Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-5bz6h Total loading time: 0.728 Render date: 2022-06-29T04:33:11.206Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Chapter 1 - Brain–behavior relationships: a reconsideration

Published online by Cambridge University Press:  05 May 2016

Christopher M. Filley
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Hajri, Z, Del Bigio, MR. Brain damage in a large cohort of solvent abusers. Acta Neuropathol 2010; 119: 435445.CrossRefGoogle Scholar
Alzheimer, A. Über eine eigenartige Erkankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie under Psychisch-Gerichtliche Medizin 1907; 64: 146148. (Trans. Jarvik L, Greenson H. Alzheimer Dis Assoc Disord 1987; 1: 3–8).Google Scholar
Aralasmak, A, Ulmer, JL, Kocak, M, et al. Association, commissural, and projection pathways and their functional deficit reported in literature. J Comput Assist Tomogr 2006; 30: 695715.CrossRefGoogle Scholar
Arnett, PA, Rao, SM, Hussain, M, et al. Conduction aphasia in multiple sclerosis: a case report with MRI findings. Neurology 1996; 47: 576578.CrossRefGoogle Scholar
Bartzokis, G. Brain myelination in prevalent neuropsychiatric developmental disorders: primary and comorbid addiction. Adolesc Psychiatry 2005: 29: 5596.Google ScholarPubMed
Bartzokis, G, Beckson, M, Lu, PH, et al. Age-related changes in frontal and temporal lobe volumes in men. Arch Gen Psychiatry 2001; 58: 461465.CrossRefGoogle ScholarPubMed
Bartzokis, G, Lu, PH, Tingus, K, et al. Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 2010; 31: 15541562.CrossRefGoogle ScholarPubMed
Benson, DF. The history of behavioral neurology. Neurol Clin 1993; 11: 18.Google ScholarPubMed
Bock, O. Cajal, Golgi, Nansen, Schäfer and the neuron doctrine. Endeavour 2013; 37: 228234.CrossRefGoogle ScholarPubMed
Bonelli, RM, Cummings, JL. Frontal-subcortical dementias. Neurologist 2008; 14: 100107.CrossRefGoogle ScholarPubMed
Catani, M, Thiebaut de Schotten, M, Slater, D, Dell’acqua, F. Connectomic approaches before the connectome. Neuroimage 2013; 80: 213.CrossRefGoogle ScholarPubMed
Damasio, AR. Behavioral neurology; research and practice. Semin Neurol 1984; 4: 117119.CrossRefGoogle Scholar
Del Bigio, MR. Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 2010; 16: 1622.CrossRefGoogle ScholarPubMed
Fields, RD. Imaging learning: the search for a memory trace. Neuroscientist 2011; 17: 185196.CrossRefGoogle Scholar
Filley, CM. Neurobehavioral anatomy. 3rd ed. Boulder: University Press of Colorado, 2011.Google Scholar
Filley, CM. The behavioral neurology of white matter. 2nd ed. New York: Oxford University Press, 2012.CrossRefGoogle ScholarPubMed
Filley, CM, Franklin, GM, Heaton, RK, Rosenberg, NL. White matter dementia: clinical disorders and implications. Neuropsychiatry Neuropsychol Behav Neurol 1988; 1: 239254.Google Scholar
Filley, CM, Halliday, W, Kleinschmidt-DeMasters, BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol 2004: 63: 112.CrossRefGoogle Scholar
Filley, CM, Kozora, E, Brown, MS, et al. White matter microstructure and cognition in non-neuropsychiatric systemic lupus erythematosus. Cogn Behav Neurol 2009; 22: 3844.CrossRefGoogle ScholarPubMed
Friederici, AD. White-matter pathways for speech and language processing. Handb Clin Neurol 2015; 129: 177186.CrossRefGoogle ScholarPubMed
Gall, FJ, Spurzheim, JK. Anatomie et physiologie de systeme nerveux en general et du cerveau en particular. Paris: Schoell, 1810–1818.Google Scholar
Geschwind, N. Disconnexion syndromes in animals and man. Brain 1965; 88: 237294, 585644.CrossRefGoogle Scholar
Gold, BT, Powell, DK, Andersen, AH, Smith, CD. Alterations in multiple measures of white matter integrity in normal women at high risk for Alzheimer’s disease. Neuroimage 2010; 52: 14871494.CrossRefGoogle Scholar
Goldberg, MP, Ransom, BR. New light on white matter. Stroke 2003; 34: 330332.CrossRefGoogle Scholar
Iannucci, G, Dichgans, M, Rovaris, M, et al. Correlations between clinical findings and magnetization transfer imaging metrics of tissue damage in individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2001; 32: 643648.CrossRefGoogle Scholar
Juhasz, C, Lai, C, Behen, ME, et al. White matter volume as a major predictor of cognitive function in Sturge-Weber syndrome. Arch Neurol 2007; 64: 11691174.CrossRefGoogle ScholarPubMed
