Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T17:24:34.826Z Has data issue: false hasContentIssue false

6 - Observational characteristics of accretion onto black holes I

Published online by Cambridge University Press:  05 January 2014

Christine Done
Affiliation:
University of Durham
Ignacio González Martínez-País
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Tariq Shahbaz
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jorge Casares Velázquez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Abstract

These notes resulted from a series of lectures at the IAC winter school. They are designed to help students, especially those just starting in subject, to get hold of the fundamental tools used to study accretion powered sources. As such, the references give a place to start reading, rather than representing a complete survey of work done in the field.

I outline Compton scattering and blackbody radiation as the two predominant radiation mechanisms for accreting black holes, producing the hard X-ray tail and disk spectral components, respectively. The interaction of this radiation with matter can result in photoelectric absorption and/or reflection. While the basic processes can be found in any textbook, here I focus on how these can be used as a toolkit to interpret the spectra and variability of black-hole binaries (hereafter BHB) and active galactic nuclei (AGN). I also discuss how to use these to physically interpret real data using the publicly available XSPEC spectral fitting package (Arnaud, 1996), and how this has led to current models (and controversies) of the accretion flow in both BHB and AGN.

6.1 Fundamentals of accretion flows: observation and theory

6.1.1 Plotting spectra

Spectra can often be (roughly) represented as a power law. This can be written as a differential photon number density (photons per second per square cm per energy band) as N (E) = N 0E-r, where Γ is photon index. The energy flux is then simply F (E) = EN(E) = N0E-(r-1) = N0E, where α = Γ − 1 is energy index.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arévalo, P., and Uttley, P. 2006. Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. MNRAS, 367(Apr.), 801–814.Google Scholar
Arnaud, K. A. 1996. XSPEC: The first ten years. Pages 17+ of: G. H., Jacoby and J., Barnes (ed), Astronomical Data Analysis Software and Systems V. AstronomicalSociety of the Pacific Conference Series, vol. 101.
Balucinska-Church, M., and McCammon, D. 1992. Photoelectric absorption cross sections with variable abundances. ApJ, 400(Dec.), 699+.Google Scholar
Barrio, F. E., Done, C., and Nayakshin, S. 2003. On the accretion geometry of Cyg X-1 in the low/hard state. MNRAS, 342(June), 557–563.Google Scholar
Begelman, M. C., McKee, C. F., and Shields, G. A. 1983. Compton heated winds and coronae above accretion disks. I Dynamics. ApJ, 271 (Aug.), 70–88.Google Scholar
Belloni, T. M. 2010 (Mar.). States and transitions in black hole binaries. Pages 53+ of: T., Belloni (ed.), Lecture Notes in Physics. Lecture Notes in Physics, Springer, vol. 794.
Beloborodov, A. M. 1999. Plasma ejection from magnetic flares and the X-ray spectrum of Cygnus X-1. ApJL, 510(Jan.), L123–L126.Google Scholar
Blustin, A. J., Page, M. J., Fuerst, S. V., Branduardi-Raymont, G., and Ashton, C. E. 2005. The nature and origin of Seyfert warm absorbers. A&A, 431 (Feb.), 111–125.Google Scholar
Boller, T., Fabian, A. C., Sunyaev, R., Trumper, J., Vaughan, S., Ballantyne, D. R., Brandt, W. N., Keil, R., and Iwasawa, K. 2002. XMM-Newton discovery of a sharp spectral feature at ~7 keV in the narrow-line Seyfert 1 galaxy 1H 0707-49. MNRAS, 329(Jan.), L1–L5.Google Scholar
Chevallier, L., Collin, S., Dumont, A.-M., Czerny, B., Mouchet, M., Goncalves, A. C., and Goosmann, R. 2006. The role of absorption and reflection in the soft X-ray excess of active galactic nuclei. I. Preliminary results. A&A, 449(Apr.), 493–508.Google Scholar
Chiang, C. Y., Done, C., Still, M., and Godet, O. 2010. An additional soft X-ray component in the dim low/hard state of black hole binaries. MNRAS, 403(Apr.), 1102–1112.Google Scholar
Churazov, E., Gilfanov, M., and Revnivtsev, M. 2001. Soft state of Cygnus X-1: stable disc and unstable corona. MNRAS, 321 (Mar.), 759–766.Google Scholar
Coppi, P. S. 1999. The physics of hybrid thermal/non-thermal plasmas. Pages 375+ of: J., Poutanen and R., Svensson (eds.), High Energy Processes in Accreting Black Holes. Astronomical Society of the Pacific Conference Series, vol. 161.
