Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T11:00:48.081Z Has data issue: false hasContentIssue false

2 - Alternative reproductive tactics and the evolution of alternative allocation phenotypes

Published online by Cambridge University Press:  10 August 2009

H. Jane Brockmann
Affiliation:
Department of Zoology University of Florida Gainesville, FL 32611 USA
Michael Taborsky
Affiliation:
Zoological Institute Behavioural Ecology University of Bern Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

Alternative reproductive tactics (ARTs) are part of a much larger class of alternative phenotypes that include sex allocation and alternative life histories. We examine the evolution of ARTs by drawing on the much larger base of theory from sex-allocation and life-history evolution. Insights into how alternative tactics evolve (their maintenance in populations, the evolution of their underlying mechanisms and flexibility, the evolution of morph differences and morph frequencies) are derived from principles developed for understanding the evolution of sex, sex determination, hermaphroditism, sexual dimorphism, and sex ratios.

INTRODUCTION

Darwin (1871) was fascinated by variation. In part this was because so many scholars at the time emphasized typological thinking and ignored the biological variation around them. But more importantly Darwin realized that heritable variation was at the heart of his theory. If variants showed differential survival and if those characteristics were passed on to their offspring, then evolution occurred. He understood that if one form were just a little more successful than the other, then the variant with the higher success would prevail. This understanding led him to worry about cases in which discrete variation was maintained at a stable frequency in one population. These worries included social insect castes, sexual dimorphism, and alternative forms of one sex (Shuster and Wade 2003).

Variation within one population is usually continuous but under some circumstances, discrete, discontinuous patterns of variation evolve and are maintained. Sexual dimorphism is the most obvious case.

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 25 - 51
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J. 1996a. Male size and survival: the effects of male combat and bird predation in Dawson's burrowing bees, Amegilla dawsoni. Ecological Entomology 21, 309–316.CrossRefGoogle Scholar
Alcock, J. 1996b. Site fidelity and homing ability of males of Dawson's burrowing bee (Amegilla dawsoni) (Apidae, Anthophorini). Journal of the Kansas Entomological Society 69, 182–190.Google Scholar
Alcock, J. 1996c. The relation between male body size, fighting, and mating success in Dawson's burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). Journal of Zoology (London) 239, 663–674.CrossRefGoogle Scholar
Alcock, J. 1996d. Provisional rejection of three alternative hypotheses on the maintenance of a size dichotomy in males of Dawson's burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). Behavioral Ecology and Sociobiology 39, 181–188.CrossRefGoogle Scholar
Alcock, J. 1997a. Competition from large males and the alternative mating tactics of small males of Dawson's burrowing bees (Amegilla dawsoni) (Apidae, Apinae, Anthophorini). Journal of Insect Behavior 10, 99–114.CrossRefGoogle Scholar
Alcock, J. 1997b. Small males emerge earlier than large males in Dawson's burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini). Journal of Zoology (London) 242, 453–462.CrossRefGoogle Scholar
Alexander, R. D. and Sherman, P. W. 1977. Local mate competition and parental investment in social insects. Science 196, 494–500.CrossRefGoogle ScholarPubMed
Alonzo, S. H. and Warner, R. R. 2000a. Dynamic games and field experiments examining intra- and intersexual conflict: explaining counterintuitive mating behavior in a Mediterranean wrasse, Symphodus ocellatus. Behavioral Ecology 11, 56–70.CrossRefGoogle Scholar
Alonzo, S. H. and Warner, R. R. 2000b. Female choice, conflict between the sexes and the evolution of male alternative reproductive behaviours. Evolutionary Ecological Research 2, 149–170.Google Scholar
Andres, J. A., Sanchez-Guillen, R. A., and Rivera, A. C. 2002. Evolution of female colour polymorphism in damselflies: testing the hypotheses. Animal Behaviour 63, 677–685.CrossRefGoogle Scholar
Angilletta, M. J., Wilson, R. S., Navas, C. A., and James, R. S. 2003. Tradeoffs and the evolution of thermal reaction norms. Trends in Ecology and Evolution 18, 234–240.CrossRefGoogle Scholar
Bachman, G. and Widemo, F. 1999. Relationships between body composition, body size and alternative reproductive tactics in a lekking sandpiper, the ruff (Philomachus pugnax). Functional Ecology 13, 411–416.CrossRefGoogle Scholar
Badyaev, A. V. 2002. Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology and Evolution 17, 369–378.CrossRefGoogle Scholar
Badyaev, A. V. and Hill, G. E. 2000. The evolution of sexual dimorphism in the house finch. 1. Population divergence in morphological covariance structure. Evolution 54, 1784–1794.CrossRefGoogle Scholar
Badyaev, A., Hill, G. E., Stoehr, A. M., Nolan, P. M., and McGraw, K. J. 2000. The evolution of sexual size dimorphism in the house finch. 2. Population divergence in relation to local selection. Evolution 54, 2134–2144.CrossRefGoogle Scholar
Badyaev, A. V., Whittingham, L., and Hill, G. E. 2001. The evolution of sexual size dimorphism in the house finch. 3. Developmental basis. Evolution 55, 176–189.CrossRefGoogle Scholar
Balshine-Earn, S., Neat, F. C., Reid, H., and Taborsky, M. 1998. Paying to stay or paying to breed? Field evidence for direct benefits of helping behavior in cooperatively breeding fish. Behavioral Ecology 9, 432–438.CrossRefGoogle Scholar
