Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-l8tfn Total loading time: 0.673 Render date: 2022-06-29T11:08:51.205Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Chapter 14 - Alzheimer’s Disease and white matter

Published online by Cambridge University Press:  05 May 2016

Christopher M. Filley
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
White Matter Dementia , pp. 172 - 184
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adnan, A, Crawley, A, Mikulis, D, et al. Moderate-severe traumatic brain injury causes delayed loss of white matter integrity: evidence of fornix deterioration in the chronic stage of injury. Brain Inj 2013; 27: 14151422.CrossRefGoogle Scholar
Alves, GS, Oertel Knöchel, V, Knöchel, C, et al. Integrating retrogenesis theory to Alzheimer’s disease pathology: insight from DTI-TBSS investigation of the white matter microstructural integrity. Biomed Res Int 2015; 2015: 291658.CrossRefGoogle ScholarPubMed
Ashe, KH, Zahs, KR. Probing the biology of Alzheimer’s disease in mice. Neuron 2010; 66: 631645.CrossRefGoogle ScholarPubMed
Ball, SL, Holland, AJ, Hon, J, et al. Personality and behaviour changes mark the early stages of Alzheimer’s disease in adults with Down’s syndrome: findings from a prospective population-based study. Int J Geriatr Psychiatry 2006; 21: 661673.CrossRefGoogle ScholarPubMed
Barnes, DE, Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 2011; 10: 819828.CrossRefGoogle ScholarPubMed
Bartzokis, G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2011; 32: 13411371.CrossRefGoogle Scholar
Bartzokis, G, Beckson, M, Lu, PH, et al. Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58: 461465.CrossRefGoogle ScholarPubMed
Bateman, RJ, Xiong, C, Benzinger, TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367: 795804.CrossRefGoogle ScholarPubMed
Brickman, AM, Meier, IB, Korgaonkar, MS, et al. Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol Aging 2012a; 33: 16991715.CrossRefGoogle ScholarPubMed
Brickman, AM, Provenzano, FA, Muraskin, J, et al. Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer Disease in the community. Arch Neurol 2012b; 69: 16211627.CrossRefGoogle Scholar
Bufill, E, Blesa, R, Augustí, J. Alzheimer’s disease: an evolutionary approach. J Anthropol Sci 2013; 91: 135157.Google Scholar
Castellani, RJ, Lee, HG, Zhu, X, et al. Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol 2008; 67: 523531.CrossRefGoogle Scholar
Castellani, RJ, Lee, HG, Siedlak, SL, et al. Reexamining Alzheimer’s disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. J Alzheimers Dis 2009; 18: 447452.Google ScholarPubMed
Castellani, RJ, Smith, MA. Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is “too big to fail.” J Pathol 2011; 224: 147152.CrossRefGoogle Scholar
Castellani, RJ, Perry, G. The complexities of the pathology-pathogenesis relationship in Alzheimer disease. Biochem Pharmacol 2014; 88: 671676.CrossRefGoogle ScholarPubMed
Chen, Y, Chen, K, Zhang, J, et al. Disrupted functional and structural networks in cognitively normal elderly subjects with the APOE ɛ4 allele. Neuropsychopharmacology 2015; 40: 11811191.CrossRefGoogle ScholarPubMed
Chiang, GC, Zhan, W, Schuff, N, Weiner, MW. White matter alterations in cognitively normal apoE ε2 carriers: insight into Alzheimer resistance? AJNR 2012; 33: 13921397.CrossRefGoogle ScholarPubMed
Coleman, PD, Yao, PJ. Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 2003; 24: 10231027.CrossRefGoogle ScholarPubMed
Davis, DG, Schmitt, FA, Wekstein, DR, Markesbery, WR. Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 1999; 58: 376388.CrossRefGoogle ScholarPubMed
DeKosky, ST, Scheff, SW, Styren, SD. Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 1996; 5: 417421.CrossRefGoogle Scholar
de Leeuw, FE, de Groot, JC, Achten, E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study; the Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 2001; 70: 914.CrossRefGoogle ScholarPubMed