Crummy, J., Fabian, A. C., Gallo, L., and Ross, R. R. 2006. An explanation for the soft X-ray excess in active galactic nuclei. MNRAS, 365(Feb.), 1067–1081.Google Scholar
Cunningham, C. T. 1975. The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole. ApJ, 202(Dec.), 788–802.Google Scholar
Czerny, B., Nikolajuk, M., Różahska, A., Dumont, A.-M., Loska, Z., and Zycki, P. T. 2003. Universal spectral shape of high accretion rate AGN. A&A, 412(Dec.), 317–329.Google Scholar
Davis, S. W., Blaes, O. M., Hubeny, I., and Turner, N. J. 2005. Relativistic accretion disk models of high-state black hole X-ray binary spectra. ApJ, 621(Mar.), 372–387.Google Scholar
Davis, S. W., Done, C., and Blaes, O. M. 2006. Testing accretion disk theory in black hole X-ray binaries. ApJ, 647(Aug.), 525–538.Google Scholar
de Martino, D., Matt, G., Belloni, T., Haberl, F., and Mukai, K. 2004. BeppoSAX observations of soft X-ray intermediate polars. A&A, 415(Mar.), 1009–1019.Google Scholar
Di Matteo, T., Celotti, A., and Fabian, A. C. 1997. Cyclo-synchrotron emission from magnetically dominated active regions above accretion discs. MNRAS, 291 (Nov.), 805+.Google Scholar
Done, C., and Davis, S. W. 2008. Angular momentum transport in accretion disks and its implications for spin estimates in black hole binaries. ApJ, 683(Aug.), 389–399.Google Scholar
Done, C., and Diaz Trigo, M. 2010. A re-analysis of the iron line in the XMM-Newton data from the low/hard state in GX339-4. MNRAS, 407(July), 2287–2296.Google Scholar
Done, C., and Kubota, A. 2006. Disc-corona energetics in the very high state of galactic black holes. MNRAS, 371 (Sept.), 1216–1230.Google Scholar
Done, C., and Magdziarz, P. 1998. Complex absorption and reflection of a multitemperature cyclotron-bremsstrahlung X-ray cooling shock in BY Cam. MNRAS, 298(Aug.), 737–746.Google Scholar
Done, C., and Nayakshin, S. 2007. Can the soft excess in AGN originate from disc reflection?MNRAS, 377(May), L59–L63.Google Scholar
Done, C., Gierlihski, M., and Kubota, A. 2007. Modelling the behaviour of accretion flows in X-ray binaries. Everything you always wanted to know about accretion but were afraid to ask. A&A Rev., 15(Dec.), 1–66.Google Scholar
Done, C., Mulchaey, J. S., Mushotzky, R. F., and Arnaud, K. A. 1992. An ionized accretion disk in Cygnus X-1. ApJ, 395(Aug.), 275–288.Google Scholar
Dovčiak, M., Karas, V., and Yaqoob, T. 2004. An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime. ApJS, 153(July), 205–221.Google Scholar
Dunlop, J. S., McLure, R. J., Kukula, M. J., Baum, S. A., O'Dea, C. P., and Hughes, D. H. 2003. Quasars, their host galaxies and their central black holes. MNRAS, 340(Apr.), 1095–1135.Google Scholar
Durant, M., Gandhi, P., Shahbaz, T., Fabian, A. P., Miller, J., Dhillon, V. S., and Marsh, T. R. 2008. SWIFT J1753.5-0127: A Surprising Optical/X-Ray Cross-Correlation Function. ApJL, 682(July), L45–L48.Google Scholar
Esin, A. A., McClintock, J. E., and Narayan, R. 1997. Advection-dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova MUSCAE 1991. ApJ, 489(Nov.), 865+.Google Scholar
Esin, A. A., McClintock, J. E., Drake, J. J., Garcia, M. R., Haswell, C. A., Hynes, R. I., and Muno, M. P. 2001. Modeling the Low-State Spectrum of the X-Ray Nova XTE J1118+480. ApJ, 555(July), 483–488.Google Scholar
