowles, L. L. 2002. The mechanisms of morph determination in the amphipod Jassa: implications for the evolution of alternative male phenotypes. Proceedings of the Royal Society of London B 269, 1749–1754.CrossRefGoogle ScholarPubMed
Kuris, A. M., Ra'anan, Z., Sagi, A., and Cohen, D. 1987. Morphotypic differentiation of male Malaysian giant prawns, Macrobrachium rosenbergii. Journal of Crustacean Biology 7, 219–237.CrossRefGoogle Scholar
Kurup, B. M., Harikrishnan, M., and Sureshkumar, S. 2000. Length–weight relationship of male morphotypes of Macrobrachium rosenbergii (de Man) as a valid index for differentiating their developmental pathway and growth phases. Indian Journal of Fisheries 47, 283–290.Google Scholar
Levins, R. 1968. Evolution in Changing Environments. Princeton, NJ: Princeton University Press.Google Scholar
Lively, C. M. 1986. Canalization versus developmental conversion in a spatially variable environment. American Naturalist 128, 561–572.CrossRefGoogle Scholar
Lively, C. M., Hazel, W. N., Schellenberger, M. J., and Michelson, K. S. 2000. Predator-induced defense: variation for inducibility in an intertidal barnacle. Ecology 81, 1240–1247.CrossRefGoogle Scholar
Lloyd, D. G. 1984. Variation strategies of plants in heterogeneous environments. Biological Journal of the Linnean Society 21, 357–385.CrossRefGoogle Scholar
Lucas, J. and Howard, R. D. 1995. On alternative reproductive tactics in anurans: dynamic games with density and frequency dependence. American Naturalist 146, 365–397.CrossRefGoogle Scholar
MacDiarmid, A. B. and Butler, M. J. IV. 1999. Sperm economy and limitation in spiny lobsters. Behavioral Ecology and Sociobiology 46, 14–24.CrossRefGoogle Scholar
Manning, J. T. 1975. Male discrimination and investment in Asellus aquaticus (L.) and A. meridianus Racovitsza (Crustacea: Isopoda). Behaviour 55, 1–14.CrossRefGoogle Scholar
Maynard Smith, J. 1982. Evolution and the Theory of Games. New York: Cambridge University Press.CrossRefGoogle Scholar
Moran, N. A. 1992. Evolutionary maintenance of alternative phenotypes. American Naturalist 139, 971–989.CrossRefGoogle Scholar
Moreira, G. S. and McNamara, J. C. 1984. Annual variation in abundance of female and dimorphic male Euterpina acutifrons (Dana) (Copepoda: Harpacticoida) from the Hauraki Gulf, New Zealand. Crustaceana 47, 298–302.CrossRefGoogle Scholar
Moreira, G. S., Yamashita, C., and McNamara, J. C. 1983. Seasonal variation in the abundance of the developmental stages of Euterpina acutifrons (Copepoda: Harpacticoida) from the São Sebastião Channel, southern Brazil. Marine Biology 74, 111–114.CrossRefGoogle Scholar
Moriyasu, M. and Benhalima, K. 1998. Snow crabs, Chionoecetes opilio (O. Fabricius, 1788) (Crustacea: Majidae) have two types of spermatophore: hypotheses on the mechanism of fertilization and population reproductive dynamics in the southern Gulf of St. Lawrence, Canada. Journal of Natural History 32, 1651–1665.CrossRefGoogle Scholar
Nagamine, C., Knight, A. W., Maggenti, A., and Paxman, G. 1980. Effects of androgenic gland ablation on male primary and secondary sexual characteristics in the Malaysian prawn, Macrobrachium rosenbergii (de Man) (Decapoda, Palaemonidae), with first evidence of induced feminization in a nonhermaphroditic decapod. General and Comparative Endocrinology 41, 423–441.CrossRefGoogle Scholar
Nakashima, Y. 1987. Reproductive strategies in a partially protandrous shrimp, Athanas kominatoensis (Decapoda: Alpheidae): sex changes as the best of a bad situation for subordinates. Journal of Ethology 5, 145–159.CrossRefGoogle Scholar
Neff, B. D. 2003. Paternity and condition affect cannibalistic behavior in nest-tending bluegill sunfish. Behavioral Ecology and Sociobiology 54, 377–384.CrossRefGoogle Scholar
Nephew, B. C. and Romero, L. M. 2003. Behavioral, physiological, and endocrine responses of starlings to acute increases in density. Hormones and Behavior 44, 222–232.CrossRefGoogle ScholarPubMed
Noël, P. 1976. L'évolution des caractères sexuels chez Processa edulis (Risso)(Decapoda: Natantia). Vie et Milieu 26, 65–104.Google Scholar
Orensanz, J. M., Parma, A. M., Armstrong, D. A., Armstrong, J., and Wardrup, P. 1995. The breeding ecology of Cancer gracilis (Crustacea: Decapoda: Cancridae) and the mating systems of cancrid crabs. Journal of Zoology (London) 235, 411–437.CrossRefGoogle Scholar
