Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: February 2014

1 - Anatomy and physiology of the cerebrospinal fluid system

from Section 1 - Basic sciences


1. HallGA.Medical Physiology, 11th edn. Elsevier; 2006.
2. KohnMI, TannaNK, HermanGT, et al. Analysis of brain and cerebrospinal fluid volumes with MR imaging. Part I. Methods, reliability, and validation. Radiology 1991;178(1):115–22.
3. RedzicZB, SegalMB.The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 2004;56(12):1695–716.
4. KimelbergHK.Water homeostasis in the brain: basic concepts. Neuroscience 2004;129(4):851–60.
5. RedzicZB, PrestonJE, DuncanJA, ChodobskiA, Szmydynger-ChodobskaJ.The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005;71:1–52.
6. ChodobskiA, Szmydynger-ChodobskaJ.Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 2001;52(1):65–82.
7. OldendorfWH, DavsonH.Brain extracellular space and the sink action of cerebrospinal fluid. Measurement of rabbit brain extracellular space using sucrose labeled with carbon 14. Arch Neurol 1967;17(2):196–205.
8. JohansonCE, StopaEG, McMillanPN.The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011;686:101–31.
9. PapadeaC, SchlosserRJ.Rapid method for beta2-transferrin in cerebrospinal fluid leakage using an automated immunofixation electrophoresis system. Clin Chem 2005;51(2):464–70.
10. SlomanAJ, KellyRH.Transferrin allelic variants may cause false positives in the detection of cerebrospinal fluid fistulae. Clin Chem 1993;39(7):1444–5.
11. SmithDE, JohansonCE, KeepRF.Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56(12):1765–91.
12. RaybaudC, GreenbergG. Imaging (normal and abnormal). In: MallucciC, SgourosS. (Eds.) Cerebrospinal Fluid Disorders. Informa Healthcare; 2010.
13. LongattiP, FiorindiA, PerinA, MartinuzziA.Endoscopic anatomy of the cerebral aqueduct. Neurosurgery 2007;61(3 Suppl):1–5; discussion 5–6.
14. RedzicZB, SegalMB.The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 2004;56(12):1695–716.
15. BrownPD, DaviesSL, SpeakeT, MillarID.Molecular mechanisms of cerebrospinal fluid production. Neuroscience 2004;129(4):957–70.
16. Amiry-MoghaddamM, OttersenOP.The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4(12):991–1001.
17. GunnarsonE, ZeleninaM, AperiaA.Regulation of brain aquaporins. Neuroscience 2004;129(4):947–55.
18. McCarthyKD, ReedDJ.The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. J Pharmacol Exp Ther 1974;189(1):194–201.
19. EmerichDF, SkinnerSJ, BorlonganCV, et al. The choroid plexus in the rise, fall and repair of the brain. Bioessays 2005;27(3):262–74.
20. KusuharaH, SugiyamaY.Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56(12):1741–63.
21. CserrHF.Physiology of the choroid plexus. Physiol Rev 1971;51(2):273–311.
22. BrodbeltA, StoodleyM.CSF pathways: a review. Br J Neurosurg 2007;21(5):510–20.
23. Del BigioMR.The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 1995;14(1):1–13.
24. WittkowskiW.Tanycytes and pituicytes: morphological and functional aspects of neuroglial interaction. Microsc Res Tech 1998;41(1):29–42.
25. RodriguezEM, BlázquezJL, PastorFE, et al. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol, 2005;247:89–164.
26. LeonhardtH, DesagaU.Recent observations on ependyma and subependymal basement membranes. Acta Neurochir (Wien) 1975;31(3–4):153–9.
27. StoodleyMA, BrownSA, BrownCJ, JonesNR.Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg 1997;86(4):686–93.
28. Henry-FeugeasMC, Idy-PerettiI, BalédentO, et al. Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn Reson Imaging 2000;18(4):387–95.
29. HallP, TurnerM, AichingerS, BendickP, CampbellR.Experimental syringomyelia: the relationship between intraventricular and intrasyrinx pressures. J Neurosurg 1980;52(6):812–17.
30. Williams, B.On the pathogenesis of syringomyelia: a review. J R Soc Med 1980;73(11):798–806.
31. BanizsB, PikeMM, MillicanCL, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 2005;132(23):5329–39.
32. AlcoladoR, WellerRO, ParrishEP, GarrodD.The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 1988;4(1):1–17.
33. HainesDE.On the question of a subdural space. Anat Rec 1991;230(1):3–21.
34. LiJ, McAllisterJP 2nd, ShenY, et al. Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Exp Neurol 2008;211(2):351–61.
35. ZhangET, InmanCB, WellerRO.Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 1990;170:111–23.
36. IchimuraT, FraserPA, CserrHF.Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 1991;545(1–2):103–13.
37. StoodleyMA, JonesNR, BrownCJ.Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res 1996;707(2):155–64.
