Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: January 2014

7 - Observational characteristics of accretion onto black holes II: environment and feedback


7.1 Introduction

I'll begin this chapter with one of my favorite quotes about black holes:

Of all the conceptions of the human mind, from unicorns to gargoyles to the hydrogen bomb, the most fantastic, perhaps, is the black hole; a hole in space with a definite edge into which anything can fall and out of which nothing can escape; a hole with a gravitational force so strong that even light is caught and held in its grip; a hole that curves space and warps time. Like unicorns and gargoyles, black holes seem more at home in the realms of science fiction and ancient myth than in the real Universe. Nonetheless, well-tested laws of physics predict firmly that black holes exist.

(Thorne, 1994)

… and add that not only do the laws of physics predict that black holes exist, but a vast array of observational evidence points to their existence in a range of masses and environments, throughout the universe. Whether or not they really exist is debated by some and is hard to prove to the satisfaction of others, but there are clearly a vast number of objects (> 1016) in the observable universe that conform very closely to our concept of a black hole (i.e., high accretion efficiency but otherwise “dark,” no apparent surface, simple scaling of properties over a range ≥ 108 in mass). In this contribution to the XXI Canary Islands Winter School of Astrophysics, I focus on these objects, specifically on the observational consequences of accretion onto them, and the associated feedback to the surrounding environment.

