We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Whitehead, A. N., Introduction to Mathematics. Henry Holt and Company, New York, 1911.Google Scholar
[2]
Falk, R. and Konold, C., “Making sense of randomness: implicit encoding as a basis for judgment,” Psychological Review, vol. 104, no. 2, pp. 301–318, 1997.CrossRefGoogle Scholar
[3]
Dehaene, S., The Number Sense: How the Mind Creates Mathematics. Oxford University Press, New York, 2011.Google Scholar
[4]
Poincaré, H., “Sur le probléme des trois corps et les équations de la dynamique,” Acta Mathematica, vol. 13, pp. A3–A270, 1890.Google Scholar
[5]
Steinhardt, P. J., The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter. Simon and Schuster, New York, 2018.Google Scholar
[6]
Torquato, S., “Hyperuniform states of matter,” Physics Reports, vol. 745, pp. 1–95, 2018.CrossRefGoogle Scholar
[7]
Allouche, J. P. and Shallit, J. O., Automatic Sequences: Theory, Applications,Generalizations. Cambridge University Press, New York, 2009.Google Scholar
[8]
Schroeder, M., Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity. Springer-Verlag, Berlin, 2009.Google Scholar
[9]
Dal Negro, L., Chen, Y., and Sgrignuoli, F., “Aperiodic photonics of elliptic curves,” Crystals, vol. 9, pp. 482–509, 2019.CrossRefGoogle Scholar
[10]
Sgrignuoli, F., Gorsky, S., Britton, W. A., Zhang, R., Riboli, F., and Dal Negro, L., “Multi-fractality of light in photonic arrays based on algebraic number theory,” Communications Physics, vol. 3, pp. 1–9, 2020.CrossRefGoogle Scholar
[11]
Janot, C., Quasicrystals: A Primer. Oxford University Press, Oxford, 1994.Google Scholar
[12] de Lange, C. and Janssen, T., “Incommensurability and recursivity: lattice dynamics of modulated crystals,” Journal of Physics C: Solid State Physics, vol. 14, no. 34, pp. 5269–5292, December 1981. [Online]. Available: https://doi.org/10.1088%2F0022–3719%2F14%2F34%2F009CrossRefGoogle Scholar
[14] Harper, P. G., “The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals,” Proceedings of the Physical Society. Section A, vol. 68, no. 10, pp. 879–892, October 1955. [Online]. Available: https://doi .org/10.1088%2F0370–1298%2F68%2F10%2F305CrossRefGoogle Scholar
[16] Wang, R., Röntgen, M., Morfonios, C. V., Pinheiro, F. A., Schmelcher, P., and Dal Negro, L., “Edge modes of scattering chains with aperiodic order,” Optics Letters, vol. 43, no. 9, pp. 1986–1989, May 2018. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-43-9-1986CrossRefGoogle ScholarPubMed
[18] Baboux, F., Levy, E., Lemaître, A., et al., “Measuring topological invariants from generalized edge states in polaritonic quasicrystals,” Physics Review B, vol. 95, p. 161-114, April 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB .95.161114CrossRefGoogle Scholar
[19]
Abe, S. and Hiramoto, H., “Fractal dynamics of electron wave packets in one-dimensional quasiperiodic systems,” Physics Review A, vol. 36, pp. 5349–5352, 1987.CrossRefGoogle ScholarPubMed
[20]
Ketzmerick, R., Kruse, K., Kraut, S., and Geisel, T., “What determines the spreading of a wave packet?” Physical Review Letters, vol. 79, pp. 1959–1963, 1997.CrossRefGoogle Scholar
Dal Negro, L. and Inampudi, S., “Fractional transport of photons in deterministic aperiodic structures,” Scientific Reports, vol. 7, no. 1, p. 2259, 2017.CrossRefGoogle ScholarPubMed
[23]
Gardner, M., Penrose Tiles to Trapdoor Ciphers. W. H. Freeman, New York, 1989.Google Scholar
[24]
Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed. Springer, Berlin, 2006.Google Scholar
[25]
Akkermans, E. and Montambaux, G., Mesoscopic Physics of Electrons and Photons. Cambridge University Press, New York, 2007.CrossRefGoogle Scholar
[26]
Joannopoulos, J. D., Johnson, S. G., Winn, J. N., and Meade, R. D., Photonic Crystals: Molding the Flow of Light, 2nd ed. Princeton University Press, Princeton, 2008.Google Scholar
[27]
Sakoda, K., Optical Properties of Photonic Crystals, 2nd ed. Springer, Berlin, 2005.CrossRefGoogle Scholar
[28]
Brillouin, L., Wave Propagation in Periodic Structures. McGraw-Hill, New York, 1946.Google Scholar
Chandrasekhar, S., Radiative Transfer. Dover, New York, 1960.Google Scholar
[31]
Anderson, P. W., “Absence of diffusion in certain random lattices,” Physical Review, vol. 109, pp. 1492–1505, 1958.CrossRefGoogle Scholar
[32]
Anderson, P. W., “The question of classical localization: a theory of white paint?” Phylosophical Magazine B, vol. 52, no. 3, pp. 505–509, 1985.CrossRefGoogle Scholar
[33]
Kuga, Y. and Ishimaru, A., “Retroreflectance from a dense distribution of spherical particles,” Journal of the Optical Society of America A, vol. 1, p. 831, 1984.CrossRefGoogle Scholar
[34]
van Albada, M. P. and Lagendijk, A., “Observation of weak localization of light in a random medium,” Physical Review Letters, vol. 55, p. 2692, 1985.Google Scholar
[35]
Wolf, P. and Maret, G., “Weak localization and coherent backscattering of photons in disordered media,” Physical Review Letters, vol. 55, p. 2696, 1985.CrossRefGoogle ScholarPubMed