Peckol, E. L., Troemel, E. R., and Bargmann, C. I. 2001. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 98, 11032–11038.CrossRefGoogle ScholarPubMed
Plaistow, S. J., Troussard, J. -P., and Cézilly, F. 2001. The effect of the acanthodephalan parasite Pomphorhynchuys laevis on the lipid and glycogen content of its intermediate host Gammmarus pulex. International Journal of Parasitology 31, 346–351.CrossRefGoogle Scholar
Ra'anan, Z. and Sagi, A. 1989. Alternative mating strategies in male morphotypes of the freshwater prawn Machrobrachium rosenbergii (DeMan). Biological Bulletin 169, 592–601.CrossRefGoogle Scholar
Repka, J. and Gross, M. R. 1995. The evolutionarily stable strategy under individual condition and tactic frequency. Journal of Theoretical Biology 176, 27–31.CrossRefGoogle ScholarPubMed
Ridley, M. 1983. The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Oxford, UK: Oxford University Press.Google Scholar
Roberts, L. S. and Janovy, J. Jr. 2005. Foundations of Parasitology, 7th edn. Boston, MA: McGraw-Hill.Google Scholar
Roff, D. A. 1992. The Evolution of Life Histories. New York: Chapman and Hall.Google Scholar
Roff, D. A. 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71, 3–35.CrossRefGoogle Scholar
Sagi, A., Ahl, J. S. B., Danaee, H., and Laufer, H. 1994. Methyl farnesoate levels in male spider crabs exhibiting active reproductive behavior. Hormones and Behavior 28, 261–272.CrossRefGoogle ScholarPubMed
Salmon, M. 1984. The courtship, aggression and mating system of a “primitive” fiddler crab (Uca vocans: Ocypodidae). Transactions of the Zoological Society of London 37, 1–50.CrossRefGoogle Scholar
Salmon, M. and Hyatt, G. W. 1983. Spatial and temporal aspects of reproduction in North Carolina fiddler crabs (Uca pugilator Bosc). Journal of Experimental Marine Biology and Ecology 70, 21–43.CrossRefGoogle Scholar
Sassaman, C. 1989. Inbreeding and sex ratio variation in female-biased populations of a clam shrimp, Eulimnadia texana. Bulletin of Marine Science 45, 425–432.Google Scholar
Sassaman, C. 1991. Sex ratio variation in female-biased populations of notostracans. Hydrobiologia 212, 169–179.CrossRefGoogle Scholar
Sassaman, C. and Weeks, S. C. 1993. The genetic mechanism of sex determination in the conchostracan shrimp Eulimnadia texana. American Naturalist 141, 314–328.CrossRefGoogle ScholarPubMed
Schlicting, C. D. and Pigliucci, M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.Google Scholar
Shuster, S. M. 1981. Sexual selection in the Socorro isopod, Thermosphaeroma thermophilum (Cole and Bane) (Crustacea: Peracarida). Animal Behaviour 29, 698–707.CrossRefGoogle Scholar
Shuster, S. M. 1989. Male alternative reproductive behaviors in a marine isopod crustacean (Paracerceis sculpta): the use of genetic markers to measure differences in fertilization success among α-, β-, and γ-males. Evolution 34, 1683–1698.Google Scholar
Shuster, S. M. 1992. The reproductive behaviour of α, β-, and γ-males in Paracerceis sculpta, a marine isopod crustacean. Behaviour 121, 231–258.CrossRefGoogle Scholar
Shuster, S. M. 2002. Mating strategies, alternative. In Pagel, M.et al. (eds.) Encyclopedia of Evolution, pp. 688–693. Oxford, UK: Oxford University Press.Google Scholar
Shuster, S. M. and Caldwell, R. L. 1989. Male defense of the breeding cavity and factors affecting the persistence of breeding pairs in the stomatopod, Gonodactylus bredini (Crustacea: Hoplocarida). Ethology 82, 192–207.CrossRefGoogle Scholar
Shuster, S. M. and Levy, L. 1999. Sex-linked inheritance of a cuticular pigmentation marker in a marine isopod, Paracerceis sculpta. Journal of Heredity 90, 304–307.CrossRefGoogle Scholar
Shuster, S. M. and Sassaman, C. 1997. Genetic interaction between male mating strategy and sex ratio in a marine isopod. Nature 388, 373–376.CrossRefGoogle Scholar
Shuster, S. M. and Wade, M. J. 1991. Equal mating success among male reproductive strategies in a marine isopod. Nature 350, 606–610.CrossRefGoogle Scholar
Shuster, S. M. and Wade, M. J. 2003. Mating Systems and Strategies. Princeton, NJ: Princeton University Press.Google Scholar
Shuster, S. M., Ballard, J. O. W., Zinser, G., Sassaman, C., and Keim, P. 2001. The influence of genetic and extrachromosomal factors on population sex ratio in Paracerceis sculpta. In Brusca, R. C. and Kensley, B. (eds.) Isopod Systematics and Evolution, vol. 13, Crustacean Issues, pp. 313–326. Amsterdam: Balkema.Google Scholar