Fabian, A. C., and Vaughan, S. 2003. The iron line in MCG-6-30-15 from XMM-Newton: evidence for gravitational light bending?MNRAS, 340(Apr.), L28–L32.Google Scholar
Fabian, A. C., Ballantyne, D. R., Merloni, A., Vaughan, S., Iwasawa, K., and Boller, T. 2002. How the X-ray spectrum of a narrow-line Seyfert 1 galaxy may be reflection-dominated. MNRAS, 331(Apr.), L35–L39.Google Scholar
Fabian, A. C., Iwasawa, K., Reynolds, C. S., and Young, A. J. 2000. Broad Iron Lines in Active Galactic Nuclei. PASP, 112(Sept.), 1145–1161.Google Scholar
Fabian, A. C., Miniutti, G., Gallo, L., Boller, T., Tanaka, Y., Vaughan, S., and Ross, R. R. 2004. X-ray reflection in the narrow-line Seyfert 1 galaxy 1H 0707-495. MNRAS, 353(Oct.), 1071–1077.Google Scholar
Fabian, A. C., Rees, M. J., Stella, L., and White, N. E. 1989. X-ray fluorescence from the inner disc in Cygnus X-1. MNRAS, 238(May), 729–736.Google Scholar
Fabian, A. C., Zoghbi, A., Ross, R. R., Uttley, P., Gallo, L. C., Brandt, W. N., Blustin, A. J., Boller, T., Caballero-Garcia, M. D., Larsson, J., Miller, J. M., Miniutti, G., Ponti, G., Reis, R. C., Reynolds, C. S., Tanaka, Y., and Young, A. J. 2009. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature, 459(May), 540–542.Google Scholar
Fanidakis, N., Baugh, C. M., Benson, A. J., Bower, R. G., Cole, S., Done, C., and Frenk, C. S. 2009. Grand unification of AGN activity in the LambdaCDM cosmology. ArXiv e-prints, Nov.
Gammie, C. F., Shapiro, S. L., and McKinney, J. C. 2004. Black hole spin evolution. ApJ, 602(Feb.), 312–319.Google Scholar
Gandhi, P., Makishima, K., Durant, M., Fabian, A. C., Dhillon, V. S., Marsh, T. R., Miller, J. M., Shahbaz, T., and Spruit, H. C. 2008. Rapid optical and X-ray timing observations of GX 339-4: flux correlations at the onset of a low/hard state. MNRAS, 390(Oct.), L29–L33.Google Scholar
George, I. M., and Fabian, A. C. 1991. X-ray reflection from cold matter in active galactic nuclei and X-ray binaries. MNRAS, 249(Mar.), 352–367.Google Scholar
Ghisellini, G. 1989. Synchrotron self Compton models for compact sources – the case of a steep power-law particle distribution. MNRAS, 236(Jan.), 341–351.Google Scholar
Gierliński, M., and Done, C. 2003. The X-ray/γ-ray spectrum of XTE J1550-564 in the very high state. MNRAS, 342(July), 1083–1092.Google Scholar
Gierlińhski, M., and Done, C. 2004a. Black hole accretion discs: reality confronts theory. MNRAS, 347(Jan.), 885–894.Google Scholar
Gierlińhski, M., and Done, C. 2004b. Is the soft excess in active galactic nuclei real?MNRAS, 349(Mar.), L7–L11.Google Scholar
Gierlińhski, M., and Zdziarski, A. A. 2005. Patterns of energy-dependent variability from Comp-tonization. MNRAS, 363(Nov.), 1349–1360.Google Scholar
Gierlińhski, M., Done, C., and Page, K. 2008. X-ray irradiation in XTE J1817-330 and the inner radius of the truncated disc in the hard state. MNRAS, 388(Aug.), 753–760.Google Scholar
Gierlińhski, M., Zdziarski, A. A., Poutanen, J., Coppi, P. S., Ebisawa, K., and Johnson, W. N. 1999. Radiation mechanisms and geometry of Cygnus X-1 in the soft state. MNRAS, 309(Oct.), 496–512.Google Scholar
Gilfanov, M. 2010 (Mar.). X-ray emission from black-hole binaries. Pages 17+ of: T., Belloni (ed.), Lecture Notes in Physics. Lecture Notes in Physics, Springer, vol. 794.
