Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T20:05:48.793Z Has data issue: false hasContentIssue false

5 - Reliability

Published online by Cambridge University Press:  05 February 2014

Ingrid De Wolf
Affiliation:
Interuniversity Microelectronics Center (IMEC)
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

Reliability can generally be defined as ‘the probability that an item will perform a required function under stated conditions for a stated period of time’. The term ‘probability’ indicates that one deals with probabilistic models and statistical methods. The term ‘required function’ assumes that one has a specification of satisfactory operation (i.e. it includes the definition of failure). The term stated conditions’ includes the total physical environment (i.e. mechanical thermal, environmental and electrical conditions). Finally, the term stated period of time’ gives one the concept of required lifetime; this mostly depends on the application [1].

In general, MEMS are very robust and reliable, and several systems have successfully reached maturity. However, placing RF MEMS into commercial products is proving more challenging. At the beginning of 2000, publications on RF MEMS indicated that switch technologies were very promising, but that “the trade-off is in contact lifetime” [2], “adequate lifetime has to be demonstrated” [3], they “suffer from reliability problems” [4] and “device reliability is a key factor in the ultimate insertion of RF MEMS devices into operational systems” [5]. A survey undertaken on publications on RF MEMS in 2005 showed that only 5% of the papers reported reliability data, and most of these data were very limited. Although research is on-going and the number of institutes working on RF MEMS is constantly increasing (e.g. EU's NoE AMICOM), there is, at this moment, still no RF MEMS capacitive switch to be found in any wireless communication system. Why is it taking so long to solve the reliability problems of RF MEMS, and especially for capacitive RF MEMS switches?

Type
Chapter
Information
Advanced RF MEMS , pp. 109 - 139
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Groeseneken, G., “Reliability definitions and basic concepts”. MTC training course, IMEC
Yao, J. J., “RF MEMS from a device perspective,” J. Micromech. Microeng., vol. 10, no. 4, pp. R9–R38, 2000CrossRefGoogle Scholar
Goldsmith, C., Ehmke, J., Malczewski, A., Pillans, B., Eshelman, S., Yao, Z., Brank, J. and Eberly, M., “Lifetime characterization of capacitive RF MEMS switches”, IEEE MTT-S Int. Microw. Symp. Digest, vol. 1, pp. 227–30, 2001Google Scholar
Rebeiz, G. M., “RF MEMS switches: status of the technology”, Proceedings of the 12th IEEE International Conference on Solid State Sensors, Actuators and Microsystems (Transducers 2003), Boston, vol. 2, pp. 1726–9, 2003Google Scholar
DeNatale, J. and Mihailovich, R., “RF MEMS reliability”, Proceedings of the 12th IEEE Int. Conf. Solid State Sensors, Actuators and Microsystems (Transducers 2003), Boston, vol. 2, pp. 943–6, 2003Google Scholar
Rebeiz, G. M. and Muldavin, J. B., “RF MEMS switches and switch circuits”, IEEE Microw., vol. 2, no. 4, pp. 59–71, 2001CrossRefGoogle Scholar
Muller-Fiedler, R., Wagner, U. and Bernhard, W., “Reliability of MEMS – a methodical approach”, Microelectron. Reliab., vol. 42, pp. 1771–6, 2002CrossRefGoogle Scholar