Related content

Powered by UNSILO
Biretta, J. A., Sparks, W. B., and Macchetto, F. 2005. Hubble Space Telescope observations of superluminal motion in the M87 jet. 1999. ApJ, 520(Aug.), 621–626.
Blandford, R. D., and Königl, A. 1979. Relativistic jets as compact radio sources. ApJ, 232(Aug.), 34–48.
Blundell, K. M., and Bowler, M. G. 2004. Symmetry in the changing jets of SS 433 and its true distance from us. ApJ, 616(Dec.), L159–L162.
Burbidge, G. R. 1958. Possible sources of radio emission in clusters of galaxies. ApJ, 128(July), 1–8.
Burrows, C. J., Stapelfeldt, K. R., Watson, A. M., Krist, J. E., Ballester, G. E., Clarke, J. T., Crisp, D., Gallagher, J. S. III., Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Mould, J. R., Scowen, P. A., Trauger, J. T., Westphal, J. A. 1996. Hubble Space Telescope observations of the disk and jet of HH 30. ApJ, 473(Dec.), 437–L162.
Calvelo, D. E., Fender, R. P., Russell, D. M., Gallo, E., Corbel, S., Tzioumis, A. K., Bell, M. E., Lewis, F., and Maccarone, T. J. 2010. Limits on the quiescent radio emission from the black hole binaries GRO J1655-40 and XTE J1550-564. MNRAS, 409(Dec.), 839–845.
Casella, P., Belloni, T., and Stella, L. 2005. The ABC of low-frequency quasi-periodic oscillations in black hole candidates: analogies with Z sources. ApJ, 629(Aug.), 403–407.
Casella, P., Maccarone, T. J., O'Brien, K., Fender, R. P., Russell, D. M., van der Klis, M., Pe'Er, A., Maitra, D., Altamirano, D., Belloni, T., Kanbach, G., Klein-Wolt, M., Mason, E., Soleri, P., Stefanescu, A., Wiersema, K., and Wijnands, R. 2010. Fast infrared variability from a relativistic jet in GX 339-4. MNRAS, 404(May), L21–L25.
Corbel, S., Fender, R. P., Tomsick, J. A., Tzioumis, A. K., and Tingay, S. 2004. On the origin of radio emission in the X-ray states of XTE J1650-500 during the 2001-2002 outburst. ApJ, 617(Dec.), 1272–1283.
Corbel, S., Fender, R. P., Tzioumis, A. K., Tomsick, J. A., Orosz, J. A., Miller, J. M., Wij-nands, R., and Kaaret, P. 2002. Large-scale, decelerating, relativistic X-ray jets from the microquasar XTE J1550-564. Science, 298(Oct.), 196–199.
De Villiers, J.-P., Hawley, J. F., Krolik, J. H., and Hirose, S. 2005. Magnetically driven accretion in the Kerr metric. III. Unbound outflows. ApJ, 620(Feb.), 878–888.
Doeleman, S., Agol, E., Backer, D., Baganoff, F., Bower, G. C., Broderick, A., Fabian, A., Fish, V., Gammie, C., Ho, P., Honman, M., Krichbaum, T., Loeb, A., Marrone, D., Reid, M., Rogers, A., Shapiro, I., Strittmatter, P., Tilanus, R., Weintroub, J., Whitney, A., Wright, M., and Ziurys, L. 2009. Imaging an event horizon: sub-mm-VLBI of a super massive black hole. Astro2010: The Astronomy and Astrophysics Decadal Survey. Science White Papers, no. 68.
Dunn, R. J. H., Fender, R. P., Kording, E. G., Cabanac, C., and Belloni, T. 2008. Studying the X-ray hysteresis in GX 339-4: the disc and iron line over one decade. MNRAS, 387(June), 545–563.
Fabian, A. C., and Iwasawa, K. 1999. The mass density in black holes inferred from the X-ray background. MNRAS, 303(Feb.), L34–L36.
Fabian, A. C., Sanders, J. S., Taylor, G. B., Allen, S. W., Crawford, C. S., Johnstone, R. M., and Iwasawa, K. 2006. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. MNRAS, 366(Feb.), 417–428.
Falcke, H., Kording, E., and Markoff, S. 2004. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. A&A, 414(Feb.), 895–903.
Fender, R. 2006. Jets from X-Ray Binaries. Compact stellar X-ray sources. Walter, Lewin & Michiel van der, Klis (eds.), Cambridge Astrophysics Series, No. 39. Cambridge, UK: Cambridge University Press, p. 381–419.
Fender, R. P., Belloni, T. M., and Gallo, E. 2004. Towards a unified model for black hole X-ray binary jets. MNRAS, 355(Dec.), 1105–1118.
Fender, R. P., Gallo, E., and Jonker, P. G. 2003. Jet-dominated states: an alternative to advection across black hole event horizons in “quiescent” X-ray binaries. MNRAS, 343(Aug.), L99–L103.
Fender, R. P., Gallo, E., and Russell, D. 2010. No evidence for black hole spin powering of jets in X-ray binaries. MNRAS, 406(Aug.), 1425–1434.
Fender, R. P., Garrington, S. T., McKay, D. J., Muxlow, T. W. B., Pooley, G. G., Spencer, R. E., Stirling, A. M., and Waltman, E. B. 1999. MERLIN observations of relativistic ejections from GRS 1915+105. MNRAS, 304(Apr.), 865–876.
Fender, R. P., Homan, J., and Belloni, T. M. 2009. Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays. MNRAS, 396(July), 1370–1382.
Ferrarese, L., and Merritt, D. 2000. A fundamental relation between supermassive black holes and their host galaxies. ApJ, 539(Aug.), L9–L12.
Gallo, E., Fender, R. P., Kaiser, C., Russell, D., Morganti, R., Oosterloo, T., and Heinz, S. 2005. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature, 436(Aug.), 819–821.
Gallo, E., Fender, R. P., Miller-Jones, J. C. A., Merloni, A., Jonker, P. G., Heinz, S., Maccarone, T. J., and van der Klis, M. 2006. A radio-emitting outflow in the quiescent state of A0620-00: implications for modelling low-luminosity black hole binaries. MNRAS, 370(Aug.), 13511360.
Gallo, E., Fender, R. P., and Pooley, G. G. 2003. A universal radio-X-ray correlation in low/hard state black hole binaries. MNRAS, 344(Sept.), 60–72.
Garcia, M. R., McClintock, J. E., Narayan, R., Callanan, P., Barret, D., and Murray, S. S. 2001. New evidence for black hole event horizons from Chandra. ApJ, 553(May), L47–L50.