Jung, RE, Brooks, WM, Yeo, RA, et al. Biochemical markers of intelligence: a proton MR spectroscopy study of normal human brain. Proc Biol Sci 1999; 266: 13751379.CrossRefGoogle Scholar
Kaiser, M. The potential of the human connectome as a biomarker of brain disease. Front Hum Neurosci 2013; 7: 484.CrossRefGoogle ScholarPubMed
Kandel, ER, Schwartz, JH, Jessell, TM, et al. Principles of neural science. 5th ed. New York: McGraw-Hill, 2013.Google Scholar
Kerchner, GA, Racine, CA, Hale, S, et al. Cognitive processing speed in older adults: relationship with white matter integrity. PloS One 2012; 7: e50425.CrossRefGoogle Scholar
Kochunov, P, Coyle, T, Lancaster, J, et al. Processing speed is correlated with cerebral health markers in the frontal lobes quantified by neuroimaging. Neuroimage 2010; 49: 11901199.CrossRefGoogle ScholarPubMed
Kurtzke, JF. Neurologic impairment in multiple sclerosis and the disability status scale. Acta Neurol Scand 1970; 46: 493512.CrossRefGoogle ScholarPubMed
Launer, LJ. Epidemiology of white matter lesions. Top Magn Reson Imaging 2004; 15: 365367.CrossRefGoogle ScholarPubMed
Luria, AR. Higher cortical functions in man. New York: Consultants Bureau, 1966.Google Scholar
Matejko, AA, Price, GR, Mazzocco, MM, Ansari, D. Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test. Neuroimage 2013; 66: 604610.CrossRefGoogle ScholarPubMed
Matute, C, Ransom, BR. Roles of white matter in central nervous system pathophysiologies. ASN Neuro 2012; 4. pii: e00079.CrossRefGoogle ScholarPubMed
Nolte, J. The human brain. 5th ed. St. Louis: Mosby, 2002.Google Scholar
Northam, GB, Liégeois, F, Chong, WK, et al. Total brain white matter is a major determinant of IQ in adolescents born preterm. Ann Neurol 2011; 69: 702711.CrossRefGoogle ScholarPubMed
Nunez, PL, Srinivasan, R, Fields, RD. EEG functional connectivity, axon delays and white matter disease. Clin Neurophysiol 2015; 126: 110120.CrossRefGoogle Scholar
Parkinson, C, Wheatley, T. Relating anatomical and social connectivity: white matter microstructure predicts emotional empathy. Cereb Cortex 2014; 24: 614625.CrossRefGoogle ScholarPubMed
Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 2009; 13: 354359.CrossRefGoogle ScholarPubMed
Penfield, W. The mystery of the mind. Princeton: Princeton University Press, 1975.Google Scholar
Querfurth, HW, LaFerla, FM. Alzheimer’s disease. N Engl J Med 2010; 362: 329344.CrossRefGoogle ScholarPubMed
Rao, SM, Leo, GJ, Bernardin, L, Unverzagt, F. Cognitive dysfunction in multiple sclerosis: I. Frequency, patterns, and prediction. Neurology 1991; 41: 685691.CrossRefGoogle ScholarPubMed
Sasson, E, Doniger, GM, Pasternak, O, et al. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging. Front Neurosci 2013; 7: 113.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Pandya, DN. Fiber pathways of the brain. New York: Oxford University Press, 2006.CrossRefGoogle Scholar
Schmahmann, JD, Smith, EE, Eichler, FS, Filley, CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 2008; 1142: 266309.CrossRefGoogle ScholarPubMed
Schoenemann, PT, Sheehan, MJ, Glotzer, LD. Prefrontal white matter is disproportionately larger in humans than in other primates. Nat Neurosci 2005; 8: 242252.CrossRefGoogle ScholarPubMed
Sporns, O. The human connectome: a complex network. Ann N Y Acad Sci 2011; 1224: 109125.CrossRefGoogle ScholarPubMed
Stadelmann, C, Albert, M, Wegner, C, Brück, W. Cortical pathology in multiple sclerosis. Curr Opin Neurol 2008; 21: 239234.CrossRefGoogle ScholarPubMed
Takeuchi, H, Taki, Y, Sassa, Y, Hashizume, H, et al. White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage 2010; 51: 1118.CrossRefGoogle ScholarPubMed
Toga, AW, Clark, KA, Thompson, PM, et al. Mapping the human connectome. Neurosurgery 2012; 71: 15.CrossRefGoogle Scholar
Turken, AU, Whitfield-Gabrieli, S, Bammer, R, et al. Cognitive speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 2008; 42: 10321044.CrossRefGoogle ScholarPubMed
Umarova, RM, Saur, D, Schnell, S, et al. Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex. 2010; 20: 121129.CrossRefGoogle Scholar
Van Zandvoort, MJ, Kappelle, LJ, Algra, A, De Haan, EH. Decreased capacity for mental effort after single supratentorial lacunar infarct may affect performance in everyday life. J Neurol Neurosurg Psychiatry 1998; 65: 697702.CrossRefGoogle ScholarPubMed
White, JG, Southgate, E, Thomson, JN, Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986; 314: 1340.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×