Barlow, G. W. 1967. Social behavior of a South American leaf fish, Polycentrus schomburgkii, with an account of recurring pseudofemale behavior. American Midland Naturalist 78, 215–234.CrossRefGoogle Scholar
Barnard, C. J. 1984. Producers and Scroungers: Strategies of Exploitation and Parasitism. London: Croom Helm.CrossRefGoogle Scholar
Barnard, C. J. and Sibly, R. M. 1981. Producers and scroungers: a general model and its applications to captive flocks of house sparrows. Animal Behaviour 29, 543–550.CrossRefGoogle Scholar
Bass, A. H. 1996. Shaping brain sexuality: varying reproductive tactics of plainfin midshipman fish have neural correlates. American Scientist 84, 352–363.Google Scholar
Bean, D. and Cook, J. M. 2001. Male mating tactics and lethal combat in the nonpollinating fig wasp Sycoscapter australis. Animal Behaviour 62, 535–542.CrossRefGoogle Scholar
Beekman, M. and Stratum, P. 1998. Bumblebee sex ratios: why do bumblebees produce so many males?Proceedings of the Royal Society of London B 265, 1535–1543.CrossRefGoogle Scholar
Boomsma, J. J. 1991. Adaptive colony sex ratios in primitively eusocial bees. Trends in Ecology and Evolution 6, 92–95.CrossRefGoogle ScholarPubMed
Boomsma, J. J. and Grafen, A. 1990. Intraspecific variation in ant sex ratios and the Trivers–Hare hypothesis. Evolution 44, 1026–1034.CrossRefGoogle ScholarPubMed
Brockmann, H. J. 2001. The evolution of alternative strategies and tactics. Advances in the Study of Behavior 30, 1–51.CrossRefGoogle Scholar
Brockmann, H. J. 2002. An experimental approach to altering mating tactics in male horseshoe crabs (Limulus polyphemus). Behavioral Ecology 13, 232–238.CrossRefGoogle Scholar
Brockmann, H. J. 2004. Variable life-history and emergence patterns of the pipe-organ mud-daubing wasp, Trypoxylon politum (Hymenoptera: Sphecidae). Journal of the Kansas Entomological Society 77, 503–527.CrossRefGoogle Scholar
Brockmann, H. J. and Dawkins, R. 1979. Joint nesting in a digger wasp as an evolutionarily stable preadaptation to social life. Behaviour 71, 203–245.CrossRefGoogle Scholar
Brockmann, H. J. and Grafen, A. 1992. Sex ratios and life-history patterns of a solitary wasp, Trypoxylon (Trypargilum) politum (Hymenoptera: Sphecidae). Behavioral Ecology and Sociobiology 30, 7–27.CrossRefGoogle Scholar
Brockmann, H. J. and Penn, D. 1992. Male mating tactics in the horseshoe crab, Limulus polyphemus. Animal Behaviour 44, 653–665.CrossRefGoogle Scholar
Brockmann, H. J., Grafen, A., and Dawkins, R. 1979. Evolutionarily stable nesting strategy in a digger wasp. Journal of Theoretical Biology 7, 473–496.CrossRefGoogle Scholar
Brockmann, H. J., Colson, T., and Potts, W. 1994. Sperm competition in horseshoe crabs (Limulus polyphemus). Behavioral Ecology and Sociobiology 35, 153–160.CrossRefGoogle Scholar
Brockmann, H. J., Nguyen, C., and Potts, W. 2000. Paternity in horseshoe crabs when spawning in multiple male groups. Animal Behaviour 60, 837–849.CrossRefGoogle ScholarPubMed
Brönmark, C. and Miner, J. G. 1992. Predator-induced phenotypical change in body morphology in crucian carp. Science 258, 1348–1350.CrossRefGoogle ScholarPubMed
Brooks, R. and Endler, J. A. 2001. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655.CrossRefGoogle ScholarPubMed
Bull, J. J. 1983. Evolution of Sex-Determining Mechanisms. Menlo Park, CA: Benjamin Cummings.Google Scholar
Bull, J. J. and Charnov, E. L. 1988. How fundamental are Fisherian sex ratios?Oxford Surveys in Evolutionary Biology 5, 96–135.Google Scholar
Cade, W. H. 1981. Alternative male strategies: genetic differences in crickets. Science 212, 563–564.CrossRefGoogle ScholarPubMed
Calsbeek, R., Alonzo, S. H., Zamudio, K., and Sinervo, B. 2002. Sexual selection and alternative mating behaviours generate demographic stochasticity in small populations. Proceedings of the Royal Society of London B 269, 157–164.CrossRefGoogle ScholarPubMed
Chan, T.-Y. and Ribbink, A. J. 1990. Alternative reproductive behaviour in fishes, with particular reference to Lepomis macrochira and Pseudocrenilabrus philander. Environmental Biology of Fishes 28, 249–256.CrossRefGoogle Scholar
Charnov, E. L. 1979. Simultaneous hermaphroditism and sexual selection. Proceedings of the National Academy of Sciences of the United States of America 76, 2480–2484.CrossRefGoogle ScholarPubMed
Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Charnov, E. L. 1986. An optimisation principle for sex allocation in a temporally varying environment. Heredity 56, 119–121.CrossRefGoogle Scholar
Charnov, E. L. and Bull, J. 1977. When is sex environmentally determined?Nature 26, 828–830.CrossRefGoogle Scholar
Charnov, E. L., Maynard Smith, J., and Bull, J. J. 1976. Why be an hermaphrodite?Nature 263, 125–126.CrossRefGoogle Scholar
Charnov, E. L., Hartogh, R. L. L.-D., Jones, W. T., and Assem, J. 1981. Sex ratio evolution in a variable environment. Nature 289, 27–33.CrossRefGoogle Scholar
Clutton-Brock, T. H. and Albon, S. D. 1982. Parental investment in male and female offspring in mammals. In King's College Sociobiology Group (eds.) Current Problems: Sociobiology, pp. 223–247. Cambridge, UK: Cambridge University Press.Google Scholar
Clutton-Brock, T. H., Guinness, F. E., and Albon, S. D. 1982. Red Deer: Behavior and Ecology of Two Sexes. Chicago, IL: University of Chicago Press.Google Scholar
Clutton-Brock, T. H., Albon, S. D., and Guinness, F. E. 1986. Great expectations: dominance, breeding success and offspring sex ratios in red deer. Animal Behaviour 34, 460–471.CrossRefGoogle Scholar
Clutton-Brock, T. H., Albon, S. D., and Guinness, F. E. 1988. Reproductive success in male and female red deer. In Clutton-Brock, T. H. (ed.) Reproductive Success, pp. 403–418. Chicago, IL: University of Chicago Press.Google Scholar