Gilfanov, M., Churazov, E., and Revnivtsev, M. 1999. Reflection and noise in Cygnus X-1. A&A, 352(Dec.), 182–188.Google Scholar
Gladstone, J., Done, C., and Gierlińhski, M. 2007. Analysing the atolls: X-ray spectral transitions of accreting neutron stars. MNRAS, 378(June), 13–22.Google Scholar
Gou, L., McClintock, J. E., Liu, J., Narayan, R., Steiner, J. F., Remillard, R. A., Orosz, J. A., Davis, S. W., Ebisawa, K., and Schlegel, E. M. 2009. A determination of the spin of the black hole primary in LMC X-1. ApJ, 701(Aug.), 1076–1090.Google Scholar
Gou, L., McClintock, J. E., Steiner, J. F., Narayan, R., Cantrell, A. G., Bailyn, C. D., and Orosz, J. A. 2010. The spin of the black hole in the soft X-ray transient A0620-00. ApJL, 718(Aug.), L122–L126.Google Scholar
Haardt, F., and Maraschi, L. 1993. X-ray spectra from two-phase accretion disks. ApJ, 413(Aug.), 507–517.Google Scholar
Hynes, R. I., Brien, K. O., Mullally, F., and Ashcraft, T. 2009. Echo mapping of Swift J1753.5-0127. MNRAS, 399(Oct.), 281–286.Google Scholar
Ibragimov, A., Poutanen, J., Gilfanov, M., Zdziarski, A. A., and Shrader, C. R. 2005. Broadband spectra of Cygnus X-1 and correlations between spectral characteristics. MNRAS, 362(Oct.), 1435–1450.Google Scholar
Ingram, A., and Done, C. 2010. A physical interpretation of the variability power spectral components in accreting neutron stars. MNRAS, 405(July), 2447–2452.Google Scholar
Ingram, A., Done, C., and Fragile, P. C. 2009. Low-frequency quasi-periodic oscillations spectra and Lense-Thirring precession. MNRAS, 397(July), L101–L105.Google Scholar
Juett, A. M., Schulz, N. S., and Chakrabarty, D. 2004. High-resolution X-ray spectroscopy of the interstellar medium: structure at the oxygen absorption edge. ApJ, 612(Sept.), 308318.Google Scholar
Kallman, T., and Bautista, M. 2001. Photoionization and high-density gas. ApJS, 133(Mar.), 221–253.Google Scholar
Kallman, T. R., Bautista, M. A., Goriely, S., Mendoza, C., Miller, J. M., Palmeri, P., Quinet, P., and Raymond, J. 2009. Spectrum synthesis modeling of the X-ray spectrum of GRO J1655-40 taken during the 2005 outburst. ApJ, 701(Aug.), 865–884.Google Scholar
Kallman, T. R., Palmeri, P., Bautista, M. A., Mendoza, C., and Krolik, J. H. 2004. Photoion-ization modeling and the K lines of iron. ApJS, 155(Dec.), 675–701.Google Scholar
Kanbach, G., Straubmeier, C., Spruit, H. C., and Belloni, T. 2001. Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480. Nature, 414(Nov.), 180–182.Google Scholar
King, A. R., and Kolb, U. 1999. The evolution of black hole mass and angular momentum. MNRAS, 305(May), 654–660.Google Scholar
King, A. R., Pringle, J. E., and Livio, M. 2007. Accretion disc viscosity: how big is alpha?MNRAS, 376(Apr.), 1740–1746.Google Scholar
Kolehmainen, M., and Done, C. 2010. Limits on spin determination from disc spectral fitting in GX 339-4. MNRAS, 406(Aug.), 2206–2212.Google Scholar
Körding, E. G., Jester, S., and Fender, R. 2006. Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries. MNRAS, 372(Nov.), 1366–1378.Google Scholar
Kotani, T., Ebisawa, K., Dotani, T., Inoue, H., Nagase, F., Tanaka, Y., and Ueda, Y. 2000. ASCA observations of the absorption line features from the superluminal jet source GRS 1915+105. ApJ, 539(Aug.), 413–423.Google Scholar
Kotov, O., Churazov, E., and Gilfanov, M. 2001. On the X-ray time-lags in the black hole candidates. MNRAS, 327(Nov.), 799–807.Google Scholar
Krolik, J. H., McKee, C. F., and Tarter, C. B. 1981. Two-phase models of quasar emission line regions. ApJ, 249(Oct.), 422–442.Google Scholar