De Wolf, I., “Reliability of MEMS”, Proceedings of the 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, (EuroSimE 2006), pp. 1–6, 2006
Jourdain, A., Vaesen, K., Scheer, J. M., Weekamp, J. W., Beek, J. T. M. and Tilmans, H. A. C., “From zero- to second-level packaging of RF MEMS devices”, Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2005), Miami, FL, pp. 36–39, 2005Google Scholar
Modlinski, R., Witvrow, A., Ratchev, P., Jourdain, A., Simons, V., Tilmans, H. A. C., den Toonder, J. M. J., Puers, R. and De Wolf, I., “Creep as a reliability problem in MEMS”, Microelectron. Reliab., vol. 44, no. 11, pp. 1733–8, 2004Google Scholar
Modlinski, R., Witvrouw, A., Ratchev, P., Puers, R., den Toonder, J. M. J. and De Wolf, I., “Creep characterization of Al alloy thin films for use in MEMS applications”, J. Microelectronics Eng., vol. 76, no. 1–4, pp. 272–8, 2004Google Scholar
Modlinski, R., Ratchev, P., Witvrouw, A., Puers, R. and De, I. Wolf, “Creep-resistant aluminium alloys for use in MEMS,” J. Micromech. Microeng., vol. 15, pp. S165–S170, 2005CrossRefGoogle Scholar
Douglass, M. R., “Lifetime estimates and unique failure mechanisms of the DigitalMicromirror Device (DMD)”, Proc. Int. Reliab. Phys. Symp. (IRPS), vol. 31, pp. 9–16, 1998Google Scholar
Jensen, B. D., Volakis, J. L., Saitou, K. and Kurabayashi, K., “Impact of skin effect on thermal behavior of RF MEMS switches”, Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference, 2003
van Gils, M., Bielen, J. and McDonald, G., “Evaluation of creep in RF MEMS devices,” Proceedings of the 8th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2007, pp. 1–6, 2007
Rantakari, P. and Vähä-Heikkilä, T., “Characterization of CMOS compatible RF MEMS switch at cryogenic temperatures”, Proceedings of the International Conference Solid State Sensors, Actuators and Microsystems (Transducers 2007), pp. 639–42, 2007
DeAnna, R. G., Roy, S., Zorman, C. A. and Mehregany, M., “Modeling of SiC Lateral Resonant Devices Over a Broad Temperature Range”, Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems (MSE), vol. 17, pp. 644–7, 1999Google Scholar
Zhu, Y. and Espinosa, H. D., “Effect of temperature on capacitive RF MEMS switch performance – a coupled-field analysis,” J. Micromech. Microeng., vol. 14, pp. 1270–9, 2004CrossRefGoogle Scholar
Peyrou, D., Achkar, H., Pennec, F., Pons, P. and Plana, R., “A macro model based on finite element method to investigate temperature and residual stress effects on RF MEMS switch actuation”, Proceedings of the 8th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2007, pp. 1–4, 2007.
Hsu, W.-T., “Vibrating RF MEMS for timing and frequency references”, 2006 IEEE MTT-S Int. Microw. Symp. Digest, pp. 672–5, 2006
Bordas, C., Grenier, K., Dubuc, D., Paillard, M., Cazaux, J. L. and Plana, R., “Temperature stress impact on power RF MEMS switches”, Smart Sensors, Actuators, and MEMS III, Becker, T., Cané, C., Barker, N. S., Ed., Proc. SPIE, vol. 6589, pp. 65890V, 2007
Lueke, J., Quddus, N. A., Moussa, N. W. and Chahal, A., “A parametric study of thermal effects on the reliability of RF MEMS switches”, Proceedings of the International Conference on MEMS, Nano and Smart Systems, vol. 24, pp. 30–31, 2005CrossRefGoogle Scholar
Rizk, J. B., Chaiban, E. and Rebeiz, G. M., “Steady state thermal analysis and high power reliability considerations of RF MEMS capacitive switches”, Proceedings of the IEEE MTT-S International Microwave Symposium, pp. 239–42, 2002