[36]
John, S., “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Physical Review Letters, vol. 53, p. 2169, 1984.CrossRefGoogle Scholar
[37]
Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., “Metallic phase with long-range orientational order and no tranlsational symmetry,” Physical Review Letters, vol. 53, pp. 1951–1953, 1984.CrossRefGoogle Scholar
[38]
Levine, D. and Steinhardt, P. J., “Quasicrystals: a new class of ordered structures,” Physical Review Letters, vol. 26, pp. 2477–2480, 1984.CrossRefGoogle Scholar
[39]
Senechal, M., Quasicrystals and Geometry. Cambridge University Press, Cambridge, 1995.Google Scholar
[40]
Janssen, T., Chapuis, G., and de Boissieu, M., Aperiodic Crystals: From Modulated Phases to Quasicrystals. Oxford University Press, Oxford, 2007.CrossRefGoogle Scholar
[41]
Merlin, R., Bajema, K., Clarke, R., Juang, F. Y., and Bhattacharya, P. K., “Quasiperiodic GaAs-AIAs heterostructures,” Physical Review Letters, vol. 55, pp. 1768–1770, 1985.CrossRefGoogle ScholarPubMed
[42]
Kohmoto, B., Sutherland, H., and Iguchi, K., “Localization of optics: quasiperiodic media,” Physical Review Letters, vol. 58, p. 2436, 1987.CrossRefGoogle ScholarPubMed
[43]
Born, M. and Wolf, E., Principles of Optics, 7th ed. Cambridge University Press, Cambridge, 1999.CrossRefGoogle Scholar
Kohmoto, M., Kadanoff, L. P., and Tang, C., “Localization problem in one dimension: mapping and escape,” Physical Review Letters, vol. 50, pp. 1870–1872, 1983.CrossRefGoogle Scholar
Gellerman, W., Kohmoto, M., Sutherland, B., and Taylor, P. C., “Localization of light waves in fibonacci dielectric multilayers,” Physical Review Letters, vol. 72, pp. 633–636, 1994.CrossRefGoogle Scholar
[48]
Schreiber, M. and Grussbach, H., “Multifractal wave functions at the Anderson transition,” Physical Review Letters, vol. 67, no. 5, pp. 607–610, 1991.CrossRefGoogle ScholarPubMed
Kolar, M., Ali, M. K., and Nori, F., “Generalized Thue–Morse chains and their physical properties,” Physical Review B, vol. 43, pp. 1034–1047, 1991.CrossRefGoogle Scholar
Dal Negro, L., Stolfi, M., Yi, Y., et al., “Photon band gap properties and omnidirectional reflectance in Si/SiO Thue–Morse quasicrystals,” Applied Physics Letters, vol. 84, no. 25, pp. 5186–5188, 2004.CrossRefGoogle Scholar
[56] Jiang, X., Zhang, Y., Feng, S., Huang, K. C., Yi, Y., and Joannopoulos, J. D., “Photonic band gaps and localization in the Thue–Morse structures,” Applied Physics Letters, vol. 86, no. 20, p. 201110, 2005. [Online]. Available: https://doi.org/10.1063/1.1928317CrossRefGoogle Scholar
Kohmoto, M., Sutherland, B., and Tang, C., “Critical wave functions and a cantorset spectrum of a one-dimensional quasicrystal model,” Physical Review B, vol. 35, pp. 1020–1033, 1987.CrossRefGoogle Scholar
[60] Baake, M., Grimm, U., and Joseph, D., “Trace maps, invariants, and some of their applications,” International Journal of Modern Physics B, vol. 07, no. 06n07, pp. 1527–1550, 1993. [Online]. Available: https://doi.org/10.1142/S021797929300247XCrossRefGoogle Scholar
Esaki, K., Sato, M., and Kohmoto, M., “Wave propagation through Cantor-set media: chaos, scaling, and fractal structures,” Physical Review E, vol. 79, p. 056226, 2009.CrossRefGoogle ScholarPubMed
Maciá, E. and Domínguez-Adame, F., “Physical nature of critical wave functions in Fibonacci systems,” Physical Review Letters, vol. 76, pp. 2957–2960, 1997.CrossRefGoogle Scholar
[67] Ferralis, N., Szmodis, A. W., and Diehl, R. D., “Diffraction from one- and two-dimensional quasicrystalline gratings,” American Journal of Physics, vol. 72, no. 9, pp. 1241–1246, 2004. [Online]. Available: https://doi.org/10.1119/1.1758221CrossRefGoogle Scholar
[68] Hattori, T., Tsurumachi, N., Kawato, S., and Nakatsuka, H., “Photonic dispersion relation in a one-dimensional quasicrystal,” Physical Review Letters, B, vol. 50, pp. 4220–4223, August 1994. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.50.4220Google Scholar
[69]
Noh, H., Yang, J., Boriskina, S. V., et al., “Lasing in Thue–Morse structures with optimized aperiodicity,” Applied Physics Letters, vol. 98, p. 201109, 2011.CrossRefGoogle Scholar
[70]
Dal Negro, L., Optics of Aperiodic Structures: Fundamentals and Device Applications. Pan Stanford Publishing, Singapore, 2014.Google Scholar
[71]
Dal Negro, L. and Boriskina, S. V., “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Review, vol. 6, pp. 1–41, 2011.Google Scholar
[72]
Vardeny, Z. V., Nahata, A., and Agrawal, A., “Optics of photonic quasicrystals,” Nature Photonics, vol. 7, pp. 177–187, 2013.CrossRefGoogle Scholar
[73]
Steurer, W. and Sutter-Widmer, D., “Photonic and phononic quasicrystals,” Journal of Physics D: Applied Physics, vol. 40, pp. R229–R247, 2007.CrossRefGoogle Scholar
[74]
Lifshitz, R., Arie, A., and Bahabad, A., “Photonic quasicrystals for nonlinear optical frequency conversion,” Physical Review Letters, vol. 95, p. 133901, 2005.CrossRefGoogle ScholarPubMed
[75]