Doody, RS, Thomas, RG, Farlow, M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370: 311321.CrossRefGoogle ScholarPubMed
Emerson, JF, Kesslak, JP, Chen, PC, Lott, IT. Magnetic resonance imaging of the aging brain in Down syndrome. Prog Clin Biol Res 1995; 393: 123138.Google ScholarPubMed
Filley, CM. Alzheimer’s Disease prevention: new optimism. Neurol Clin Pract 2015; 5: 193200.CrossRefGoogle ScholarPubMed
Fletcher, E, Carmichael, O, Pasternak, O, et al. Early brain loss in circuits affected by Alzheimer’s Disease is predicted by fornix microstructure but may be independent of gray matter. Front Aging Neurosci 2014; 6: 106.CrossRefGoogle ScholarPubMed
Forette, F, Seux, ML, Staessen, JA, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med 2002; 162: 20462052.CrossRefGoogle ScholarPubMed
Fotuhi, M, Hachinski, V, Whitehouse, PJ. Changing perspectives regarding late-life dementia. Nat Rev Neurol 2009; 5: 649658.CrossRefGoogle Scholar
Gandy, S, DeKosky, ST. Toward the treatment and prevention of Alzheimer’s disease: rational strategies and recent progress. Annu Rev Med 2013; 64: 367383.CrossRefGoogle ScholarPubMed
Giuffrida, ML, Caraci, F, Pignataro, B, et al. Beta-amyloid monomers are neuroprotective. J Neurosci 2009; 29: 1058210587.CrossRefGoogle ScholarPubMed
Glabe, C. Biomedicine: avoiding collateral damage in Alzheimer’s disease treatment. Science 2006; 314: 602603.CrossRefGoogle Scholar
Glenner, GG, Wong, CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984a; 120: 885890.CrossRefGoogle ScholarPubMed
Glenner, GG, Wong, CW. Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984b; 122: 11311135.CrossRefGoogle ScholarPubMed
Gold, BT, Johnson, NF, Powell, DK, Smith, CD. White matter integrity and vulnerability to Alzheimer’s disease: preliminary findings and future directions. Biochim Biophys Acta 2012; 1822: 416422.CrossRefGoogle ScholarPubMed
Gorelick, PB, Scuteri, A, Black, SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011; 42: 26722713.CrossRefGoogle Scholar
Gunning-Dixon, FM, Raz, N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 2000; 14: 224232.CrossRefGoogle ScholarPubMed
Hall, AM, Roberson, ED. Mouse models of Alzheimer’s disease. Brain Res Bull 2012; 88: 312.CrossRefGoogle Scholar
Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 2009; 110: 11291134.CrossRefGoogle ScholarPubMed
Hardy, J, Selkoe, DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297: 353356.CrossRefGoogle Scholar
Hoe, HS, Lee, HK, Pak, DT. The upside of APP at synapses. CNS Neurosci Ther 2012; 18: 4756.CrossRefGoogle Scholar
Howard, KL, Filley, CM. Advances in genetic testing for Alzheimer’s disease. Rev Neurol Dis 2009; 6: 2632.Google ScholarPubMed
Hu, X, Hicks, CW, He, W, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 2006; 9: 15201525.CrossRefGoogle ScholarPubMed
Iqbal, K, Liu, F, Gong, CX. Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem Pharmacol 2014; 88: 631649.CrossRefGoogle Scholar
Jack, CR Jr, Knopman, DS, Jagust, WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010; 9: 119128.CrossRefGoogle ScholarPubMed
Kloppenborg, RP, Nederkoorn, PJ, Grool, AM, et al. Cerebral small-vessel disease and progression of brain atrophy: the SMART-MR study. Neurology 2012; 79: 20292036.CrossRefGoogle ScholarPubMed
Kloppenborg, RP, Nederkoorn, PJ, Geerlings, MI, van den Berg, E. Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology 2014; 82: 21272138.CrossRefGoogle ScholarPubMed
Klunk, WE, Engler, H, Nordberg, A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306319.CrossRefGoogle Scholar
Knopman, DS, Roberts, R. Vascular risk factors: imaging and neuropathologic correlates. J Alzheimers Dis 2010; 20: 699709.CrossRefGoogle ScholarPubMed
Koffie, RM, Hyman, BT, Spires-Jones, TL Alzheimer’s disease: synapses gone cold. Mol Neurodegener 2011; 6: 63.CrossRefGoogle ScholarPubMed
Koike, MA, Lin, AJ, Pham, J, et al. APP knockout mice experience acute mortality as the result of ischemia. PLoS One 2012; 7: e42665.CrossRefGoogle ScholarPubMed