Jensen, B. D., Volakis, J. L., Saitou, K. and Kurabayashi, K., “Impact of skin effect on thermal behavior of RF MEMS switches”, Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference, vol. 2003, no. 6, 2003
Robert, Ph., Saias, D., Billard, C., Boret, S., Sillon, N., Maeder-Pachurka, C., Chavet, P. L., Bouche, G., Ancey, P. and Berruyer, P., “Integrated RF MEMS switch based on a combination of thermal and electrostatic actuation”, Proceedings of the 12th International Conference Solid-State Sensors, Actuators and Microsystems (Transducers 2007), vol. 2, no. 8–12, pp. 1714–17, 2003Google Scholar
Kahn, H., Ballarini, R., Bellante, J. J. and Heuer, A. H., “Fatigue failure in polysilicon not due to simple stress corrosion cracking”. Science, vol. 298, no. 5586, pp. 1215–18, 2002Google Scholar
van Arsdell, W. W. and Brown, S. B., “Subcritical crack growth in silicon MEMS”, J. MEMS, vol. 8, no. 3, pp. 319–27, 1999CrossRefGoogle Scholar
Varvani-Farahani, A., “A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions”, Int. J. Fatigue, vol. 22, pp. 295–305, 2000CrossRefGoogle Scholar
Millet, O., Bertrand, P., Legrand, B., Collard, D. and Buchaillot, L., “Predictive modeling of the fatigue phenomenon for polycrystalline structural layers”, Proceedings of the 17th IEEE International Conference Micro Electro Mechanical Systems (MEMS 2004), pp. 145–8, 2004
van Arsdell, W. W. and Brown, S. B., “Subcritical crack growth in silicon MEMS”, J. MEMS, vol. 8, no. 3, pp. 319–27, 1999CrossRefGoogle Scholar
Connally, J. A. and Brown, S. B., “Micromechanical fatigue testing”, Proceedings of the International Conference Solid-State Sensors, Actuators and Microsystems (Transducers 1991), pp. 953–6, 1991
Brown, S. B., van Arsdell, W. and Muhlstein, C. L., “Materials reliability in MEMS devices”, Proceedings of the International Conference Solid-State Sensors, Actuators and Microsystems (Transducers 1997), pp. 591–3, 1997
Brown, S. B. and Jansen, E., “Reliability and long term stability of MEMS”, IEEE/LEOS 1996 Summer Topical Meetings Digest, Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Smart Pixels/OpticalMEMS and their Applications, New York, NY, pp. 9–10, 1996Google Scholar
Brown, S. B., Povirk, G. and Connally, J., “Measurement of slow crack growth in silicon and nickel micromechanical devices”, Proceedings of IEEE MEMS’93, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, New York, NY, pp. 99–104, 1993Google Scholar
Stark, B., “MEMS reliability assurance guidelines for space applications”, Stark, B., Ed. National Aeronautics and Space Administration and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, p. 55, 1999Google Scholar
Koskenvuori, M., Mattila, T., Häärä, A., Kiihamäki, J., Tittonen, I., Oja, A. and Seppä, H., “Long-term stability of single-crystal silicon microresonatorsSens. Actuators A, Phys., vol. 115, no. 1, pp 23–27, 2004CrossRefGoogle Scholar
Kaajakari, V., Kiihamäki, J., Oja, A., Seppä, H., Pietikäinen, S., Kokkala, V. and Kuisma, H., “Stability of wafer level vacuum encapsulated single-crystal silicon resonators”, Proceedings of the 13th International IEEE Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’05), pp. 916–19, 2005
Exponent MEMS Reliability Newsletter, vol. 1, no. 1, 2001 ()
Sparks, D. R., Chia, M. I. and Jiang, G. Q., “Cyclic fatigue and creep of electroformed micromachines”, Sens. Actuators A, Phys., vol. 95, no. 1, pp. 61–68, 2001CrossRefGoogle Scholar