Wiersma, D. S., “Disordered photonics,” Nature Photonics, vol. 7, pp. 188–196, May 2013.CrossRefGoogle Scholar
[76]
Pauli, W., Theory of Relativity. Dover Publications, New York, 1958.Google Scholar
[77]
Messiah, A., Quantum Mechanics. Dover Publications, New York, 1999.Google Scholar
[78]
Saleh, B. E. A. and Teich, M. C., Fundamentals of Photonics, 2nd ed. John Wiley, Hoboken, 2007.Google Scholar
[79]
Yariv, A. and Pochi, Y., Photonics: Optical Electronics in Modern Communications, 6th ed. Oxford University Press, New York, 2007.Google Scholar
[80] Maxwell, J. C., “On physical lines of force,” Philosophical Magazine, vol. 21 (parts I and II) and 23 (parts III and IV), pp. 1–48, 1861–1862.Google Scholar
[81]
Faraday, M., Experimental Researches in Electricity. Dover Publications, New York, 1965.Google Scholar
[82]
Jackson, J. D., Classical Electrodynamics, 3rd ed. John Wiley, 1998.Google Scholar
[83]
Garg, A., Classical Electromagnetism in a Nutshell. Princeton University Press, Princeton, 2012.Google Scholar
[84]
Jackson, J. D., “From Lorenz to Coulomb and other explicit gauge transformations,” American Journal of Physics, vol. 70, p. 917, 2002.CrossRefGoogle Scholar
[85]
Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G., Photons and Atoms.Introduction to Quantum Electrodynamics. Wiley-VCH, Strauss GmbH, Morlenbach2004.Google Scholar
[86]
Brill, O. L. and Goodman, B., “Causality in the Coulomb Gauge,” American Journal of Physics, vol. 35, pp. 832–837, 1967.CrossRefGoogle Scholar
[87]
Scully, M. O. and Zubairy, M. S., Quantum Optics. Cambridge University Press, Cambridge, 2002.Google Scholar
[88]
Mandel, L. and Wolf, E., Optical Coherence and Quantum Optics. Cambridge University Press, New York, 1995.CrossRefGoogle Scholar
[89]
Courant, R. and Hilbert, D., Methods of Mathematical Physics, 6th ed., vols. 1–2. Interscience Publishers, New York, 1966.Google Scholar
[90]
Newton, R. G., Scattering Theory of Waves and Particles. Dover Publications, New York, 2002.Google Scholar
[91]
Zettili, N., Quantum Mechanics: Concepts and Applications, 2nd ed. John Wiley, UK, 2009.Google Scholar
[92]
Novotny, L. and Hecht, B., Principles of Nano-Optics, 2nd ed. Cambridge University Press, New York, 2012.CrossRefGoogle Scholar
[93]
Robinson, F. N. H., Macroscopic Electromagnetism, 3rd ed. Pergamon Press, Oxford, 1973.Google Scholar
[94]
Landau, E. M., Lifshitz, E. M., and Pitaevskii, L. P., Electrodynamics of Continuous Media. Elsevier, Amsterdam, 1984.Google Scholar
[95]
Shen, Y. R., The Principles of Nonlinear Optics. John Wiley, Menlo Park, 1984.Google Scholar
[96]
Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lectures on Physics,vol.2. Addison-Wesley, Palo Alto, 1964.CrossRefGoogle Scholar
[97]
Maier, S. A., Plasmonics: Fundamentals and Applications. Springer, New York, 2007.CrossRefGoogle Scholar
[98]
Shahbazyan, T. V. and Stockman, M. I., Plasmonics: Theory and Applications. Springer, Dordrecht, 2013.CrossRefGoogle Scholar
[99]
Brongersma, M. L. and Kik, P. G., Surface Plasmon Nanophotonics. Springer, 2007.CrossRefGoogle Scholar
[100]
Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, 2nd ed. IEEE Press, New York, 1993.Google Scholar
[101]
Chew, W. C., Waves and Fields in Inhomogeneous Media. IEEE Press, New York, 1995.Google Scholar
[102]
Bladel, J., “Some remarks on green’s dyadic for infinite space,” IEEE Transactions on Antennas and Propagation, vol. AP-9, pp. 563–566, 1961.CrossRefGoogle Scholar
[103]
Harrington, R. F., Field Computation by Moment Methods. Macmillan, New York, 1968.Google Scholar
[104] Livesay, D. and Chen, K., “Electromangetic fields induced inside arbitrarily shaped biological bodies,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-22, no. 12, pp. 1273–1280, 1974.CrossRefGoogle Scholar
[105]
van Bladel, J., Electromagnetic Fields, 2nd ed. IEEE Press and John Wiley, Hoboken, 2007.CrossRefGoogle Scholar
[106]
van Bladel, J., Singular Electromagnetic Fields and Sources. IEEE Press, Piscataway, 1991.Google Scholar
[107]
Rubinacci, G. and Tamburrino, A., “A broadband volume integral formulation based on edge-elements for full-wave analysis of lossy interconnects,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 10, pp. 2977–2989, 2006.CrossRefGoogle Scholar
[108]
Miano, G., Rubinacci, G., and Tamburrino, A., “Numerical modelling of the interaction of nanoparticles with electromagnetic waves,” Compel, vol. 26, no. 3, pp. 586–599, 2007.CrossRefGoogle Scholar
[109]
Miano, G., Rubinacci, G., and Tamburrino, A., “Numerical modeling for the analysis of plasmon oscillations in metallic nanoparticles,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 9, pp. 2920–2933, 2010.CrossRefGoogle Scholar
[110]
Dal Negro, L., Miano, G., Rubinacci, G., Tamburrino, A., and Ventre, S., “A fast computation method for the analysis of an array of metallic nanoparticles,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1618–1621, 2009.CrossRefGoogle Scholar
[111]
Lorentz, H. A., The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, 2nd ed. Stechert and Co, New York, 1916.Google Scholar