Larson, EB, Yaffe, K, Langa, KM. New insights into the dementia epidemic. N Engl J Med 2013; 369: 22752277.CrossRefGoogle ScholarPubMed
Masters, CL, Simms, G, Weinman, NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci 1985; 82: 42454249.CrossRefGoogle ScholarPubMed
Min, SS, An, J, Lee, JH, et al. Neuregulin-1 prevents amyloid β-induced impairment of long-term potentiation in hippocampal slices via ErbB4. Neurosci Lett 2011; 505: 69.CrossRefGoogle ScholarPubMed
Monsell, SE, Mock, C, Hassenstab, J, Roe, CM, et al. Neuropsychological changes in asymptomatic persons with Alzheimer disease neuropathology. Neurology 2014; 83: 434440.CrossRefGoogle ScholarPubMed
Moudgil, SS, Azzouz, M, Al-Azzaz, A, et al. Amnesia due to fornix infarction. Stroke 2000; 31: 14181419.CrossRefGoogle ScholarPubMed
Nowrangi, MA, Rosenberg, PB. The fornix in mild cognitive impairment and Alzheimer’s disease. Front Aging Neurosci 2015 Jan 21; 7: 1.CrossRefGoogle ScholarPubMed
Oishi, K, Lyketsos, CG. Alzheimer’s disease and the fornix. Front Aging Neurosci 2014; 6: 241.CrossRefGoogle ScholarPubMed
Orgogozo, JM, Gilman, S, Dartigues, JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61: 4654.CrossRefGoogle Scholar
Palop, JJ, Chin, J, Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature 2006; 443: 768773.CrossRefGoogle ScholarPubMed
Pankonin, MS, Sohi, J, Kamholz, J, Loeb, JA. Differential distribution of neuregulin in human brain and spinal fluid. Brain Res 2009; 1258: 111.CrossRefGoogle Scholar
Parker, WD Jr, Parks, J, Filley, CM, Kleinschmidt-DeMasters, BK. Electron transport chain defects in Alzheimer’s disease brain. Neurology 1994; 44: 10901096.CrossRefGoogle ScholarPubMed
Petersen, RC, Smith, GE, Waring, SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303308.CrossRefGoogle ScholarPubMed
Plassman, BL, Havlik, RJ, Steffens, DC, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 2000; 55: 11581166.CrossRefGoogle ScholarPubMed
Powell, D, Caban-Holt, A, Jicha, G, et al. Frontal white matter integrity in adults with Down syndrome with and without dementia. Neurobiol Aging 2014; 35: 15621569.CrossRefGoogle Scholar
Prins, ND, Scheltens, P. Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimers Res Ther 2013; 5: 56.CrossRefGoogle Scholar
Prusiner, SB. Cell biology: a unifying role for prions in neurodegenerative diseases. Science 2012; 336: 15111513.CrossRefGoogle ScholarPubMed
Qiu, C, Kivipelto, M, von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11: 111128.Google ScholarPubMed
Querfurth, HW, LaFerla, FM. Alzheimer’s disease. N Engl J Med 2010; 362: 329344.CrossRefGoogle Scholar
Radanovic, M, Pereira, FR, Stella, F, et al. White matter abnormalities associated with Alzheimer’s disease and mild cognitive impairment: a critical review of MRI studies. Expert Rev Neurother 2013; 13: 483493.CrossRefGoogle ScholarPubMed
Rapoport, SI, Nelson, PT. Biomarkers and evolution in Alzheimer disease. Prog Neurobiol 2011; 95: 510513.CrossRefGoogle ScholarPubMed
Ready, RE, Baran, B, Chaudhry, M, et al. Apolipoprotein E-e4, processing speed, and white matter volume in a genetically enriched sample of midlife adults. Am J Alzheimers Dis Other Demen 2011; 26: 463468.CrossRefGoogle Scholar
Reitz, C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012; 2012: 369808.Google ScholarPubMed
Ringman, JM, O’Neill, J, Geschwind, D, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 2007; 130: 17671776.CrossRefGoogle Scholar
Roberts, GW, Gentleman, SM, Lynch, A, et al. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994; 57: 419425.CrossRefGoogle ScholarPubMed
Roth, G, Dicke, U. Evolution of the brain and intelligence. Trends Cogn Sci 2005; 9: 250257.CrossRefGoogle ScholarPubMed
Ryan, L, Walther, K, Bendlin, BB, et al. Age-related differences in white matter integrity and cognitive function are related to APOE status. Neuroimage 2011; 54: 15651577.CrossRefGoogle ScholarPubMed