Read, T. D. and Dally, J. W., “Fatigue of microlithographically patterned free-standing aluminium thin film under axial stresses”, J. Electron. Packaging, vol. 117, pp. 1–6, 1995CrossRefGoogle Scholar
Cornella, G., Vinci, R. P., Iyer, R. S., Dauskardtm, R. H. and Bravman, J. C., “Observations of low-cycle fatigue in Al thin films for MEMS applications”, Mater. Res. Soc. Symp. Proc., vol. 518, pp. 81–88, 1999CrossRefGoogle Scholar
Park, J. H., Myung, M. A. and Kim, Y.-J., “Fatigue properties of surface-micromachined Al-3%Ti thin films”, Key Eng. Mater., vol. 353, pp. 299–302, 2007CrossRefGoogle Scholar
Barbosa III, N., El-Deiry, P. and Vinci, R. P., “Monotonic testing and tension-tension fatigue testing of free-standing Al microtensile beams”, Proc. Mater. Res. Soc. Symp., vol. 795, U11. 42, 2003Google Scholar
Larsen, K. P., Ravnkilde, J. T., Ginnerup, M. and Hansen, O., “Devices for fatigue testing of electroplated nickel (MEMS)”, Proceedings of the IEEE MEMS Workshop, Las Vegas, 2002, pp. 443–6, 2002
Povirk, G. I., Bernstein, J. and Brown, S. B., “Long-term stability of nickel in resonant micromechanical devices”, Proc. Mater. Res. Soc. Symp. Stresses Mech. Properties Thin Films, vol. 308, pp. 148–152, 1993Google Scholar
Read, T. D., “Tension-tension fatigue of copper thin films”, Int. J. Fatigue, vol. 20, no. 3, pp. 203–9, 1998CrossRefGoogle Scholar
De Boer, M. P., Tabbara, M. R., Dugger, M. T., Clews, P. J. and Michalske, T. A., “Measuring and modeling electrostatic adhesion in micromachines”, Proceedings of the International Conference on Solid-State Sensors and Actuators (Transducers 1997), vol. 1, pp. 229–32, 1997CrossRefGoogle Scholar
Van Spengen, , Puers, W. M. R. and De Wolf, I., “A physical model to predict stiction in MEMS”, J. Micromech. Microeng., vol. 12, pp. 702–13, 2002CrossRefGoogle Scholar
Maboudian, R. and Howe, R. T., “Critical review: adhesion in surface micromechanical structures”, J. Vac. Sci. Technol. B, vol. 15, no. 1, pp. 1–20, 1997CrossRefGoogle Scholar
Legtenberg, R., Tilmans, H. A. C., Elders, J. and Elwenspoek, M., “Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms”, Sens. Actuators A, Phys., vol. 43, pp. 230–8, 1994CrossRefGoogle Scholar
Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R. and Elwenspoek, M., “Stiction in surface micromachining”, J. Micromech. Microeng., vol. 6, p. 385, 1996CrossRefGoogle Scholar
Oya, Y., Okubora, A., Van Spengen, M., Soussan, P., Stoukatch, S., Rottenberg, X., Ratchev, P., Tilmans, H. A. C., De Raedt, W., Beyne, E., De Moor, P., De Wolf, I. and Baert, K., “A reliable and compact polymer-based package for capacitive RF MEMS switches”, Proceedings of the International Electron Device Meeting (IEDM2004), pp. 31–34, 2004
Czarnecki, P., Rottenberg, X., Soussan, P., Ekkels, P., Muller, P., Nolmans, P., De Raedt, W., Tilmans, H. A. C., Puers, R., Marchand, L. and De Wolf, I., “Influence of the substrate on the lifetime of capacitive RF MEMS switches”, Proceedings of the IEEE 21st International Conference on MEMS (MEMS 2008), pp. 172–5, 2008
Jensen, B., Wang, Z., Saitou, K., Volakis, J. L. and Kurabayashi, K., “Simultaneous electrical and thermal modelling of a contact-type RF MEMS switch”, Proceedings of ASE International Mechanical Engineering Conference (IMECE’03), pp. 1–4, 2003