Collins, J. P. and Cheek, J. E. 1983. Effect of food and density on development of typical and cannibal salamander larvae in Ambystoma tigrinum nebulosum. American Zoologist 23, 77–84.CrossRefGoogle Scholar
Conover, D. and Voorhees, D. 1990. Evolution of a balanced sex ratio by frequency-dependent selection in a fish. Science 250, 1556–1558.CrossRefGoogle ScholarPubMed
Cook, J. M. 2002. Sex determination in invertebrates. In Hardy, I. C. W. (ed.) Sex Ratios: Concepts and Research Methods, pp. 178–194. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Cook, J. M., Compton, S. G., Herre, E. A., and West, S. A. 1997. Alternative mating tactics and extreme male dimorphism in fig wasps. Proceedings of the Royal Society of London B 264, 747–754.CrossRefGoogle Scholar
Cordero, A. 1990. The inheritance of female polymorphism in the damselfly Ischnura graellsii (Rambur) (Odonata: Coenagrionidae). Heredity 64, 341–346.CrossRefGoogle Scholar
Cordero, A. 1992. Density-dependent mating success and colour polymorphism in females of the damselfly Ischnura graellsii (Odonata: Coenagrionidae). Journal of Animal Ecology 61, 769–780.CrossRefGoogle Scholar
Cordero, A. and Egido, F. J. 1998. Mating frequency, population density and female polychromatism in the damselfly Ischnura graellsii: an analysis of four natural populations. Etologia 6, 61–67.Google Scholar
Cordero, A., Carbone, S. S., and Utzeri, C. 1998. Mating opportunities and mating costs are reduced in androchrome female damselflies, Ischnura elegans (Odonata). Animal Behaviour 55, 185–197.CrossRefGoogle Scholar
Cremer, S. and Heinze, J. 2002. Adaptive production of fighter males: queens of the ant Cardiocondyla adjust the sex ratio under local mate competition. Proceedings of the Royal Society of London B 269, 417–422.CrossRefGoogle ScholarPubMed
Crews, D. 1993. The organizational concept and vertebrates without sex chromosomes. Brain, Behavior, and Evolution 42, 202–214.CrossRefGoogle ScholarPubMed
Crnokrak, P. and Roff, D. A. 1995. Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus firmus. Animal Behaviour 50, 1475–1481.CrossRefGoogle Scholar
Crnokrak, P. and Roff, D. A. 1998. The genetic basis of the trade-off between calling and wing morph in males of the cricket Gryllus firmus. Evolution 52, 1111–1118.CrossRefGoogle ScholarPubMed
Danforth, B. N. and Desjardins, C. A. 1999. Male dimorphism in Perdita portalis (Hymenoptera, Andrenidae) has arisen from preexisting allometric patterns. Insectes Sociaux 46, 18–28.CrossRefGoogle Scholar
Danforth, B. N. and Neff, J. L. 1992. Male polymorphism and polyethism in Perdita texana (Hymenoptera: Andrenidae). Annals of the American Entomological Society 85, 616–626.CrossRefGoogle Scholar
Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex. London: John Murray.Google Scholar
Dawkins, R. 1980. Good strategy or evolutionarily stable strategy. In Barlow, G. W. and Silverberg, S. (eds.) Sociobiology: Beyond Nature/Nurture, pp. 331–367. Boulder, CO: Westview Press.Google Scholar
Dawkins, R. 1982. The Extended Phenotype. San Francisco, CA: W. H. Freeman.Google Scholar
Fraipont, M., Fitzgerald, G. J., and Guderley, H. 1993. Age-related differences in reproductive tactics in the three-spined stickleback, Gasterosteus aculeatus. Animal Behaviour 46, 961–968.CrossRefGoogle Scholar
Denno, R. F. 1994. The evolution of dispersal polymorphism in insects: the influence of habitats, host plants and mates. Researches on Population Ecology 36, 127–135.CrossRefGoogle Scholar
Denno, R. F., Douglas, L. W., and Jacobs, D. 1985. Effects of crowding and host plant nutrition on a wing-dimorphic planthopper. Ecology 67, 116–123.CrossRefGoogle Scholar
Denno, R. F., Roderick, G. K., Peterson, M. A., et al. 1996. Habitat persistence underlies the intraspecific dispersal strategies of planthoppers. Ecological Monographs 66, 389–408.CrossRefGoogle Scholar
DeWitt, T. J., Sih, A., and Wilson, D. S. 1998. Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution 13, 77–81.CrossRefGoogle ScholarPubMed
Dierkes, P., Taborsky, M., and Kohler, U. 1999. Reproductive parasitism of broodcare helpers in a cooperatively breeding fish. Behavioral Ecology 10, 510–515.CrossRefGoogle Scholar
Dingle, H. and Winchell, R. 1997. Juvenile hormone as a mediator of plasticity in insect life histories. Archives of Insect Biochemistry and Physiology 35, 359–373.3.0.CO;2-N>CrossRefGoogle Scholar
Dodson, S. 1989. Predator-induced reaction norms. BioScience 39, 447–452.CrossRefGoogle Scholar
Dominey, W. J. 1980. Female mimicry in male bluegill sunfish: a genetic polymorphism?Nature 284, 546–548.CrossRefGoogle Scholar
Dominey, W. J. 1984. Alternative mating tactics and evolutionarily stable strategies. American Zoologist 24, 385–396.CrossRefGoogle Scholar
Doums, C., Viard, F., and Jarne, P. 1998. The evolution of phally polymorphism. Biological Journal of the Linnean Society 64, 273–296.CrossRefGoogle Scholar
Eadie, J. M. and Fryxell, J. M. 1992. Density dependence, frequency dependence, and alternative nesting strategies in goldeneyes. American Naturalist 140, 621–641.CrossRefGoogle ScholarPubMed
Emlen, D. J. 1996. Artificial selection on horn length–body size allometry in the horned beetle Onthophagus acuminatus. Evolution 50, 1219–1230.CrossRefGoogle ScholarPubMed
Emlen, D. J. 2001. Costs and the diversification of exaggerated animal structures. Science 291, 1534–1536.CrossRefGoogle ScholarPubMed
Emlen, D. J. and Nijhout, H. F. 1999. Hormonal control of male horn length dimorphism in the horned beetle Onthophagus taurus. Journal of Insect Physiology 45, 45–53.CrossRefGoogle Scholar
Emlen, D. J. and Nijhout, H. F. 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology 45, 661–708.CrossRefGoogle ScholarPubMed