[112]
Johnson, P. B. and Christy, R. W., “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972.CrossRefGoogle Scholar
[113]
Peskin, M. E. and Schroeder, D. V., An Introduction to Quantum Field Theory. Westview Press, Boulder, 1995.Google Scholar
[114]
Landau, L. D., “Über die bewegung der elektronen in kristallgitter,” Zeitschrift fur Physik Sowjetunion, vol. 3, pp. 644–645, 1933.Google Scholar
[115]
Mattuck, R. D., A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed. Dover Publications, New York, 1976.Google Scholar
[116]
Grosso, G. and Pastori Parravicini, G., Solid State Physics, 2nd ed. Academic Press, Oxford, 2014.Google Scholar
[117]
Haug, H. and Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. World Scientific Publishing, Singapore, 2004.CrossRefGoogle Scholar
[118]
Agranovich, V. M. and Ginzburg, V. L., Crystal Optics with Spatial Dispersion and Excitons. Springer Verlag, Berlin, 1984.CrossRefGoogle Scholar
[119]
Homola, J., Yee, S. S., and Gauglitz, G., “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vol. 54, pp. 3–15, 1999.CrossRefGoogle Scholar
[120]
Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
[121]
Palik, E. D., Handbook of Optical Constants. Academic Press, Orlando, 1985.Google Scholar
[122]
McPeak, K. M., Jayanti, S. V., Kress, J. P., et al., “Plasmonic films can easily be better: rules and recipes,” ACS Photonics, vol. 2, no. 12, pp. 326–333, 2015.CrossRefGoogle ScholarPubMed
[123]
Sihvola, A., Electromagnetic Mixing Formulas and Applications. Institution on Engineering and Technology, London, 2008.Google Scholar
[124]
Maxwell-Garnett, J. C., “Colours in metal glasses and in metallic films,” Philosophical Transactions of the Royal Society Series A, vol. 203, pp. 385–420, 1904.Google Scholar
[125]
Bruggeman, D. A. G., “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Annals of Physics, vol. 416, pp. 636–664, 1935.CrossRefGoogle Scholar
[126] Mallet, P., Guérin, C. A., and Sentenac, A., “Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Physical Review B, vol. 72, pp. 014 205–1–014 205–9, 2005.CrossRefGoogle Scholar
[127]
Draine, B. T., “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophysical Journal, vol. 333, pp. 848–872, 1988.CrossRefGoogle Scholar
[128]
Tsang, L., Kong, J. A., and Shin, R. T., Theory of Microwave Remote Sensing. John Wiley and Sons, New York, 1985.Google Scholar
[129]
Tsang, L. and Kong, J. A., “Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism,” Journal of Applied Physics, vol. 51, pp. 3465–3485, 1980.CrossRefGoogle Scholar
[130]
Frisch, V., Wave Propagation in Random Medium, in Probabilistic Methods in Applied Mathematics, vol. 1, Bharuch-Reid Ed. Academic Press, New York, 1968.Google Scholar
[131]
Guérin, C. A., Mallet, P., and Sentenac, A., “Effective-medium theory for finite-size aggregates,” Journal of the Optical Society of America A, vol. 23, pp. 349–358, 2006.CrossRefGoogle ScholarPubMed
[132]
Tsang, L., Kong, J. A., and Ding, K., Scattering of Electromangetic Waves, vol. III. John Wiley, New York, 2000.Google Scholar
[133]
Wu, Y., Li, J., Zhang, Z., and Chan, C. T., “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Physical Review B, vol. 74, no. 085111, pp. 1–9, 2006.CrossRefGoogle Scholar
[134]
Slovick, B. A., Yu, Z. G., and Krishnamurthy, S., “Generalized effective-medium theory for metamaterials,” Physical Review B, vol. 89, no. 155118, pp. 1–5, 2014.CrossRefGoogle Scholar
[135] Torquato, S. and Kim, J., Nonlocal Effective Electromagnetic Wave Characteristics of Composite Media: Beyond the Quasistatic Regime, Phys. Rev. X 11, 021002–2021.CrossRefGoogle Scholar
[136] Rechtsman, M. C. and Torquato, S., “Effective dielectric tensor for electromagnetic wave propagation in random media,” Journal of Applied Physics, vol. 103, no. 8, p. 084901, 2008. [Online]. Available: https://doi.org/10.1063/1.2906135CrossRefGoogle Scholar
[137]
Chen, Y., Lu, L., Karniadakis, G. E., and Dal Negro, L., “Physics-informed neural networks for inverse problems in nano-optics and metamaterials,” Optics Express, vol. 28, no. 8, pp. 11618–11633, 2020.CrossRefGoogle ScholarPubMed
[138]
Solymar, L. and Shamonina, E., Waves in Metamaterials. Oxford University Press, 2009.Google Scholar
[139]
Shalaev, V. M. and Sarychev, A. K., Electrodynamics of Metamaterials. World Scientific, 2007.Google Scholar
[140]
Engheta, N. and Ziolkowski, R. W., Metamaterials.Physics and Engineering Explorations. John Wiley and IEEE Press, Canada, 2006.CrossRefGoogle Scholar
[141] Silveirinha, M. and Engheta, N., “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials,” Physical Review Letters, vol. 97, no. 157403, 2006.CrossRefGoogle Scholar
Shelby, R. A., Smith, D. R., and Schultz, S., “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, 2001.CrossRefGoogle ScholarPubMed
[144]
Pendry, J. B., “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, pp. 3966–3969, 2000.CrossRefGoogle ScholarPubMed
[145]