Kubota, A., and Done, C. 2004. The very high state accretion disc structure from the galactic black hole transient XTE J1550-564. MNRAS, 353(Sept.), 980–990.Google Scholar
Kubota, A., Done, C., Davis, S. W., Dotani, T., Mizuno, T., and Ueda, Y. 2010. Testing accretion disk structure with Suzaku data of LMC X-3. ApJ, 714(May), 860–867.Google Scholar
Kubota, A., Dotani, T., Cottam, J., Kotani, T., Done, C., Ueda, Y., Fabian, A. C., Yasuda, T., Takahashi, H., Fukazawa, Y., Yamaoka, K., Makishima, K., Yamada, S., Kohmura, T., and Angelini, L. 2007. Suzaku discovery of iron absorption lines in outburst spectra of the X-ray transient 4U 1630-472. PASJ, 59(Jan.), 185–198.Google Scholar
Kubota, A., Makishima, K., and Ebisawa, K. 2001. Observational evidence for strong disk Comp-tonization in GRO J1655-40. ApJL, 560(Oct.), L147–L150.Google Scholar
Laor, A. 1991. Line profiles from a disk around a rotating black hole. ApJ, 376(July), 90–94.Google Scholar
Lee, J. C., Reynolds, C. S., Remillard, R., Schulz, N. S., Blackman, E. G., and Fabian, A. C. 2002. High-resolution Chandra HETGS and Rossi X-Ray Timing Explorer observations of GRS 1915+105: a hot disk atmosphere and cold gas enriched in iron and silicon. ApJ, 567(Mar.), 1102–1111.Google Scholar
Li, L.-X., Zimmerman, E. R., Narayan, R., and McClintock, J. E. 2005. Multitemperature black-body spectrum of a thin accretion disk around a Kerr black hole: model computations and comparison with observations. ApJS, 157(Apr.), 335–370.Google Scholar
Liu, B. F., Yuan, W., Meyer, F., Meyer-Hofmeister, E., and Xie, G. Z. 1999. Evaporation of accretion disks around black holes: the disk-corona transition and the connection to the advection-dominated accretion flow. ApJL, 527(Dec.), L17–L20.Google Scholar
Lyubarskii, Y. E. 1997. Flicker noise in accretion discs. MNRAS, 292(Dec.), 679+.Google Scholar
Maccarone, T. J. 2003. Do X-ray binary spectral state transition luminosities vary?A&A, 409(Oct.), 697–706.Google Scholar
Makishima, K., Takahashi, H., Yamada, S., Done, C., Kubota, A., Dotani, T., Ebisawa, K., Itoh, T., Kitamoto, S., Negoro, H., Ueda, Y., and Yamaoka, K. 2008. Suzaku results on Cygnus X-1 in the low/hard State. PASJ, 60(June), 585–604.Google Scholar
Malzac, J., and Belmont, R. 2009. The synchrotron boiler and the spectral states of black hole binaries. MNRAS, 392(Jan.), 570–589.Google Scholar
Malzac, J., Dumont, A. M., and Mouchet, M. 2005. Full radiative coupling in two-phase models for accreting black holes. A&A, 430(Feb.), 761–769.Google Scholar
Matt, G., Perola, G. C., and Piro, L. 1991. The iron line and high energy bump as X-ray signatures of cold matter in Seyfert 1 galaxies. A&A, 247(July), 25–34.Google Scholar
Mayer, M., and Pringle, J. E. 2007. Time-dependent models of two-phase accretion discs around black holes. MNRAS, 376(Mar.), 435–456.Google Scholar
McClintock, J. E., Shafee, R., Narayan, R., Remillard, R. A., Davis, S. W., and Li, L.-X. 2006. The spin of the near-extreme Kerr black hole GRS 1915+105. ApJ, 652(Nov.), 518–539.Google Scholar
McConnell, M. L., Zdziarski, A. A., Bennett, K., Bloemen, H., Collmar, W., Hermsen, W., Kuiper, L., Paciesas, W., Phlips, B. F., Poutanen, J., Ryan, J. M., Schönfelder, V., Steinle, H., and Strong, A. W. 2002. The soft gamma-ray spectral variability of Cygnus X-1. ApJ, 572(June), 984–995.Google Scholar
Middleton, M., Done, C., and Gierlihnski, M. 2007. An absorption origin for the soft excess in Seyfert 1 active galactic nuclei. MNRAS, 381(Nov.), 1426–1436.Google Scholar
Middleton, M., Done, C., Gierlińhski, M., and Davis, S. W. 2006. Black hole spin in GRS 1915+105. MNRAS, 373(Dec.), 1004–1012.Google Scholar