Emlen, D. J. and Nijhout, H. F. 2001. Hormonal control of male horn length dimorphism in Onthophagus taurus (Coleoptera: Scarabaeidae): a second critical period of sensitivity to juvenile hormone. Journal of Insect Physiology 47, 1045–1054.CrossRefGoogle ScholarPubMed
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Flanagan, K. E. and West, S. A. 1998. Local mate competition, variable fecundity and information utilization in a parasitoid. Animal Behaviour 56, 191–198.CrossRefGoogle Scholar
Foote, C. J., Brown, G. S., and Wood, C. C. 1997. Spawning success of males using alternative mating tactics in sockeye salmon, Oncorhynchus nerka. Canadian Journal of Fisheries and Aquatic Sciences 54, 1785–1795.CrossRefGoogle Scholar
Frank, S. 1983. A hierarchical view of sex-ratio patterns. Florida Entomologist 66, 42–75.CrossRefGoogle Scholar
Frank, S. A. 1985. Hierarchical selection theory and sex ratios. 2. On applying the theory, and a test with fig wasps. Evolution: International Journal of Organic Evolution 39, 949–964.CrossRefGoogle Scholar
Frank, S. A. 1987. Individual and population sex allocation patterns. Theoretical Population Biology 31, 47–74.CrossRefGoogle ScholarPubMed
Gadgil, M. 1972. Male dimorphism as a consequence of sexual selection. American Naturalist 106, 574–579.CrossRefGoogle Scholar
Giraldeau, L.-A. and Caraco, T. 2000. Social Foraging Theory. Princeton, NJ: Princeton University Press.Google Scholar
Giraldeau, L.-A. and Livoreil, B. 1998. Game theory and social foraging. In Dugatkin, L. and Reeve, H. K. (eds.) Game Theory and Animal Behavior, pp. 16–37. Oxford, UK: Oxford University Press.Google Scholar
Goodson, J. L. and Bass, A. H. 2000. Forebrain peptides modulate sexually polymorphic vocal circuitry. Nature 403, 769–772.CrossRefGoogle ScholarPubMed
Grafen, A. 1986. Split sex ratios and the evolutionary origins of eusociality. Journal of Theoretical Biology 122, 95–121.CrossRefGoogle Scholar
Greeff, J. M. 1996. Alternative mating strategies, partial sibmating and split sex ratios in haplodiploid species. Journal of Evolutionary Biology 9, 855–869.CrossRefGoogle Scholar
Greeff, J. M. 1998. Local mate competition, sperm usage and alternative mating strategies. Evolutionary Ecology 12, 627–628.CrossRefGoogle Scholar
Greeff, J. M. 2002. Mating system and sex ratios of a pollinating fig wasp with dispersing males. Proceedings of the Royal Society of London B 269, 2317–2323.CrossRefGoogle ScholarPubMed
Greene, E. 1989. A diet-induced developmental polymorphism in a caterpillar. Science 243, 643–646.CrossRefGoogle Scholar
Greene, E. 1999. Phenotypic variation in larval development and evolution: polymorphism, polyphenism, and developmental reaction norms. In Hall, B. and Wake, M. (eds.) The Origin and Evolution of Larval Forms, pp. 379–410. New York: Academic Press.Google Scholar
Gross, M. R. 1984. Sunfish, salmon, and the evolution of alternative reproductive strategies and tactics in fishes. In Wooton, R. and Potts, G. (eds.) Fish Reproduction: Strategies and Tactics, pp. 55–75. London: Academic Press.Google Scholar
Gross, M. R. 1985. Disruptive selection for alternative life histories in salmon. Nature 313, 47–48.CrossRefGoogle Scholar
Gross, M. R. 1991a. Evolution of alternative reproductive strategies: frequency-dependent sexual selection in male bluegill sunfish. Philosophical Transactions of the Royal Society of London B 332, 59–66.CrossRefGoogle Scholar
Gross, M. R. 1991b. Salmon breeding behavior and life history evolution in changing environments. Ecology 72, 1180–1186.CrossRefGoogle Scholar
Gross, M. R. 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11, 92–97.CrossRefGoogle ScholarPubMed
Gross, M. R. and Repka, J. 1995. Inheritance and the conditional strategy. American Zoologist 24, 385–396.Google Scholar
Gross, M. R. and Repka, J. 1998a. Game theory and inheritance in the conditional strategy. In Dugatkin, L. and Reeve, H. K. (eds.) Game Theory and Animal Behavior, pp. 168–187. Oxford, UK: Oxford University Press.Google Scholar
Gross, M. R. and Repka, J. 1998b. Stability with inheritance in the conditional strategy. Journal of Theoretical Biology 192, 445–453.CrossRefGoogle Scholar
Halama, K. J. and Reznick, D. N. 2001. Adaptation, optimality, and the meaning of phenotypic variation in natural populations. In Orzack, S. H. and Sober, E. (eds.) Adaptationism and Optimality, pp. 242–272. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156, 477–488.CrossRefGoogle ScholarPubMed
Hamilton, W. D. 1972. Altruism and related phenomena, mainly in social insects. Annual Review of Ecology and Systematics 3, 193–232.CrossRefGoogle Scholar
Hamilton, W. D. 1979. Wingless and fighting males in fig wasps and other insects. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 167–220. New York: Academic Press.Google Scholar
Haydock, J., Parker, P. G., and Rabenold, K. N. 1996. Extra pair paternity uncommon in the cooperatively breeding bicolored wren. Behavioral Ecology and Sociobiology 38, 1–16.CrossRefGoogle Scholar
Hazel, W. N., Smock, R., and Johnson, M. D. 1990. A polygenic model for the evolution and maintenance of conditional strategies. Proceedings of the Royal Society of London B 242, 181–188.CrossRefGoogle ScholarPubMed
Hazel, W., Smock, R., and Lively, C. M. 2004. The ecological genetics of conditional strategies. American Naturalist 163, 888–900.CrossRefGoogle ScholarPubMed
Henson, S. A. and Warner, R. R. 1997. Male and female alternative reproductive behaviors in fishes: a new approach using intersexual dynamics. Annual Review of Ecology and Systematics 28, 571–592.CrossRefGoogle Scholar