38. MilhoratTH, KotzenRM, AnzilAP.Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 1994;80(4):716–22.
39. YasuiK, HashizumeY, YoshidaM, KameyamaT, SobeuG.Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol 1999;97(3):253–9.
40. GreitzD, GreitzT, HindmarshT.A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 1997;86(2):125–32.
41. AgreP, NielsenS, OttersenOP.Towards a molecular understanding of water homeostasis in the brain. Neuroscience 2004;129(4):849–50.
42. VerkmanAS.Aquaporins at a glance. J Cell Sci 2011;124(Pt 13):2107–12.
43. NielsenS, NagelhusEA, Amiry-MoghaddamM, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997;17(1):171–80.
44. FilippidisAS, KalaniMY, RekateHL.Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 2011;27(1):27–33.
45. OshioK, WatanabeH, SongY, VerkmanAS, ManleyGT.Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 2005;19(1):76–8.
46. BlochO, AugusteKI, ManleyGT, VerkmanAS.Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cerebral Blood Flow Metab 2006;26(12):1527–37.
47. FrömterE, DiamondJ.Route of passive ion permeation in epithelia. Nat New Biol 1972;235(53):9–13.
48. UssingHH, ZerahnK.Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951;23(2–3):110–27.
49. FilippidisA, ZarogiannisS, IoannouM, et al. Transmembrane resistance and histology of isolated sheep leptomeninges. Neurol Res 2010;32(2):205–8.
50. DamkierHH, BrownPD, PraetoriusJ.Epithelial pathways in choroid plexus electrolyte transport. Physiology (Bethesda) 2010;25(4):239–49.
51. PollayM, CurlF.Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 1967;213(4):1031–8.
52. SegalMB, PollayM.The secretion of cerebrospinal fluid. Exp Eye Res 1977;25(Suppl):127–48.
53. HatzoglouCH, GourgoulianisKI, MolyvdasPA.Effects of SNP, ouabain, and amiloride on electrical potential profile of isolated sheep pleura. J Appl Physiol 2001;90(4):1565–9.
54. ZarogiannisS, GourgoulianisK, MolyvdasPA, HatzoglouC.Existence of Na(+)-K(+) ATPase in sheep visceral and parietal pleura. Respir Physiol Neurobiol 2008;164(3):289; author reply 290.
55. MilhoratTH, HammockMK, FenstermacherJD, LevinVA.Cerebrospinal fluid production by the choroid plexus and brain. Science 1971;173(3994):330–2.
56. FilippidisAS, ZarogiannisSG, IoannouM, et al. Permeability of the arachnoid and pia mater. The role of ion channels in the leptomeningeal physiology. Childs Nerv Syst 2012;28(4):533–40.
57. SatoO, TakeiF, YamadaS.Hydrocephalus: is impaired cerebrospinal fluid circulation only one problem involved?Childs Nerv Syst 1994;10(3):151–5.
58. PollayM.Overview of the CSF dual outflow system. Acta Neurochir Suppl 2012;113:47–50.
59. OreskovicD, KlaricaM.Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol 2011;94(3):238–58.
60. TripathiBJ, TripathiRC.Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 1974;239(1):195–206.
61. WeedLH.Studies on cerebro-spinal fluid. No. III: The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 1914;31(1):51–91.
62. MortensenOA, SullivanWE. Cerebrospinal fluid and the cervical lymph nodes. Anat Rec 1933;56:356–63.
63. CserrHF, Harling-BergCJ, KnopfPM.Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992;2(4):269–76.
64. JohnstonM.The importance of lymphatics in cerebrospinal fluid transport. Lymphat Res Biol 2003;1(1):41–4; discussion 45.
65. BoultonM, FlessnerM, ArmstrongD, HayJ, JohnstonM.Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 1998;274(1 Pt 2):R88–96.
66. BoultonM, FlessnerM, ArmstrongD, et al. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol 1999;276(3 Pt 2):R818–23.
67. NagraG, KohL, ZakharovA, ArmstrongD, JohnstonM.Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 2006;291(5):R1383–9.
68. MollanjiR, Bozanovic-SosicR, ZakharovA, MakarianL, JohnstonMG.Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 2002;282(6):R1593–9.
69. EdsbaggeM, StarckG, ZetterbergH, ZiegelitzD, WikkelsoC.Spinal cerebrospinal fluid volume in healthy elderly individuals. Clin Anat 2011;24(6):733–40.
70. MinKJ, YoonSH, KangJK.New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy. Med Hypotheses 2011;76(6):884–6.
71. GreitzD, WirestamR, FranckA, et al. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 1992;34(5):370–80.
72. GreitzD.Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 2004;27(3):145–65; discussion 166–7.
73. BalédentO, Henry-FeugeasMC, Idy-PerettiI.Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 2001;36(7):368–77.
74. LeeHS, YoonSH.Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: new understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow. Med Hypotheses 2009;72(2):174–7.