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, pp. 4184–4187, 2000.CrossRefGoogle ScholarPubMed
[146]
Veselago, V. G., “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, 1967.CrossRefGoogle Scholar
[147]
Bose, J. C., “On the rotation of plane of polarization of electric waves by a twisted structure,” Proceedings of the Royal Society, vol. 63, pp. 146–152, 1898.Google Scholar
[148]
Forestiere, C., Pasquale, A. J., Capretti, A., et al., “Genetically optimized plasmonic nanoarrays,” Nano Letters, vol. 12, no. 4, pp. 2037–2044, 2012.CrossRefGoogle ScholarPubMed
[149]
Dong, Y. and Liu, S., “Topology optimization of patch-typed left-handed metamaterial configurations for transmission performance within the radio frequency band based on the genetic algorithm,” Journal of Optics, vol. 14, no. 105101, pp. 1–9, 2012.CrossRefGoogle Scholar
[150]
Della Giavampaola, C. and Engheta, N., “Digital metamaterials,” Nature Materials, vol. 13, pp. 1115–1121, 2014.CrossRefGoogle Scholar
[151]
Cui, T. J., Qi, M. Q., Zhao, J., and Cheng, Q., “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Science and Applications, vol. 3, no. 218, pp. 1–9, 2014.CrossRefGoogle Scholar
[152]
Whitham, G. B., Linear and Nonlinear Waves. John Wiley and Sons, Hoboken, 1999.CrossRefGoogle Scholar
[153]
Ostrovsky, L. A. and Potapov, A. I., Modulated Waves.Theory and Applications. Johns Hopkins University Press, Baltimore, 1999.Google Scholar
[154]
Murphy, P. K., Machine Learning.A Probabilistic Perspective. MIT Press, Cambridge, 2012.Google Scholar
[155]
Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning. MIT Press, Cambridge, 2016.Google Scholar
[156]
Funahashi, K., “On the approximate realization of continuous mappings by neural networks,” Neural Networks, vol. 2, pp. 183–192, 1989.CrossRefGoogle Scholar
[157]
Hornik, K., Stinchcombe, M., and White, H., “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.CrossRefGoogle Scholar
[158]
Haykin, S., Neural Networks and Learning Machines, 3rd ed. Pearson, New York, 2009.Google Scholar
[159] Sun, Y., Xia, Z., and Kamilov, U. S., “Efficient and accurate inversion of multiple scattering with deep learning,” Optics Express, vol. 26, no. 11, pp. 14 678–14 688, 2018.CrossRefGoogle ScholarPubMed
[160]
Sanghvi, Y., Kalepu, Y., and Khankhoje, U. K., “Embedding deep learning in inverse scattering problems,” IEEE Transactions on Computational Imaging, vol. 6, pp. 46–56, 2019.CrossRefGoogle Scholar
[161]
Raissi, M., Perdikaris, P., and Karniadakis, G. E., “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.CrossRefGoogle Scholar
[162]
Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E., “Deepxde: a deep learning library for solving differential equations,” eprint arXiv:1907.04502, 2019.Google Scholar
[163]
Sommerfeld, A., Optics, vol.4,Lectures on Theoretical Physics. Academic Press, New York, 1954.Google Scholar
[164]
Wang, A. and Prata, A. J., “Lenslet analysis by rigorous vector diffraction theory,” Journal of the Optical Society of America A, vol. 12, no. 5, pp. 1161–1169, 1995.CrossRefGoogle Scholar
[165]
Marathay, A. S. and McCalmont, J. F., “Vector diffraction theory for electromagnetic waves,” Journal of the Optical Society of America A, vol. 18, no. 10, pp. 2585–2593, 2001.CrossRefGoogle ScholarPubMed
[166]
Braat, J. and Török, P., Imaging Optics. Cambridge University Press, Cambridge, 2019.CrossRefGoogle Scholar
[167]
Török, P., Munro, P. R. T., and Kriezis, E. E., “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” Journal of the Optical Society of America A, vol. 23, no. 3, pp. 713–722, 2006.CrossRefGoogle ScholarPubMed
[168]
Hsu, W. and Barakat, R., “Stratton-chu vectorial diffraction of electromangetic fields by apertures with application to small-fresnel-number systems,” Journal of the Optical Society of America A, vol. 11, no. 2, pp. 623–629, 1994.CrossRefGoogle Scholar
[169]
Kim, J., Wang, Y., and Zhang, X., “Calculation of vectorial diffraction in optical systems,” Journal of the Optical Society of America A, vol. 35, no. 4, pp. 526–535, 2018.CrossRefGoogle ScholarPubMed
[170]
Bethe, H., “Theory of diffraction by small holes,” Physical Review, vol. 66, pp. 163–182, 1944.CrossRefGoogle Scholar
[171]
Kirchhoff, G., “Zur theorie der lichtstrahlen,” Weidemann Ann., vol. 2, no. 18, pp. 663–695, 1883.Google Scholar
[172]
Mukunda, N., “Consistency of Rayleigh’s diffraction formulas with Kirchhoff’s boundary conditions,” Journal of the Optical Society of America, vol. 52, no. 3, pp. 336–337, 1962.CrossRefGoogle Scholar
[173]
Goodman, J. W., Introduction to Fourier Optics, 4th ed. W. H. Freeman, New York, 2017.Google Scholar
[174]
Stark, H., Applications of Optical Fourier Transforms. Academic Press, New York, 1982.Google Scholar
[175]
Balanis, C. A., Antenna Theory, 4th ed. John Wiley, Hoboken2016.Google Scholar
[176]
Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., et al., “Photonic floquet topological insulators,” Nature, vol. 496, pp. 196–200, 2013.CrossRefGoogle ScholarPubMed
[177]