Doelling, C. M., Vanderlick, T. K., Song, J. and Srolovitz, D., “Nanospot welding and contact evolution during cycling of a model microswitch”, J. Appl. Phys., vol. 101, pp. 124303–10, 2007CrossRefGoogle Scholar
Rezvanian, O., Zikry, M. A., Brown, C. and Krim, J., “Surface roughness, asperity contact and gold RF MEMS switch behaviour”, J. Micromech. Microeng., vol. 17, pp. 2006–15, 2007CrossRefGoogle Scholar
Park, J. H., “Fabrication and measurements of direct contact type RF MEMS switch”, IEICE Electron. Express, vol. 4, no. 10, pp. 319–25, 2007CrossRefGoogle Scholar
Yan, X., McGruer, N. E., Adams, G. G. and Majumder, S., “Thermal characteristics of microswitch contacts”, ()
Goldsmith, C., Ehmke, J., Malczewski, A., Pillans, B., Eshelmans, S., Yao, Z., Brank, J. and Eberly, M., “Lifetime characterization of capacitive RF MEMS switches”, Proc. 2001 IEEE MTT-S Int. Microw. Symp. Digest, vol. 1, pp. 227–30, May 2001CrossRefGoogle Scholar
Melle, S., Flourens, F., Dubuc, D., Grenier, K., Pons, P., Muraro, J. L., Segui, Y. and Plana, R., “Investigation of dielectric degradation of microwave capacitive microswitches”, Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems 2004 (MEMS 2004), pp. 141–4, 2004
Yuan, X., Hwang, J. C. M., Forehand, D. and Goldsmith, C. L., “Modeling and characterization of dielectric-charging effects in RF MEMS capacitive switches”, Proc. 2005 IEEE MTT-S Int. Microw. Symp. Digest, pp. 753–6, Jun. 2005
Reid, J. R. and Webster, R. T., “Measurements of charging in capacitive microelectromechanical switches”, Electron. Lett., vol. 38, no. 24, pp. 1544–5, Nov. 2002CrossRefGoogle Scholar
Wibbeler, J., Pfeifer, G. and Hietschold, M., “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS)”, Sens. Actuators A, Phys., vol. 71, pp. 74–80, 1998CrossRefGoogle Scholar
Rottenberg, X., De Wolf, I., Nauwelaers, B. K. J. C, De Raedt, W. and Tilmans, H. A. C., “Analytical model of the DC actuation of electrostatic MEMS devices with distributed dielectric charging and nonplanar electrodes”, J. MEMS, vol. 16, no. 5, pp. 1243–53, Oct. 2007CrossRefGoogle Scholar
Rottenberg, X., Brebels, S., Ekkels, P., Czarnecki, P., Nolmans, P., Mertens, R. P., Nauwelaers, B., Puers, R., De Wolf, I., De Raedt, W. and Tilmans, H. A. C., “An electrostatic fringing-field actuator (EFFA): application towards a low-complexity thin film RF MEMS technology”, J. Micromech. Microeng, vol. 17, pp. 204–10, 2007CrossRefGoogle Scholar
Czarnecki, P., Rottenberg, X., Puers, R. and De Wolf, I., “Impact of biasing scheme and environment conditions on the lifetime of RF MEMS capacitive switches,” Proc. MEMSWAVE Workshop, pp. 133–6, 2005
Czarnecki, P., Rottenberg, X., Soussan, P., Ekkels, P., Muller, P., Nolmans, P., de Raedt, W., Tilmans, H. A. C., Puers, R., Marchand, L. and De Wolf, I., “Effect of gas pressure on the lifetime of capacitive RF MEMS switches”, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems 2006 (MEMS 2006), pp.890–3, 2006
Rebeiz, G. M., RF MEMS in Theory, Design and Technology, Hoboken, NJ: Wiley, 2003Google Scholar
Melle, S., De Conto, D., Mazenq, L., Dubuc, D., Grenier, K., Bary, L., Vendier, O., Muraro, J. L., Cazeauz, J. L. and Plana, R., “Modeling of the dielectric charging kinetic for capacitive RF MEMS”, Proc. IEEE-MTT-S 2005 Int. Microw. Symp. Digest, pp. 757–60, 2005
McClure, S. S., Edmonds, L. D., Mihailovich, R., Johnston, A. H., Alonzo, P., DeNatale, J. and Yui, C., “Radiation effects in micro-electromechanical systems (MEMS): RF relays”, IEEE Trans. Nucl. Sci., vol. 49, no. 6, part 1, pp. 3197–202, 2002CrossRefGoogle Scholar