Shuster, S. M. and Arnold, E. M. 2007. The effect of females on male–male competition in the isopod, Paracerceis Sculpta: a reaction norm approach to behavioral plasticity. Journal of Crustacean Biology 27, 417–424.CrossRefGoogle Scholar
Sinervo, B. 2000. Selection in local neighborhoods, the social environment, and ecology of alternative strategies. In Dugatkin, L. (ed.) Model Systems in Behavioral Ecology, pp. 191–226. Princeton, NJ: Princeton University Press.Google Scholar
Sinervo, B. 2001. Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs. Genetica 112, 417–434.CrossRefGoogle ScholarPubMed
Stancyk, S. E. and Moreira, G. S. 1988. Inheritance of male dimorphism in Brazilian populations of Euterpina acutifrons (Dana) (Copepoda: Harpacticoida). Journal of Experimental Marine Biology and Ecology 120, 125–144.CrossRefGoogle Scholar
Stein, R. A. 1976. Sexual dimorphism in crayfish chelae: functional significance linked to reproductive activities. Canadian Journal of Zoology 54, 220–227.CrossRefGoogle Scholar
Tanaka, K. 2003. Population dynamics of the sponge-dwelling gnathiid isopod Elaphognathia cornigera. Journal of the Marine Biological Association of the United Kingdom 83, 95–102.CrossRefGoogle Scholar
Tanaka, K. and Aoki, M. 1999. Spatial distribution patterns of the sponge-dwelling gnathiid isopod Elaphognathia cornigera (Nunomura) on an intertidal rocky shore of the Isu Peninsula, southern Japan. Crustacean Research 28, 160–167.CrossRefGoogle Scholar
Taru, M., Kanda, T., and Sunobe, T. 2002. Alternative mating tactics of the gobiid fish Bathygobius fuscus. Journal of Ethology 20, 9–12.CrossRefGoogle Scholar
Thompson, D. J. and Manning, J. T. 1981. Mate selection by Asellus (Crustacea: Isopoda). Behaviour 78, 178–187.CrossRefGoogle Scholar
Tomkins, J. L. and Brown, G. S. 2004. Population density drives the local evolution of a threshold dimorphism. Nature 431, 1099–1103.CrossRefGoogle ScholarPubMed
Tregenza, T. and Wedell, N. 2000. Invited review: genetic compatibility, mate choice and patterns of parentage. Molecular Ecology 9, 1013–1027.CrossRefGoogle ScholarPubMed
Upton, N. P. D. 1987. Asynchronous male and female life cycles in the sexually dimorphic, harem-forming isopod Paragnathia formica (Crustacea: Isopoda). Journal of Zoology (London) 212, 677–690.CrossRefGoogle Scholar
Via, S. and Lande, R. 1985. Genotype–environment interactions and the evolution of phenotypic plasticity. Evolution 39, 505–522.CrossRefGoogle Scholar
Wada, K. 1986. Burrow usurpation and duration of surface activity in Scopimera globosa (Crustacea: Brachyura: Ocypodidae). Publications of the Seto Marine Biological Laboratory 31, 327–332.CrossRefGoogle Scholar
Wade, M. J. 1979. Sexual selection and variance in reproductive success. American Naturalist 114, 742–764.CrossRefGoogle Scholar
Wade, M. J. and Shuster, S. M. 2002. The evolution of parental care in the context of sexual selection: a critical reassessment of parental investment theory. American Naturalist 160, 285–292.CrossRefGoogle ScholarPubMed
Wade, M. J. and Shuster, S. M. 2004. Sexual selection: harem size and the variance in male reproductive success. American Naturalist 164, E83–E89.CrossRefGoogle ScholarPubMed
Wade, M. J., Shuster, S. M., and Demuth, J. P. 2003. Sexual selection favors female-biased sex ratios: the balance between the opposing forces of sex-ratio selection and sexual selection. American Naturalist 162, 403–414.CrossRefGoogle ScholarPubMed
Weeks, S. C. and Zucker, N. 1999. Rates of inbreeding in the androdioecious clam shrimp Eulimnadia texana. Canadian Journal of Zoology 77, 1402–1408.CrossRefGoogle Scholar
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. Oxford, UK: Oxford University Press.Google Scholar
Winn, A. A. 1996. The contributions of programmed developmental change and phenotypic plasticity to within-individual variation in leaf traits in Dicerandra linearifolia. Journal of Evolutionary Biology 9, 737–752.CrossRefGoogle Scholar
Wolf, J. B. and Wade, M. J. 2001. On the assignment of fitness to parents and offspring: whose fitness is it and when does it matter?Journal of Evolutionary Ecology 14, 347–358.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×