Stützer, S., Plotnik, Y., Lumer, Y., et al. “Photonic topological Anderson insulators,” Nature, vol. 560, no. 7719, pp. 461–465, 2018.CrossRefGoogle ScholarPubMed
[178]
Kolner, B. H., “Space-time duality and the theory of temporal imaging,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1951–1963, 1994.CrossRefGoogle Scholar
[179]
Poon, T. and Kim, T., Engineering Optics with Matlab, 2nd ed. World Scientific Publishing, Singapore, 2018.Google Scholar
[180]
Ozaktas, H. M., Zalevsky, Z., and Alper Kutay, M., The Fractional Fourier Transform with Applications in Optics and Signal Processing. John Wiley, New York, 2001.Google Scholar
[181]
Mendlovic, H. and Ozaktas, H. M., “Fractional fourier transforms and their optical implementation: I,” Journal of the Optical Society of America A, vol. 10, pp. 1875–1881, 1993.CrossRefGoogle Scholar
[182]
Mendlovic, H. and Ozaktas, H. M., “Fractional fourier transforms and their optical implementation: Ii,” Journal of the Optical Society of America A, vol. 10, pp. 2522–2531, 1993.CrossRefGoogle Scholar
[183]
West, B. J., Bologna, M., and Grigolini, P., Physics of Fractal Operators. Springer, New York, 2003.CrossRefGoogle Scholar
[184]
Intonti, F., Caselli, N., Lawrence, N., Trevino, J., Wiersma, D. S., and Dal Negro, L., “Near-field distribution and propagation of scattering resonances in vogel spiral arrays of dielectric nanopillars,” New Journal of Physics, vol. 15, no. 8, p. 085023, 2013.CrossRefGoogle Scholar
[185]
Stratton, J. A. and Chu, L. J., “Diffraction theory of electromagnetic waves,” Physical Review, vol. 56, pp. 99–107, 1939.CrossRefGoogle Scholar
[186]
Stratton, J. A., Electromagnetic Theory. McGraw-Hill, New York, 1941.Google Scholar
[187]
Holland, A. S. B., Introduction to the Theory of Entire Functions. Academic Press, New York and London, 1973.Google Scholar
[188]
Boas, R. P., Entire Functions. Academic Press, New York, 1954.Google Scholar
[189]
Lindberg, J., “Mathematical concepts of optical superresolution,” Journal of Optics, vol. 14, no. 083001, pp. 1–23, 2012.CrossRefGoogle Scholar
[190]
den Dekker, A. J. and van den Bos, A., “Resolution: a survey,” Journal of the Optical Society of America A, vol. 14, pp. 547–557, 1997.CrossRefGoogle Scholar
[191]
Vijayakumar, A. and Bhattacharya, S., Design and Fabrication of Diffractive Optical Elements with MATLAB. SPIE Press, Bellingham, 2017.CrossRefGoogle Scholar
[192]
Chen, Y., Britton, W., and Dal Negro, L., “Phase-modulated axilenses for infrared multiband spectroscopy,” Optics Letters, vol. 45, no. 8, pp. 2371–2374, 2020.CrossRefGoogle ScholarPubMed
[193]
Britton, W. A., Chen, Y., Sgrignuoli, F., and Dal Negro, L.. “Phase-modulated axilenses as ultracompact spectroscopic tools,” ACS Photonics, vol. 7, no. 10, 2731–2738, 2020.CrossRefGoogle Scholar
[194]
Chen, Y., Britton, W., and Dal Negro, L., “Design of infrared microspectrometer based on phase-modulated axilenses,” Applied Optics, vol. 59, pp. 5532–5538, 2020.CrossRefGoogle Scholar
[195]
Harvey, J. E. and Forgham, L., “The spot of arago: new relevance for an old phenomenon,” American Journal of Physics, vol. 52, pp. 243–247, 1984.CrossRefGoogle Scholar
[196]
Iizuka, K., Engineering Optics, 3rd ed. Springer, New York, 2008.Google Scholar
[197]
Berry, M. V. and Dennis, M. R., “Natural superoscillations in monochromatic waves in d dimensions,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 2, p. 022003, 2009.CrossRefGoogle Scholar
[198]
Huang, F. M., Chen, Y., F. Javier Garcia de Abajo, and N. I. Zheludev, “Optical superresolution through super-oscillations,” Journal of Optics A: Pure and Applied Optics, vol. 9, pp. S285–S288, 2007.CrossRefGoogle Scholar
[199]
Rogers, E. T. F., Lindbergn, J., Roy, T., et al., “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Materials, vol. 11, pp. 432–435, 2012.CrossRefGoogle ScholarPubMed
[200]
Huang, F. M. and Zheludev, N. I., “Super-resolution without evanescent waves,” Nano Letters, vol. 9, no. 3, pp. 1249–1254, 2009.CrossRefGoogle ScholarPubMed
[201]
Berry, M. V. and Popescu, S., “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” Journal of Physics A: Mathematical and General, vol. 39, pp. 6965–6977, 2006.CrossRefGoogle Scholar
[202]
Kempf, A., “Black holes, bandwidths and Beethoven,” Journal of Mathematical Physics, vol. 41, pp. 2360–2374, 2000.CrossRefGoogle Scholar
[203]
Ferraira, P. J. S. G. and Kempf, A., “Superoscillations: faster than the Nyquist rate,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3732–3740, 2006.CrossRefGoogle Scholar
[204]
Rogers, E. T. F. and Zheludev, N. I., “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” Journal of Optics, vol. 15, no. 094008, pp. 1–23, 2013.CrossRefGoogle Scholar
[205]
Wang, R., Pinheiro, F. A., and Dal Negro, L., “Spectral statistics and scattering resonances of complex primes arrays,” Physical Review B, vol. 97, no. 024202, pp. 1–11, 2018.Google Scholar
[206]