Sachdev, PS, Parslow, R, Wen, W, et al. Sex differences in the causes and consequences of white matter hyperintensities. Neurobiol Aging 2009; 30: 946956.CrossRefGoogle ScholarPubMed
Sachdev, PS, Zhuang, L, Braidy, N, Wen, W. Is Alzheimer’s a disease of the white matter? Curr Opin Psychiatry 2013; 26: 244251.CrossRefGoogle ScholarPubMed
Salat, DH. Imaging small vessel–associated white matter changes in aging. Neuroscience 2014; 276: 174186.CrossRefGoogle Scholar
Salloway, S, Sperling, R, Fox, NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370: 322333.CrossRefGoogle Scholar
Santos, RX, Correia, SC, Zhu, X, et al. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid Redox Signal 2013; 18: 24442457.CrossRefGoogle ScholarPubMed
Sarantseva, S, Timoshenko, S, Bolshakova, O, et al. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer’s disease. PLoS One 2009; 4: e8191.CrossRefGoogle Scholar
Schenk, D, Barbour, R, Dunn, W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400: 173177.CrossRefGoogle ScholarPubMed
Schmitt, FA, Davis, DG, Wekstein, DR, et al. “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 2000; 55: 370376.CrossRefGoogle ScholarPubMed
Schoenemann, PT, Sheehan, MJ, Glotzer, LD. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 2005; 8: 242252.CrossRefGoogle ScholarPubMed
Silbert, LC, Dodge, HH, Perkins, LG, et al. Trajectory of white matter hyperintensity burden preceding mild cognitive impairment. Neurology 2012; 79: 741747.CrossRefGoogle Scholar
Smaers, JB, Schleicher, A, Zilles, K, Vinicius, L. Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS One 2010; 5: e9123.CrossRefGoogle ScholarPubMed
Stephan, BC, Hunter, S, Harris, D, et al. The neuropathological profile of mild cognitive impairment (MCI): a systematic review. Mol Psychiatry 2012; 17: 10561076.CrossRefGoogle ScholarPubMed
Tanzi, RE, Gusella, JF, Watkins, PC, et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 1987; 235: 880884.CrossRefGoogle Scholar
Terry, RD, Masliah, E, Salmon, DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572580.CrossRefGoogle ScholarPubMed
Thies, W, Bleiler, L, Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 2013; 9: 208245.Google Scholar
Thomas, AG, Koumellis, P, Dineen, RA. The fornix in health and disease: an imaging review. Radiographics 2011; 31: 11071121.CrossRefGoogle Scholar
Tosto, G, Reitz, C. Genome-wide association studies in Alzheimer’s disease: a review. Curr Neurol Neurosci Rep 2013; 13: 381.CrossRefGoogle ScholarPubMed
Tran, HT, LaFerla, FM, Holtzman, DM, Brody, DL. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci. 2011; 31: 95139525.CrossRefGoogle ScholarPubMed
Tyrrell, J, Cosgrave, M, McCarron, M, et al. Dementia in people with Down’s syndrome. Int J Geriatr Psychiatry 2001; 16: 11681174.CrossRefGoogle ScholarPubMed
Vandenberghe, R, Adamczuk, K, Dupont, P, et al. Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimer’s disease. Neuroimage Clin 2013; 2: 497511.CrossRefGoogle ScholarPubMed
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 2014; 6: 89.CrossRefGoogle ScholarPubMed
Vitek, MP, Christensen, DJ, Wilcock, D, et al. APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener Dis 2012; 10: 122126.CrossRefGoogle ScholarPubMed
Whitehouse, PJ. The end of Alzheimer’s disease – from biochemical pharmacology to ecopsychosociology: a personal perspective. Biochem Pharmacol 2014; 88: 677681.CrossRefGoogle ScholarPubMed
Woo, RS, Lee, JH, Kim, HS, et al. Neuregulin-1 protects against neurotoxicities induced by Swedish amyloid precursor protein via the ErbB4 receptor. Neuroscience 2012; 202: 413423.CrossRefGoogle Scholar
Xia, CF, Arteaga, J, Chen, G, et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 2013; 9: 666676.CrossRefGoogle ScholarPubMed
Zhang, K, Sejnowski, TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci 2000; 97: 56215626.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×