Herre, E. A. 2001. Selective regime and fig wasp sex ratios. In Orzack, S. H. and Sober, E. (eds.) Adaptationism and Optimality, pp. 191–217. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hews, D. K., Thompson, C. W., Moore, I. T., and Moore, M. C. 1997. Population frequencies of alternative male phenotypes in tree lizards: geographic variation and common-garden rearing studies. Behavioral Ecology and Sociobiology 41, 371–380.CrossRefGoogle Scholar
Hori, M. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260, 216–219.CrossRefGoogle ScholarPubMed
Horth, L. and Travis, J. 2002. Frequency-dependent numerical dynamics in mosquitofish. Proceedings of the Royal Society of London B 269, 2239–2247.CrossRefGoogle ScholarPubMed
Hugie, D. M. and Lank, D. B. 1997. The resident's dilemma: a female choice model for the evolution of alternative mating strategies in lekking male ruffs. Behavioral Ecology 8, 218–225.CrossRefGoogle Scholar
Hurst, L. D. and Randerson, J. P. 2002. Parasitic sex puppeteers. Scientific American 286, 56–61.CrossRefGoogle ScholarPubMed
Hutchings, J. A. and Myers, R. A. 1988. Mating success of alternative maturation phenotypes in male Atlantic salmon, Salmo salar. Oecologia 75, 169–174.CrossRefGoogle ScholarPubMed
Hutchings, J. A. and Myers, R. A. 1994. The evolution of alternative mating strategies in variable environments. Evolutionary Ecology 8, 256–268.CrossRefGoogle Scholar
Isvaran, K. and St. Mary, C. M. 2003. When should males lek? Insights from a dynamic state variable model. Behavioral Ecology 14, 876–886.CrossRefGoogle Scholar
Janzen, F. J. and Paukstis, G. L. 1991. Environmental sex determination in reptiles: ecology, evolution and experimental design. Quarterly Review of Biology 66, 149–179.CrossRefGoogle ScholarPubMed
Johnson, C. 1964. The inheritance of female dimorphism in the damselfly, Ischnura damula. Genetics 49, 513–519.Google ScholarPubMed
Jones, A. G. 2002. The evolution of alternative cryptic female choice strategies in age-structured populations. Evolution 56, 2530–2536.CrossRefGoogle ScholarPubMed
Kaitala, A., Kaitala, V., and Lundberg, P. 1993. A theory of partial migration. American Naturalist 142, 59–81.CrossRefGoogle Scholar
Karplus, I. 2005. Social control of growth in Macrobrachium rosenbergii (De Man): a review of prospects for future research. Aquaculture Research 36, 238–254.CrossRefGoogle Scholar
King, B. H. 1992. Sex ratio manipulation by parasitoid wasps. In Wrensch, D. L. and Ebber, M. A. (eds.) Evolution and Diversity of Sex Ratio in Insects and Mites, pp. 418–441. New York: Chapman and Hall.Google Scholar
Knapp, R. 2004. Endocrine mediation of vertebrate male alternative reproductive tactics: the next generation of studies. Integrative and Comparative Biology 43, 658–668.CrossRefGoogle Scholar
Kraak, S. B. M. and Pen, I. 2002. Sex-determining mechanisms in vertebrates. In Hardy, I. C. W. (ed.) Sex Ratios: Concepts and Research Methods, pp. 158–177. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kruuk, L. E. B., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. M., and Guinness, F. E. 1999. Population density affects sex ratio variation in red deer. Nature 399, 459–462.CrossRefGoogle ScholarPubMed
Lande, R. 1980. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305.CrossRefGoogle ScholarPubMed
Langellotto, G. A. and Denno, R. F. 2001. Benefits of dispersal in patchy environments: mate location by males of a wing-dimorphic insect. Ecology 82, 1870–1878.CrossRefGoogle Scholar
Langellotto, G. A., Denno, R. F., and Ott, J. R. 2000. A trade-off between flight capability and reproduction in males of wing-dimorphic insects. Ecology 81, 865–875.CrossRefGoogle Scholar
Lank, D. B., Coupe, M., and Wynne-Edwards, K. E. 1999. Testosterone-induced male traits in female ruffs (Philomachus pugnax): autosomal inheritance and gender differentiation. Proceedings of the Royal Society of London B 266, 2323–2330.CrossRefGoogle Scholar
Lee, J. S. F. 2005. Alternative reproductive tactics and status-dependent selection. Behavioral Ecology 16, 566–570.CrossRefGoogle Scholar
Lessells, C. M. 1991. The evolution of life histories. In Krebs, J. R. and Davies, N. B. (eds.) Behavioral Ecology: An Evolutionary Approach, pp. 32–68. Oxford, UK: Blackwell Scientific.Google Scholar
Lloyd, D. G. 1987. Parallels between sexual strategies and other allocation strategies. In Stearns, S. C. (ed.) The Evolution of Sex and Its Consequences, pp. 263–281. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Lucas, J. R., Howard, R. D., and Palmer, J. G. 1996. Callers and satellites: chorus behavior in anurans as a stochastic dynamic game. Animal Behaviour 51, 501–518.CrossRefGoogle Scholar
Magnhagen, C. 1992. Alternative reproductive behavior in the common goby, Pomatoschistus microps: an ontogenic gradient. Animal Behaviour 44, 182–184.CrossRefGoogle Scholar
Martin, E. and Taborsky, M. 1997. Alternative male mating tactics in a cichlid, Pelvicachromis pulcher: a comparison of reproductive effort and success. Behavioral Ecology and Sociobiology 41, 311–319.CrossRefGoogle Scholar
Mathias, A. and Kisdi, E. 2002. Adaptive diversification of germination strategies. Proceedings of the Royal Society of London B 269, 151–155.CrossRefGoogle ScholarPubMed
McWatters, H. G. and Saunders, D. S. 1997. Inheritance of the photoperiodic response controlling larval diapause in the blow fly, Calliphora vicina. Journal of Insect Physiology 43, 709–717.CrossRefGoogle Scholar
Moczek, A. P. 2003. The behavioral ecology of threshold evolution in a polyphenic beetle. Behavioral Ecology 14, 841–854.CrossRefGoogle Scholar
Moczek, A. P., Hunt, J., Emlen, D. J., and Simmons, L. W. 2002. Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research 4, 587–601.Google ScholarPubMed
Mole, S. and Zera, A. J. 1992. Differential allocation of resources underlies the dispersal–reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 93, 121–127.CrossRefGoogle Scholar