Hannikainen, D. C., Hunstead, R. W., Campbell-Wilson, D., and Sood, R. K. 1998. MOST radio monitoring of GX 339-4. A&A, 337(Sept.), 460–464.
Hughes, P. A. 1991. Beams and Jets in Astrophysics. Cambridge University Press (Cambridge Astrophysics Series, No. 19), 593 p.
Jamil, O., Fender, R. P., and Kaiser, C. R. 2010. iShocks: X-ray binary jets with an internal shocks model. MNRAS, 401(Jan.), 394–404.
Kaiser, C. R., and Alexander, P. 1997. A self-similar model for extragalactic radio sources. MNRAS, 286(Mar.), 215–222.
Koide, S., Shibata, K., Kudoh, T., and Meier, D. L. 2002. Extraction of black hole rotational energy by a magnetic field and the formation of relativistic jets. Science, 295(Mar.), 1688–1691.
Körding, E., Falcke, H., and Corbel, S. 2006a. Refining the fundamental plane of accreting black holes. A&A, 456(Sept.), 439–450.
Kording, E. G., Fender, R. P., and Migliari, S. 2006b. Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate. MNRAS, 369(July), 1451–1458.
Kording, E. G., Jester, S., and Fender, R. 2006c. Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries. MNRAS, 372(Nov.), 1366–1378.
Kording, E. G., Migliari, S., Fender, R., Belloni, T., Knigge, C., and McHardy, I. 2007. The variability plane of accreting compact objects. MNRAS, 380(Sept.), 301–310.
Mahadevan, R. 1997. Scaling laws for advection-dominated flows: applications to low-luminosity galactic nuclei. ApJ, 477(Mar.), 585+.
Markoff, S., Falcke, H., and Fender, R. 2001. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the low/hard spectral state. A&A, 372(June), L25–L28.
Marscher, A. P., Jorstad, S. G., Gomez, J.-L., Aller, M. F., Teräsranta, H., Lister, M. L., and Stirling, A. M. 2002. Observational evidence for the accretion-disk origin for a radio jet in an active galaxy. Nature, 417(June), 625–627.
McHardy, I. M., Koerding, E., Knigge, C., Uttley, P., and Fender, R. P. 2006. Active galactic nuclei as scaled-up Galactic black holes. Nature, 444(Dec.), 730–732.
McKinney, J. C., and Blandford, R. D. 2009. Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. MNRAS, 394(Mar.), L126–L130.
Merloni, A., Heinz, S., and di Matteo, T. 2003. A fundamental plane of black hole activity. MNRAS, 345(Nov.), 1057–1076.
Miller, J. M., Raymond, J., Fabian, A., Steeghs, D., Homan, J., Reynolds, C., van der Klis, M., and Wijnands, R. 2006. The magnetic nature of disk accretion onto black holes. Nature, 441(June), 953–955.
Miller-Jones, J. C. A., Fender, R. P., and Nakar, E. 2006. Opening angles, Lorentz factors and confinement of X-ray binary jets. MNRAS, 367(Apr.), 1432–1440.
Miller-Jones, J. C. A., McCormick, D. G., Fender, R. P., Spencer, R. E., Muxlow, T. W. B., and Pooley, G. G. 2005. Multiple relativistic outbursts of GRS1915+105: radio emission and internal shocks. MNRAS, 363(Nov.), 867–881.
Mirabel, I. F., and Rodriguez, L. F. 1994. A superluminal source in the Galaxy. Nature, 371(Sept.), 46–48.
Moretti, A., Campana, S., Lazzati, D., and Tagliaferri, G. 2003. The resolved fraction of the cosmic X-ray background. ApJ, 588(May), 696–703.
Narayan, R., and Yi, I. 1994. Advection-dominated accretion: A self-similar solution. ApJ, 428(June), L13–L16.
Neilsen, J., and Lee, J. C. 2009. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature, 458(Mar.), 481–484.
Pe'er, A., and Casella, P. 2009. A model for emission from jets in X-ray binaries: consequences of a single acceleration episode. ApJ, 699(July), 1919–1937.
Ponti, G., Terrier, R., Goldwurm, A., Belanger, G., and Trap, G. 2010. Discovery of a superlu-minal Fe K Echo at the galactic center: the glorious past of Sgr A* preserved by molecular clouds. ApJ, 714(May), 732–747.
Rees, M. J. 1966. Appearance of relativistically expanding radio sources. Nature, 211(July), 468–470.
Russell, D. M., Fender, R. P., Hynes, R. I., Brocksopp, C., Homan, J., Jonker, P. G., and Buxton, M. M. 2006. Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions. MNRAS, 371(Sept.), 1334–1350.
Russell, D. M., Maitra, D., Dunn, R. J. H., and Markoff, S. 2010. Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550-564. MNRAS, 405(July), 1759–1769.
Sams, B. J., Eckart, A., and Sunyaev, R. 1996. Near-infrared jets in the Galactic microquasar GRS1915+105. Nature, 382(July), 47–49.
Schmitt, J. H. M. M., Snowden, S. L., Aschenbach, B., Hasinger, G., Pfeffermann, E., Predehl, P., Trumper, J., 1991, A soft X-ray image of the moon. Nature, 349(February), 583–587.
Sikora, M., Stawarz, Ł., and Lasota, J.-P. 2007. Radio loudness of active galactic nuclei: observational facts and theoretical implications. ApJ, 658(Apr.), 815–828.
Soltan, A. 1982. Masses of quasars. MNRAS, 200(July), 115–122.
Susskind, L. 2009. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. Published by Little, Brown and Company, Hachette Book Group, 237 Park Avenue, New York, NY 10017 (
Tchekhovskoy, A., Narayan, R., and McKinney, J. C. 2010. Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. ApJ, 711(Mar.), 50–63.
Thorne, K. 1994. Black Holes and Time Warps: Einstein's Outrageous Legacy. Published by W. W. Norton & Company, Inc, 500 Fifth Avenue, New York, NY 10110.
Yu, Q., and Tremaine, S. 2002. Observational constraints on growth of massive black holes. MNRAS, 335(Oct.), 965–976.