Vasara, A., Turunen, J., and Friberg, A. T., “Realization of general nondiffracting beams with computer-generated holograms,” Journal of the Optical Society of America A,vol.6, no. 11, pp. 1748–1754, 1989.CrossRefGoogle ScholarPubMed
[207]
Vijayakumar, A., Parthasarathi, P., Iyengar, S. S., et al., “Conical Fresnel zone lens for optical trapping,” International Conference on Optics and Photonics2015, vol. 9654, 2015.Google Scholar
[208]
Chen, W. T., Zhu, A. Y., Sanjeev, V., Khorasaninejad, M., Shi, Z., Lee, E., and Capasso, F., “A broadband achromatic metalens for focusing and imaging in the visible,” Nature Nanotechnology, vol. 13, no. 3, p. 220, 2018.CrossRefGoogle ScholarPubMed
[209]
Zhang, S., Soibel, A., Keo, S. A., et al., “Solid-immersion metalenses for infrared focal plane arrays,” Applied Physics Letters, vol. 113, no. 11, p. 111104, 2018.Google Scholar
[210] Britton, W. A., Chen, Y., Sgrignuoli, F., and Dal Negro, L., “Phase-modulated axilenses as ultracompact spectroscopic tools,” ACS Photonics, vol. 7, no. 10, pp. 2731–2738, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00762CrossRefGoogle Scholar
[211]
Nye, J. F., Natural Focusing and Fine Structure of Light. Institute of Physics Publishing, 1999.Google Scholar
[212]
Salem, R., Foster, M. A., Turner, A. C., Geraghty, D. F., Lipson, M., and Gaeta, A. L., “Optical time lens based on four-wave mixing on a silicon chip,” Optics Letters, vol. 15, no. 33, pp. 1047–1049, 2008.CrossRefGoogle Scholar
[213]
Klein, A., Yaron, T., Preter, E., Duadi, H., and Fridman, M., “Temporal depth imaging,” Optica, vol. 4, no. 5, pp. 502–506, 2017.CrossRefGoogle Scholar
[214]
Mendonça, J. T. and Shukla, P. K., “Time refraction and time reflection: two basic concepts,” Physica Scripta, vol. 65, no. 2, pp. 160–163, 2002.CrossRefGoogle Scholar
[215]
Xiao, Y., Maywar, D. N., and Agrawal, G. P., “Reflection and transmission of electromagnetic waves at a temporal boundary,” Optics Letters, vol. 39, no. 3, pp. 574–577, 2014.CrossRefGoogle Scholar
[216]
Shaltout, A. M., Lagoudakis, K. G., van de Groep, J., et al., “Spatiotemporal light control with frequency-gradient metasurfaces,” Science, vol. 365, pp. 374–377, 2019.CrossRefGoogle ScholarPubMed
[217] Zhou, Y., Alam, M. Z., Karimi, M., et al., “What is the temporal analog of reflection and refraction of optical beams?” Nature Communications, vol. 11, no. 2180, 2020.Google Scholar
[218] Plansinis, B. W., Donaldson, W. R., and Agrawal, G. P., “What is the temporal analog of reflection and refraction of optical beams?” Physical Review Letters, vol. 115, no. 183901, 2015.CrossRefGoogle ScholarPubMed
[219]
Ye, J. and Cundiff, S. T. e., Femtosecond Optical Frequency Comb: Principle,Operation and Applications. Springer Science + Business Media, Boston, 2005.CrossRefGoogle Scholar
[220]
Picqué, N. and Hänsch, T. W., “Frequency comb spectroscopy,” Nature Photonics, vol. 13, pp. 146–157, 2019.CrossRefGoogle Scholar
[221]
Lakshminarayanan, V., Ghatak, A. K., and Thyagarajan, K., Lagrangian Optics. Springer Science, New York, 2002.CrossRefGoogle Scholar
[222]
Berry, M. V. and Upstill, C., “Catastrophe optics: morphologies of caustics and their diffraction patterns,” Progress in Optics, vol. 18, pp. 257–346, 1980.CrossRefGoogle Scholar
[223]
Dupré, S., “Optics, pictures and evidence: Leonardo’s drawings of mirrors and machinery,” Early Science and Medicine, vol. 10, no. 2, p. 211–236, 2005.CrossRefGoogle Scholar
[224]
Arnold, V. I., Catastrophe Theory, 2nd ed. Springer, Berlin, 1986.CrossRefGoogle Scholar
[225]
Poston, T. and Stewart, I., Catastrophe Theory and Its Applications. Pitman, London, 1978.Google Scholar
[226]
Gilmore, R., Catastrophe Theory for Scientists and Engineers. John Wiley, New York, 1981.Google Scholar
[227]
Thom, R., Structural Stability and Morphogenesis. An Outline of a General Theory of Models. W. A. Benjamin Inc., Reading, 1975.Google Scholar
[228]
Siviloglou, G. A. and Christodoulides, D. N., “Accelerating finite energy airy beams,” Optics Letters, vol. 32, no. 8, p. 979–981, 2007.CrossRefGoogle ScholarPubMed
[229]
Berry, M. V. and Balazs, N., “Nonspreading wave packets,” American Journal of Physics, vol. 47, pp. 264–267, 1979.CrossRefGoogle Scholar
[230] Siviloglou, G. A., Broky, J., Dogariu, A., and Christodoulides, D. N., “Observation of accelerating airy beams,” Physical Review Letters, vol. 99, no. 213901, 2007.CrossRefGoogle ScholarPubMed
[231]
Baumgartl, J., Mazilu, M., and Dholakia, K., “Optically mediated particle clearing using airy wavepackets,” Nature Photonics, vol. 2, pp. 675–678, 2008.CrossRefGoogle Scholar
[232]
Nye, J. F., “The motion and structure of dislocations in wavefronts,” Proceedings of the Royal Society of London. Series A, vol. 378, pp. 219–239, 1981.Google Scholar
[233]
Nye, J. F. and Berry, M., “Dislocations in wave trains,” Proceedings of the Royal Society of London. Series A, vol. 336, pp. 165–190, 1974.Google Scholar
[234]
Dennis, M. R., O’Holleran, K., and Padgett, M. J., “Singular optics: optical vortices and polarization singularities,” Progress in Optics, vol. 53, pp. 293–363, 2009.CrossRefGoogle Scholar