Papaioannou, G. J., Exarchos, M., Theonas, V., Wang, G. and Papapolymerou, J., “On the dielectric polarization effects in capacitive RF MEMS switches”, Proc. IEEE MTT-S Int. Microw. Symp. Digest, pp. 761–4, 2005
Herfst, R. W., “Degradation of RF MEMS capacitive switches”, Ph.D. Dissertation, University of Twente, The Netherlands, 2008
Li, S.-S., Lin, Y.-W., Xie, Y., Ren, Z. and Nguyen, T.-C., “Charge-biased vibrating micromechanical resonators”, Proceedings of the 2005 IEEE Ultrasonics Symposium, pp. 1596–9, 2005
Kalicinski, S., Tilmans, H. A. C., Wevers, M. and De Wolf, I., “A new method to determine the mechanical resonance frequency and charging in electrostatically actuated MEMS”, Proc. MME, pp. 653–6, 2007
Kalicinski, S., Tilmans, H. A. C., Wevers, M. and De Wolf, I., “A new method to determine the mechanical resonance frequency, quality factor and charging in electrostatically actuated MEMS”, IEEE Proceedings of the International Conference on Micro Electro Mechanical Systems 2008 (MEMS 2008), pp. 653–6, 2008
Tao, J., Cheung, N. W. and Hu, C., “An electromigration failure model for interconnects under pulsed and bidirectional current stressing”, IEEE Electron Devices, vol. 41, no. 4, pp. 539–45, 1994Google Scholar
Ducarouge, B., Dubuc, D., Melle, S., Bary, L., Pons, P. and Plana, R., “Efficient design methodology of polymer based RF MEMS switches”, Proceedings of Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 298–301, 2004
Ducarouge, B., Dubuc, D., Flourens, F., Melle, S., Ongareau, E., Grenier, K., Boukabache, A., Condera, V., Pons, P., Ferret, E., Aubert, H. and Plana, R.. “Power capabilities of RF MEMS”, Proceedings of the 24th International Conference on Microelectronics, vol. 1, pp. 65–70, 2004Google Scholar
Grenier, K., Dubuc, D., Ducarouge, B., Conedera, V., Bourrier, D., Ongareau, E., Derderian, P. and Plana, R., “High power handling RF MEMS design and technology”, Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems 2005 (MEMS 2005), pp. 155–8, 2005
Gogoi, B. P. and Mastrangelo, C. H., “Adhesion release and yield enhancement of microstructures using pulsed Lorentz forces”, IEEE J. Microelectromech. Syst., vol. 4, pp. 185–92, 1995CrossRefGoogle Scholar
Rebeiz, G. M., RF MEMS, Theory, Design and Technology, Hoboken, NJ: Wiley, 2003Google Scholar
Pozar, D. M., Microwave Engineering, Addison-Wesley, 1993Google Scholar
Pillans, B., Kleber, J., Goldsmith, C. and Eberly, M., “RF power handling of capacitive RF MEMS devices”, Proc. IEEE Int. Microw. Symp., pp. 329–32, 2002
Peroulis, D., Pacheco, S. P. and Katehi, L. P. B., “RF MEMS switches with enhanced power-handling capabilities”, IEEE Trans. Microw. Theory Tech., vol. 52, pp. 59–68, 2004CrossRefGoogle Scholar
Pacheco, S. P., Katehi, L. P. B. and Nguyen, C. T.-C., “Design of low actuation voltage RF MEMS switch”, Proc. IEEE MTT-S Digest, pp. 165–8, 2000
Rottenberg, X., Brebels, S., Nauwelaers, B., Mertens, R. P., De Raedt, W. and Tilmans, H. A. C., “Modelling of the RF self-actuation of electrostatic RF MEMS devices”, Proceedings of the 17th IEEE International Conference Micro Electro Mechanical Systems (MEMS 2004), pp. 245–8, 2004
