Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T05:23:21.326Z Has data issue: false hasContentIssue false

6 - Tensor field theory

Published online by Cambridge University Press:  05 June 2012

Joel Franklin
Affiliation:
Reed College, Oregon
Get access

Summary

The scalar field example gives us a number of tools that can be applied to any relativistic field theory. We started with a physical model for longitudinal “density” waves (balls and springs) and shifted from a material (with intrinsic wave speed v) to the vacuum (with intrinsic wave speed c). That shift took us from real fields describing explicit physics for our model system to fields that do not have explicit physical manifestation – the scalar field φ satisfying ▪2φ = 0 is not necessarily the density or pressure of anything. The theory of electricity and magnetism has, at its core, a vector field (the combined electric and magnetic potentials) that is an object in its own right, and does not correspond to a macroscopic property of materials – of course, the potential can be used to find the forces on objects, and it is these force-mediating fields that form the bulk of classical field theory. Electricity and magnetism provides a vehicle for discussing the appropriate form of field equations (and their precursors, the action and Lagrange densities) that support specific physical ideas – superposition, and special relativity, for example. Complementing these physically inspired properties, E&M is a good place to think about gauge freedom and the role that gauge-fixing can play in revealing the underlying physics while simplifying (in some cases) the field equations. We can use these ideas to “go backwards”, that is, to start with an action that yields linear field equations with finite propagation speed for waves (written in some gauge), and see what physical interpretation we might give to the resulting fields.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tensor field theory
  • Joel Franklin, Reed College, Oregon
  • Book: Advanced Mechanics and General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778780.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tensor field theory
  • Joel Franklin, Reed College, Oregon
  • Book: Advanced Mechanics and General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778780.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tensor field theory
  • Joel Franklin, Reed College, Oregon
  • Book: Advanced Mechanics and General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778780.007
Available formats
×