Middleton, M., Done, C., Ward, M., Gierlihnski, M., and Schurch, N. 2009. RE J1034+396: the origin of the soft X-ray excess and quasi-periodic oscillation. MNRAS, 394(Mar.), 250–260.Google Scholar
Miller, J. M., Homan, J., Steeghs, D., Rupen, M., Hunstead, R. W., Wijnands, R., Charles, P. A., and Fabian, A. C. 2006a. A long, hard look at the low/hard state in accreting Black Holes. ApJ, 653(Dec.), 525–535.Google Scholar
Miller, J. M., Raymond, J., Fabian, A., Steeghs, D., Homan, J., Reynolds, C., van der Klis, M., and Wijnands, R. 2006b. The magnetic nature of disk accretion onto black holes. Nature, 441 (Jun.), 953–955.Google Scholar
Miller, J. M., Reynolds, C. S., Fabian, A. C., Miniutti, G., and Gallo, L. C. 2009. Stellar-mass black hole spin constraints from disk reflection and continuum modeling. ApJ, 697(May), 900–912.Google Scholar
Miller, L., Turner, T. J., and Reeves, J. N. 2008. An absorption origin for the X-ray spectral variability of MCG-6-30-15. A&A, 483(May), 437–452.Google Scholar
Miller, L., Turner, T. J., Reeves, J. N., George, I. M., Kraemer, S. B., and Wingert, B. 2007. The variable X-ray spectrum of Markarian 766. I. Principal components analysis. A&A, 463(Feb.), 131–143.Google Scholar
Miniutti, G., and Fabian, A. C. 2004. A light bending model for the X-ray temporal and spectral properties of accreting black holes. MNRAS, 349(Apr.), 1435–1448.Google Scholar
Miniutti, G., Fabian, A. C., Goyder, R., and Lasenby, A. N. 2003. The lack of variability of the iron line in MCG-6-30-15: general relativistic effects. MNRAS, 344(Sept.), L22–L26.Google Scholar
Miyamoto, S., Kitamoto, S., Hayashida, K., and Egoshi, W. 1995. Large hysteretic behavior of stellar black hole candidate X-ray binaries. ApJL, 442(Mar.), L13–L16.Google Scholar
Motch, C., Ilovaisky, S. A., Chevalier, C., and Angebault, P. 1985. An IR, optical and X-ray study of the two state behaviour of GX 339-4. Space Sci. Rev., 40(Feb.), 219–224.Google Scholar
Nandra, K., O'Neill, P. M., George, I. M., and Reeves, J. N. 2007. An XMM-Newton survey of broad iron lines in Seyfert galaxies. MNRAS, 382(Nov.), 194–228.Google Scholar
Narayan, R., and Yi, I. 1995. Advection-dominated accretion: Underfed black holes and neutron stars. ApJ, 452(Oct.), 710+.Google Scholar
Nayakshin, S., and Kallman, T. R. 2001. Accretion disk models and their X-ray reflection signatures. I. Local spectra. ApJ, 546(Jan.), 406–418.Google Scholar
Nayakshin, S., Kazanas, D., and Kallman, T. R. 2000. Thermal instability and photoionized X-ray reflection in accretion disks. ApJ, 537(July), 833–852.Google Scholar
Netzer, H., Kaspi, S., Behar, E., Brandt, W. N., Chelouche, D., George, I. M., Crenshaw, D. M., Gabel, J. R., Hamann, F. W., Kraemer, S. B., Kriss, G. A., Nandra, K., Peter-son, B. M., Shields, J. C., and Turner, T. J. 2003. The ionized gas and nuclear environment in NGC 3783. IV. Variability and modeling of the 900 kilosecond Chandra spectrum. ApJ, 599(Dec.), 933–948.Google Scholar
Nowak, M. A. 1995. Toward a unified view of black-hole high-energy states. PASP, 107(Dec.), 1207+.Google Scholar
Ponti, G., Miniutti, G., Cappi, M., Maraschi, L., Fabian, A. C., and Iwasawa, K. 2006. XMM-Newton study of the complex and variable spectrum of NGC 4051. MNRAS, 368(May), 903–916.Google Scholar
Pounds, K. A., Reeves, J. N., King, A. R., Page, K. L., O'Brien, P. T., and Turner, M. J. L. 2003. A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143. MNRAS, 345(Nov.), 705–713.Google Scholar
Poutanen, J., and Svensson, R. 1996. The two-phase pair corona model for active galactic nuclei and X-ray binaries: how to obtain exact solutions. ApJ, 470(Oct.), 249+.Google Scholar