Mole, S. and Zera, A. J. 1994. Differential resource consumption obviates a potential flight–fecundity trade-off in the sand cricket (Gryllus firmus). Functional Ecology 8, 573–580.CrossRefGoogle Scholar
Moore, M. C., Hews, D. K., and Knapp, R. 1998. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. American Zoologist 38, 133–151.CrossRefGoogle Scholar
Moran, N. 1992. The evolutionary maintenance of alternative phenotypes. American Naturalist 139, 971–989.CrossRefGoogle Scholar
Morris, D. 1951. Homosexuality in the ten-spined stickleback (Pygosteus pungitius (L.)). Behaviour 4, 233–261.CrossRefGoogle Scholar
Morris, D. 1954. The causation of pseudofemale and pseudomale behaviour: a further comment. Behaviour 7, 46–56.Google Scholar
Morris, M. R., Nicoletto, P. F., and Hesselman, E. 2003. A polymorphism in female preference for a polymorphic male trait in the swordtail fish Xiphophorus cortezi. Animal Behaviour 65, 45–52.CrossRefGoogle Scholar
Mueller, U. G. 1991. Haplodiploidy and the evolution of facultative sex ratios in a primitively eusocial bee. Science 254, 442–444.CrossRefGoogle Scholar
Neff, J. L. and Sherman, P. W. 2002. Decision making and recognition mechanisms. Proceedings of the Royal Society of London B 269, 1435–1441.CrossRefGoogle ScholarPubMed
Nijhout, H. F. 1999. Hormonal control in larval development and evolution: insects. In Hall, B. K. and Wake, M. H. (eds.) The Origin and Evolution of Larval Forms, pp. 217–254. New York: Academic Press.Google Scholar
Nijhout, H. F. and Wheeler, D. E. 1982. Juvenile hormone and the physiological basis of insect polymorphisms. Quarterly Review of Biology 57, 109–133.CrossRefGoogle Scholar
Nonacs, P. 1986. Ant reproductive strategies and sex allocation theory. Quarterly Review of Biology 61, 1–21.CrossRefGoogle Scholar
Partridge, L. and Hurst, L. D. 1998. Sex and conflict. Science 281, 2003–2008.CrossRefGoogle ScholarPubMed
Penn, D. and Brockmann, H. J. 1995. Age-biased stranding and righting in male horseshoe crabs, Limulus polyphemus. Animal Behaviour 49, 1531–1539.CrossRefGoogle Scholar
Pfennig, D. W. 1992. Polyphenism in spadefoot toad tadpoles as a locally adjusted evolutionarily stable strategy. Evolution 46, 1408–1420.Google ScholarPubMed
Philipp, D. P. and Gross, M. R. 1994. Genetic evidence for cuckoldry in bluegill Lepomis macrochirus. Molecular Ecology 3, 563–569.CrossRefGoogle Scholar
Pienaar, J. and Greeff, J. M. 2003. Maternal control of offspring sex and male morphology in the Otitesella fig wasps. Journal of Evolutionary Biology 16, 244–253.CrossRefGoogle ScholarPubMed
Piersma, T. and Drent, J. 2003. Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18, 228–231.CrossRefGoogle Scholar
Pigliucci, M. 2001. Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Plaistow, S., Johnstone, R. A., Colegrave, N., and Spencer, M. 2004. Evolution of alternative mating tactics: conditional versus mixed strategies. Behavioral Ecology 15, 534–542.CrossRefGoogle Scholar
Rabenold, P. P., Rabenold, K. N., Piper, W. H., Haydock, J., and Zack, S. W. 1990. Shared paternity revealed by genetic analysis in cooperatively breeding tropical wrens. Nature 348, 538–540.CrossRefGoogle Scholar
Radwan, J., Unrug, J., and Tomkins, J. L. 2002. Status-dependence and morphological trade-offs in the expression of a sexually selected character in the mite, Sancassania berlesei. Journal of Evolutionary Biology 15, 744–752.CrossRefGoogle Scholar
Reeve, J. P. and Fairbairn, D. J. 2001. Predicting the evolution of sexual size dimorphism. Journal of Evolutionary Biology 14, 244–254.CrossRefGoogle Scholar
Repka, J. and Gross, M. R. 1995. The evolutionarily stable strategy under individual condition and tactic frequency. Journal of Theoretical Biology 176, 27–31.CrossRefGoogle ScholarPubMed
Rigaud, T. 1997. Inherited microorganisms and sex determination of arthropod hosts. In O'Neill, S. L., Hoffmann, A. A., and Werren, J. H. (eds.) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, pp. 81–101. Oxford, UK: Oxford University Press.Google Scholar
Robertson, H. 1985. Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Animal Behaviour 33, 805–809.CrossRefGoogle Scholar
Roff, D. A. 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71, 3–35.CrossRefGoogle Scholar
Roff, D. A. and Fairbairn, D. J. 1993. The evolution of alternate morphologies: fitness and wing morphology in male sand crickets. Evolution 47, 1572–1584.CrossRefGoogle ScholarPubMed
Roff, D. A. and Shannon, P. 1993. Genetic and ontogenetic variation in behavior: its possible role in the maintenance of genetic variation in the wing dimorphism of Gryllus firmus. Heredity 71, 481–487.CrossRefGoogle Scholar
Rood, J. P. 1990. Group-size, survival, reproduction, and routes to breeding in dwarf mongooses. Animal Behaviour 39, 566–572.CrossRefGoogle Scholar
Rosenheim, J. A., Nonacs, P., and Mangel, M. 1996. Sex ratios and multifaceted parental investment. American Naturalist 148, 501–535.CrossRefGoogle Scholar
Sabelis, M. W., Nagelkerke, C. J., and Breeuwer, J. A. J. 2002. Sex ratio control in arrhenotokous and pseudo-arrhenotokous mites. In Hardy, I. C. W. (ed.) Sex Ratios: Concepts and Research Methods, pp. 235–253. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Schlichting, C. D. and Pigliucci, M. 1998. Phenotypic Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Seger, J. 1983. Partial bivoltinism may cause alternating sex-ratio biases that favour sociality. Nature 301, 59–62.CrossRefGoogle Scholar
Seger, J. and Brockmann, H. J. 1987. What is bet-hedging? In Harvey, P. H. and Partridge, L. (eds.) Oxford Surveys of Evolutionary Biology, pp. 182–211. Oxford, UK: Oxford University Press.Google Scholar