Rottenberg, X., Vaesen, K., Brebels, S., Nauwelaers, B., Mertens, R. P., De Raedt, W. and Tilmans, H. A. C., “MEMS capacitive series switches: optimal test vehicles for the RF self-biasing phenomenon”, Proceedings of the 18th IEEE International Conference Micro Electro Mechanical Systems (MEMS 2005), pp. 147–50, 2005
Srikar, V. T. and Senturia, S. D., “The reliability of microelectromechanical systems (mems) in shock environments”, J. Microelectromech. Syst., vol. 11, pp. 206–14, 2002CrossRefGoogle Scholar
De Coster, J., Tilmans, H. A. C., van Beek, J. T. M., Rijks, Th. S. M. and Puers, R., “The influence of mechanical shock on the operation of electrostatically driven RF MEMS switches”, J. Micromech. Microeng., vol. 14, pp. S49–S54, 2004CrossRefGoogle Scholar
De Coster, J., “Design and characterisation of RF MEMS components”, Ph.D. Dissertation, Faculteit Ingenieurswetenschappen, Dept. Elektrotechniek, Katholieke Universiteit Leuven, KUL, Leuven, Belgium, 2006Google Scholar
Kazinczi, R., “Reliability of micromechanical thin-film resonators”, Ph.D. Dissertation, Technische Universiteit Delft, Elburon Publishers, 2002Google Scholar
Kazinczi, R., Mollinger, J. R. and Bossche, A., “Environmental induced failure modes of thin film resonators”, Proc. SPIE, Smart Mater. MEMS, vol. 4234, pp. 258–68, 2000CrossRefGoogle Scholar
Kazinczi, R., Mollinger, J. R. and Bossche, A., “Adsorption-induced failure modes of thin-film resonators”, Proceedings of the MSR Fall Meeting, Symposium L, L8.8, 2001
Umeda, N., Ishizaki, S. and Uwai, H., “Scanning attractive force microscope using photothermal vibration”, J. Vac. Sci. Technol. B, vol. 9, no. 2, pp. 1318–22, 1991CrossRefGoogle Scholar
De Wolf, I., Jourdain, A., De Moor, P., Tilmans, H. A. C. and Marchand, L., “Hermeticity testing and failure analysis of MEMS packages”, Proceedings of the Physical and Failure Analysis of Integrated Circuits (IPFA 2007), pp. 147–54, 2007
De Moor, P., Baert, K., De Wolf, I., Jourdain, A., Tilmans, H. A. C., Witvrouw, A. and Van Hoof, C., “Characterization of (near) hermetic zero-level packages for MEMS”, Proc. SPIE, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV, San Jose, CA, pp. 26–35, Jan. 2005
Henry, J. A., Wang, Y. and Hines, M. A., “Controlling energy dissipation and stability of micromechanical silicon resonators with self-assembled monolayers”, Appl. Phys. Lett., vol. 84, no. 10, pp. 1765–7, 2004CrossRefGoogle Scholar
Koskenvuori, M., Mattila, T., Häärä, A., Kiihamäki, J., Tittonen, I., Oja, A. and Seppä, H., “Long-term stability of single-crystal silicon microresonators”, Sens. Actuators A, Phys., vol. 115, no. 1, pp. 23–27, 2004CrossRefGoogle Scholar
Kim, B., Hopcroft, M., Jha, C. M., Melamud, R., Chandorkar, S., Agarwal, M., Chen, K.L., Park, W. T., Candler, R., Yama, G., Partridge, A., Lutz, M. and Kenny, T. W., “Using MEMS to build the device and the package”, Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators (Transducers 2007), pp. 331–4, 2007
Kaajakari, V., Kiihamäki, J., Oja, A., Seppä, H., Pietikäinen, S., Kokkala, V. and Kuisma, H., “Stability of wafer level vacuum encapsulated single-crystal silicon resonators”, Proceedings of the 13th IEEE International Conference on Solid-State Sensors and Actuators (Transducers 2005), pp. 916–19, 2005

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Reliability
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Reliability
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Reliability
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.006
Available formats
×