Pszota, G., Zhang, H., Yuan, F., and Cui, W. 2008. Origin of X-ray emission from transient black hole candidates in quiescence. MNRAS, 389(Sept.), 423–428.Google Scholar
Reeves, J., Done, C., Pounds, K., Terashima, Y., Hayashida, K., Anabuki, N., Uchino, M., and Turner, M. 2008. On why the iron K-shell absorption in AGN is not a signature of the local warm/hot intergalactic medium. MNRAS, 385(Mar.), L108–L112.Google Scholar
Reeves, J. N., O'Brien, P. T., Braito, V., Behar, E., Miller, L., Turner, T. J., Fabian, A. C., Kaspi, S., Mushotzky, R., and Ward, M. 2009. A Compton-thick wind in the high-luminosity quasar, PDS 456. ApJ, 701 (Aug.), 493–507.Google Scholar
Reis, R. C., Fabian, A. C., and Miller, J. M. 2010. Black hole accretion discs in the canonical low-hard state. MNRAS, 402(Feb.), 836–854.Google Scholar
Reis, R. C., Fabian, A. C., Ross, R. R., and Miller, J. M. 2009b. Determining the spin of two stellar-mass black holes from disc reflection signatures. MNRAS, 395(May), 1257–1264.Google Scholar
Reis, R. C., Fabian, A. C., Ross, R. R., Miniutti, G., Miller, J. M., and Reynolds, C. 2008. A systematic look at the very high and low/hard state of GX339-4: constraining the black hole spin with a new reflection model. MNRAS, 387(July), 1489–1498.Google Scholar
Reis, R. C., Miller, J. M., and Fabian, A. C. 2009a. Thermal emission from the stellar-mass black hole binary XTE J1118+480 in the low/hard state. MNRAS, 395(May), L52–L56.Google Scholar
Remillard, R. A., and McClintock, J. E. 2006. X-ray properties of black-hole binaries. ARA&A, 44(Sept.), 49–92.Google Scholar
Reynolds, C. S. 1997. An X-ray spectral study of 24 type 1 active galactic nuclei. MNRAS, 286(Apr.), 513–537.Google Scholar
Ross, R. R., and Fabian, A. C. 2007. X-ray reflection in accreting stellar-mass black hole systems. MNRAS, 381(Nov.), 1697–1701.Google Scholar
Różańska, A., and Czerny, B. 2000. Vertical structure of the accreting two-temperature corona and the transition to an ADAF. A&A, 360(Aug.), 1170–1186.Google Scholar
Rykoff, E. S., Miller, J. M., Steeghs, D., and Torres, M. A. P. 2007. Swift observations of the cooling accretion disk of XTE J1817-330. ApJ, 666(Sept.), 1129–1139.Google Scholar
Schnittman, J. D., Homan, J., and Miller, J. M. 2006. A precessing ring model for low-frequency quasi-periodic oscillations. ApJ, 642(May), 420–426.Google Scholar
Schurch, N. J., and Done, C. 2008. Funnel wall jets and the nature of the soft X-ray excess. MNRAS, 386(May), L1–L4.Google Scholar
Schurch, N. J., Done, C., and Proga, D. 2009. The impact of accretion disk winds on the X-ray spectra of active galactic nuclei. II. Xscort + hydrodynamic simulations. ApJ, 694(Mar.), 1–11.Google Scholar
Shafee, R., McClintock, J. E., Narayan, R., Davis, S. W., Li, L.-X., and Remillard, R. A. 2006. Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. ApJL, 636(Jan.), L113–L116.Google Scholar
Shakura, N. I., and Sunyaev, R. A. 1973. Black holes in binary systems. Observational appearance. A&A, 24, 337–355.Google Scholar
Shimura, T., and Takahara, F. 1995. On the spectral hardening factor of the X-ray emission from accretion disks in black hole candidates. ApJ, 445(June), 780–788.Google Scholar
Sim, S. A., Miller, L., Long, K. S., Turner, T. J., and Reeves, J. N. 2010. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows – II. MNRAS, 404(May), 1369–1384.Google Scholar
Steiner, J. F., Narayan, R., McClintock, J. E., and Ebisawa, K. 2009. A simple Comptonization model. PASP, 121 (Nov.), 1279–1290.Google Scholar