Seger, J. and Stubblefield, J. W. 2002. Models of sex ratio evolution. In Hardy, I. C. W. (ed.) Sex Ratios: Concepts and Research Methods, pp. 2–25. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Shuster, S. M. 1989. Male alternative reproductive strategies in a marine isopod crustacean (Paracerceis sculpta): the use of genetic markers to measure differences in fertilization success among a-, B-, and g-males. Evolution 43, 1683–1698.Google Scholar
Shuster, S. M. and Wade, M. J. 1991. Equal mating success among male reproductive strategies in a marine isopod. Nature 350, 608–610.CrossRefGoogle Scholar
Shuster, S. M. and Wade, M. J. 2003. Mating Systems and Strategies. Princeton, NJ: Princeton University Press.Google Scholar
Sinervo, B. and Zamudio, K. 2001. The evolution of alternative reproductive strategies: fitness differential, heritability, and genetic correlation between the sexes. Journal of Heredity 92, 198–205.CrossRefGoogle ScholarPubMed
Sinervo, B., Svensson, E., and Comendant, T. 2000. Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406, 985–988.CrossRefGoogle ScholarPubMed
Sinervo, B., Bleay, C., and Adamopoulou, C. 2001. Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution 55, 2040–2052.CrossRefGoogle Scholar
Sirot, L. K. and Brockmann, H. J. 2001. Costs of sexual interactions to females in Rambur's forktail damselfly, Ischnura ramburi (Zygoptera: Coenagrionidae). Animal Behaviour 61, 415–424.CrossRefGoogle Scholar
Sirot, L. K., Brockmann, H. J., Marinis, C., and Muschett, G. 2003. Maintenance of a female-limited polymorphism in Ischnura ramburi (Zygoptera: Coenagrionidae). Animal Behaviour 66, 763–775.CrossRefGoogle Scholar
Skúlason, S. and Smith, T. B. 1995. Resource polymorphisms in vertebrates. Trends in Ecology and Evolution 10, 366–370.CrossRefGoogle ScholarPubMed
Smith, T. B. and Girman, D. J. 2000. Reaching new adaptive peaks: evolution of alternative bill forms in an African finch. In Mousseau, T. A., Sinervo, B., and Endler, J. A. (eds.) Adaptive Genetic Variation in the Wild, pp. 139–156. Oxford, UK: Oxford University Press.Google Scholar
Smith, T. B. and Skúlason, S. 1996. Evolutionary significance of resource polymorphisms in fish, amphibians and birds. Annual Review of Ecology and Systematics 27, 111–134.CrossRefGoogle Scholar
Stearns, S. C. 1992. The Evolution of Life Histories. Oxford, UK: Oxford University Press.Google Scholar
Stouthamer, R., Hurst, G. D. G., and Breeuwer, J. A. J. 2002. Sex ratio distorters and their detection. In Hardy, I. C. W. (ed.) Sex Ratios: Concepts and Research Methods, pp. 195–217. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Stubblefield, J. W. and Seger, J. 1990. Local mate competition with variable fecundity: dependence of offspring sex ratios on information utilization and mode of male production. Behavioral Ecology 1, 68–80.CrossRefGoogle Scholar
Sündstrom, L., Chapuisat, M., and Keller, L. 1996. Conditional manipulation of sex ratios by ant workers: a test of kin selection theory. Science 274, 993–996.CrossRefGoogle ScholarPubMed
Sword, G. A. 1999. Density-dependent warning coloration. Nature 397, 217–218.CrossRefGoogle Scholar
Sword, G. A.Simpson, S. J., El Hadi, O. T. M., and Wilps, H. 2000. Density-dependent aposematism in the desert locust. Proceedings of the Royal Society of London B 267, 63–68.CrossRefGoogle ScholarPubMed
Taborsky, M. 1984. Broodcare helpers in the cichlid fish Lamprologus brichardi, their costs and benefits. Animal Behaviour 32, 1236–1252.CrossRefGoogle Scholar
Taborsky, M. 1994. Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Advances in the Study of Behavior 23, 1–100.CrossRefGoogle Scholar
Taborsky, M. 1998. Sperm competition in fish: “bourgeois” males and parasitic spawning. Trends in Ecology and Evolution 13, 222–227.CrossRefGoogle ScholarPubMed
Taborsky, M. 1999. Conflict or cooperation: what determines optimal solutions to competition in fish reproduction? In Almada, V. C., Oliveira, R., and Gonçalves, E. J. (eds.) Behaviour and Conservation of Littoral Fishes, pp. 301–343. Lisbon: Instituto Superior de Psicologia Aplicada.Google Scholar
Taborsky, M. 2001. The evolution of bourgeois, parasitic and cooperative reproductive behaviors in fishes. Journal of Heredity 92, 100–110.CrossRefGoogle ScholarPubMed
Taborsky, M., Hudde, B., and Wirtz, P. 1987. Reproductive behaviour and ecology of Symphodus (Crenilabrus) ocellatus, a European wrasse with four types of male behaviour. Behaviour 102, 82–117.CrossRefGoogle Scholar
Tauber, C. A. and Tauber, M. J. 1992. Phenotypic plasticity in Chrysoperla: genetic variation in the sensory mechanism and in correlated reproductive traits. Evolution 46, 1754–1773.Google ScholarPubMed
Tauber, M. L., Tauber, C. A., and Masaki, S. 1986. Seasonal Adaptations of Insects. Oxford, UK: Oxford University Press.Google Scholar
Taylor, F. 1980. Optimal switching to diapause in relation to the onset of winter. Theoretical Population Biology 18, 125–133.CrossRefGoogle ScholarPubMed
Taylor, F. 1986. The fitness function associated with diapause induction in arthropods. 2. The effects of fecundity and survivorship on the optimum. Theoretical Population Biology 30, 93–110.CrossRefGoogle Scholar
Thomaz, D., Beall, E., and Burke, T. 1997. Alternative reproductive tactics in Atlantic salmon: factors affecting mature parr success. Proceedings of the Royal Society of London B 264, 219–226.CrossRefGoogle Scholar
Thorpe, J. E. and Morgan, R. I. G. 1978. Parental influence on growth rate smolting rate and survival in hatchery reared juvenile salmon Salmo salar. Journal of Fish Biology 13, 549–556.CrossRefGoogle Scholar
Thorpe, J. E. and Morgan, R. I. G. 1980. Growth rate and smolting rate of progeny of male atlantic salmon parr Salmo salar. Journal of Fish Biology 17, 451–460.CrossRefGoogle Scholar
Thorpe, J. E., Morgan, R. I. G., Talbot, C., and Miles, M. S. 1983. Inheritance of developmental rates in Atlantic salmon, Salmo salar L. Aquaculture 33, 119–128.CrossRefGoogle Scholar
Tomkins, J. L. 1999. Environmental and genetic determinants of the male forceps length dimorphism in the European earwig Forficula auricularia L. Behavioral Ecology and Sociobiology 47, 1–8.CrossRefGoogle Scholar
Tomkins, J. L. and Brown, G. S. 2004. Population density drives the local evolution of a threshold dimorphism. Nature 431, 1099–1103.CrossRefGoogle ScholarPubMed
Tomkins, J. L., Simmons, L. W., and Alcock, J. 2001. Brood-provisioning strategies in Dawson's burrowing bee, Amegilla dawsoni (Hymenoptera: Anthophorini). Behavioral Ecology and Sociobiology 50, 81–89.CrossRefGoogle Scholar
Tomkins, J. L., Lebas, N. R., Unrug, J., and Radwan, J. 2004. Testing the status-dependent ESS model: population variation in fighter expression in the mite Sancassania berlesei. Journal of Evolutionary Biology 17, 1377–1388.CrossRefGoogle ScholarPubMed
Tomkins, J. L., Kotiaho, J. S., and LeBas, N. R. 2005. Matters of scale: positive allometry and the evolution of male dimorphisms. American Naturalist 165, 389–402.CrossRefGoogle ScholarPubMed
Trivers, R. L. and Hare, H. 1976. Haplodiploidy and the evolution of the social insects. Science 191, 249–263.CrossRefGoogle Scholar
Trivers, R. L. and Willard, D. E. 1973. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92.CrossRefGoogle ScholarPubMed
Turner, J. R. G. 1977. Butterfly mimicry: the genetical evolution of an adaptation. Evolutionary Biology 10, 163–204.Google Scholar
Unrug, J., Tomkins, J. L., and Radwan, J. 2004. Alternative phenotypes and sexual selection: can dichotomous handicaps honestly signal quality?Proceedings of the Royal Society of London B 271, 1401–1406.CrossRefGoogle ScholarPubMed
Gossum, H., Stoks, R., and Bruyn, L. 2001. Reversible frequency-dependent switches in male mate choice. Proceedings of the Royal Society of London B 268, 83–85.CrossRefGoogle ScholarPubMed
Via, S. 1994. The evolution of phenotypic plasticity: what do we really know? In Real, L. (ed.) Ecological Genetics, pp. 35–57. Princeton, NJ: Princeton University Press.Google Scholar
Via, S. and Lande, R. 1985. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522.CrossRefGoogle ScholarPubMed
Walker, T. J. and Sivinski, J. M. 1986. Wing dimorphism in field crickets (Orthoptera: Gryllidae). Annals of the Entomological Society of America 79, 84–90.CrossRefGoogle Scholar
Waltz, E. C. 1982. Alternative mating tactics and the law of diminishing returns: the satellite threshold model. Behavioral Ecology and Sociobiology 10, 75–83.CrossRefGoogle Scholar
Waltz, E. C. and Wolf, L. L. 1984. By Jove! Why do alternative mating tactics assume so many different forms?American Zoologist 24, 333–343.CrossRefGoogle Scholar
Waltz, E. C. and Wolf, L. L. 1988. Alternative mating tactics in male white-faced dragonflies (Leucorhinia intacta): plasticity of tactical options and consequences for reproductive success. Evolutionary Ecology 2, 205–231.CrossRefGoogle Scholar
Werren, J. H. 1987. Labile sex ratios in wasps and bee: life history influences the ratio of male and female offspring. BioScience 37, 498–506.CrossRefGoogle Scholar
Werren, J. H. and Beukeboom, L. W. 1998. Sex determination, sex ratios, and genetic conflict. Annual Review of Ecology and Systematics 29, 233–262.CrossRefGoogle Scholar
West-Eberhard, M. J. 1979. Sexual selection, social competition, and evolution. Proceedings of the American Philosophical Society 123, 222–234.Google Scholar
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. Oxford, UK: Oxford University Press.Google Scholar
West, S. A. and Herre, E. A. 2002. Using sex ratios: why bother? In Hardy, I. C. W. (ed.) Sex Ratios: Concepts and Research Methods, pp. 399–413. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Wheeler, D. E. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist 138, 1218–1238.CrossRefGoogle Scholar
Whitfield, C. W., Cziko, A. M., and Robinson, G. E. 2003. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302, 296–299.CrossRefGoogle ScholarPubMed
Widemo, F. 1998. Alternative reproductive strategies in the ruff, Philomachus pugnax: a mixed ESS?Animal Behaviour 56, 329–336.CrossRefGoogle ScholarPubMed
Wiegmann, D. D., Angeloni, L. M., Baylis, J. R., and Newman, S. P. 2004. Negative maternal or paternal effects on tactic inheritance under a conditional strategy. Evolution 58, 1530–1535.CrossRefGoogle ScholarPubMed
Williams, G. C. 1979. The question of adaptive sex ratio in outcrossed vertebrates. Proceedings of the Royal Society of London B 205, 567–580.CrossRefGoogle ScholarPubMed
Zera, A. J. 1999. The endocrine genetics of wing polymorphism in Gryllus: critique of recent studies and state of the art. Evolution 53, 973–977.Google ScholarPubMed
Zera, A. J. and Huang, Y. 1999. Evolutionary endocrinology of juvenile hormone esterase; functional relationship with wing polymorphism in the cricket, Gryllus firmus. Evolution 53, 837–847.Google ScholarPubMed
Zera, A. J. and Rankin, M. A. 1989. Wing dimorphism in Gryllus rubens: genetic basis of morph determination and fertility differences between morphs. Oecologia 80, 249–255.CrossRefGoogle ScholarPubMed
Zera, A. J. and Tiebel, K. C. 1989. Differences in juvenile hormone esterase activity between presumptive macropterous and brachypterous Gryllus rubens: implications for the hormonal control of wing polymorphism. Journal of Insect Physiology 35, 7–17.CrossRefGoogle Scholar
Zhao, Z. and Zera, A. J. 2002. Differential lipid biosynthesis underlies a tradeoff between reproduction and flight capability in a wing-polymorphic cricket. Proceedings of the National Academy of Sciences of the United States of America 99, 16829–16834.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×