Stern, B. E., Poutanen, J., Svensson, R., Sikora, M., and Begelman, M. C. 1995. On the geometry of the X-ray-emitting region in Seyfert galaxies. ApJL, 449(Aug.), L13+.Google Scholar
Titarchuk, L. 1994. Generalized Comptonization models and application to the recent high-energy observations. ApJ, 434(Oct.), 570–586.Google Scholar
Turner, T. J., Reeves, J. N., Kraemer, S. B., and Miller, L. 2008. Tracing a disk wind in NGC 3516. A&A, 483(May), 161–169.Google Scholar
Ueda, Y., Inoue, H., Tanaka, Y., Ebisawa, K., Nagase, F., Kotani, T., and Gehrels, N. 1998. Detection of absorption-line features in the X-ray spectra of the galactic superluminal source GRO J1655-40. ApJ, 492(Jan.), 782+.Google Scholar
Uttley, P., and McHardy, I. M. 2001. The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies. MNRAS, 323(May), L26–L30.Google Scholar
Uttley, P., McHardy, I. M., and Vaughan, S. 2005. Non-linear X-ray variability in X-ray binaries and active galaxies. MNRAS, 359(May), 345–362.Google Scholar
van Paradijs, J. 1996. On the Accretion Instability in Soft X-Ray Transients. ApJL, 464(June), L139+.Google Scholar
Vasudevan, R. V., and Fabian, A. C. 2007. Piecing together the X-ray background: bolometric corrections for active galactic nuclei. MNRAS, 381(Nov.), 1235–1251.Google Scholar
Wardzińhski, G., and Zdziarski, A. A. 2000. Thermal synchrotron radiation and its Comptoniza-tion in compact X-ray sources. MNRAS, 314(May), 183–198.Google Scholar
Wilkinson, T., and Uttley, P. 2009. Accretion disc variability in the hard state of black hole X-ray binaries. MNRAS, 397(Aug.), 666–676.Google Scholar
Wilms, J., Allen, A., and McCray, R. 2000. On the absorption of X-rays in the interstellar medium. ApJ, 542(Oct.), 914–924.Google Scholar
Wilms, J., Reynolds, C. S., Begelman, M. C., Reeves, J., Molendi, S., Staubert, R., and Kendziorra, E. 2001. XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole?MNRAS, 328(Dec.), L27–L31.Google Scholar
Yamaoka, K., Ueda, Y., Inoue, H., Nagase, F., Ebisawa, K., Kotani, T., Tanaka, Y., and Zhang, S. N. 2001. ASCA Observation of the superluminal jet source GRO J1655-40 in the 1997 outburst. PASJ, 53(Apr.), 179–188.Google Scholar
Yaqoob, T., Murphy, K. D., Miller, L., and Turner, T. J. 2010. On the efficiency of production of theFeKa emission line in neutral matter. MNRAS, 401(Jan.), 411–417.Google Scholar
Young, A. J., Fabian, A. C., Ross, R. R., and Tanaka, Y. 2001. A complete relativistic ionized accretion disc in Cygnus X-1. MNRAS, 325(Aug.), 1045–1052.Google Scholar
Yu, W., and Yan, Z. 2009. State transitions in bright galactic X-ray binaries: luminosities span by two orders of magnitude. ApJ, 701 (Aug.), 1940–1957.Google Scholar
Zdziarski, A. A., Johnson, W. N., and Magdziarz, P. 1996. Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry. MNRAS, 283(Nov.), 193–206.Google Scholar
Zdziarski, A. A., Lubinski, P., and Smith, D. A. 1999. Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries. MNRAS, 303(Feb.), L11–L15.Google Scholar
Zdziarski, A. A., Misra, R., and Gierlińhski, M. 2010. Compton scattering as the explanation of the peculiar X-ray properties of Cyg X-3. MNRAS, 402(Feb.), 767–775.Google Scholar
Zhang, S. N., Cui, W., and Chen, W. 1997. Black hole spin in X-ray binaries: observational consequences. ApJL, 482(June), L155+.Google Scholar
Zycki, P. T., Done, C., and Smith, D. A. 1998. Evolution of the accretion flow in Nova MUSCAE 1991. ApJL, 496(Mar.), L25+.Google Scholar
Zycki, P. T., Done, C., and Smith, D. A. 1999. X-ray spectral evolution of GS 2023+338 (V404 Cyg) during decline after outburst. MNRAS, 305(May), 231–240.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×