[235]
Berry, M., Nye, J. F., and Wright, F., “The elliptic umbilic diffraction catastrophe,” Philosophical Transactions of the Royal Society, vol. 291, pp. 453–484, 1979.Google Scholar
[236] Kharif, C. and Pelinovsky, E., “Physical mechanisms of the rogue wave phenomenon,” European Journal of Mechanics – B/Fluids, vol. 22, pp. 603–63 437, 2003.CrossRefGoogle Scholar
[237]
Osborne, A. R., Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press, New York, 2010.Google Scholar
[238]
Solli, D. R., Ropers, C., Koonath, P., and Jalali, B., “Optical rogue waves,” Nature, vol. 450, pp. 1054–1057, 2007.CrossRefGoogle ScholarPubMed
[239]
Dudley, J. M., Dias, F., Erkintalo, M., and Genty, G., “Instabilities, breathers and rogue waves in optics,” Nature Photonics, vol. 8, pp. 755–764, 2014.CrossRefGoogle Scholar
[241] Mathis, A., Froehly, L., Toenger, S., Dias, F., Genty, G., and Dudley, J. M., “Caustics and rogue waves in an optical sea,” Scientific Reports, vol. 5, no. 12822, 2015.CrossRefGoogle Scholar
[242] Safari, A., Fickler, R., Padgett, M. J., and Boyd, R. W., “Generation of caustics and rogue waves from nonlinear instability,” Physical Review Letters, vol. 119, no. 203901, 2017.CrossRefGoogle ScholarPubMed
[243]
Coles, S., An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, London, 2001.CrossRefGoogle Scholar
[244] Sgrignuoli, F., Chen, Y., Gorsky, S., Britton, W. A., and Dal Negro, L., “Optical rogue waves in multifractal photonic arrays,” Physical Review B, vol. 103, no. 19, 2021.CrossRefGoogle Scholar
Yao, A. M. and Padgett, M. J., “Orbital angular momentum: origins, behavior and applications,” Advances in Optics and Photonics, vol. 3, pp. 161–204, 2011.CrossRefGoogle Scholar
[247]
Torres, J. P. and Torner, L., Eds., Twisted Photons.Applications of Light with Orbital Angular Momentum. Wiley-VCH, Weinheim, 2011.CrossRefGoogle Scholar
[248]
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., and Woerdman, J. P., “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Physical Review A, vol. 45, pp. 8185–8189, 1992.CrossRefGoogle ScholarPubMed
[249]
Chavez-Cerda, S., Padgett, M., Allison, I., et al., “Holographic generation and orbital angular momentum of high-order mathieu beams,” Journal of Optics B: Quantum Semiclassical Optics, vol. 4, pp. S52–S57, 2002.CrossRefGoogle Scholar
[250]
Liew, S. F., Noh, H., Trevino, J., Dal Negro, L., and Cao, H., “Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral,” Optics Express, vol. 19, pp. 23631–23642, 2011.CrossRefGoogle Scholar
[251]
Lawrence, N., Trevino, J., and Dal Negro, L., “Control of optical orbital angular momentum by vogel spiral arrays of metallic nanoparticles,” Optics Letters, vol. 37, pp. 5076–5078, 2012.CrossRefGoogle ScholarPubMed
[252]
Molina-Terriza, G., Torres, J. P., and Torner, L., “Twisted photons,” Nature Physics,vol.3, pp. 3015–310, 2007.CrossRefGoogle Scholar
[253]
Grier, D., “A revolution in optical manipulation,” Nature Physics, vol. 424, pp. 810–816, 2003.CrossRefGoogle ScholarPubMed
[254]
Mair, A., Vaziri, A., Weihs, G., and Zeilinger, A., “Entanglement of the orbital angular momentum states of photons,” Nature, vol. 412, pp. 313–316, 2001.CrossRefGoogle ScholarPubMed
Capasso, F., “The future and promise of flat optics: a personal perspective,” Nanophotonics, vol. 7, no. 6, pp. 953–957, 2018.CrossRefGoogle Scholar
[257]
Yu, N. and Capasso, F., “Flat optics with designer metasurfaces,” Nature Materials, vol. 13, pp. 139–150, 2014.CrossRefGoogle ScholarPubMed
[258]
Yu, N., Genevet, P., Kats, M. A., et al., “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, pp. 333–337, 2011.CrossRefGoogle ScholarPubMed
[259]
Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A., and Shalaev, V. M., “Broadband light bending with plasmonic nanoantennas,” Science, vol. 335, p. 427, 2012.CrossRefGoogle ScholarPubMed
[260]
Lin, D., Fan, P., Hasman, E., and Brongersma, M. L., “Dielectric gradient metasurface optical elements,” Science, vol. 345, pp. 298–301, 2014.CrossRefGoogle ScholarPubMed
[261]
Wu, C., Arju, N., Kelp, G., et al., “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nature Communications, vol. 5, no. 3892, pp. 1–9, 2014.CrossRefGoogle ScholarPubMed
[262]
Khorasaninejad, M. and Capasso, F., “Metalenses: versatile multifunctional photonic components,” Science, vol. 358, no. 1146, pp. 1–8, 2017.CrossRefGoogle ScholarPubMed
[263]
Genevet, P. and Capasso, F., “Holographic optical metasurfaces: a review of current progress,” Reports on Progress in Physics, vol. 78, no. 024401, pp. 1–19, 2015.CrossRefGoogle ScholarPubMed
[264]
Ding, F., Pors, A., and Bozhevolnyi, S. I., “Gradient metasurfaces: a review of fundamentals and applications,” Reports on Progress in Physics, vol. 81, no. 2, p. 026401, 2017.Google Scholar
[265]
Zhao, Y., Liu, X., and Alù, A., “Recent advances on optical metasurfaces,” Journal of Optics, vol. 16, no. 123001, pp. 1–14, 2014.CrossRefGoogle Scholar
[266]
Mahan, G. D., Many-Particle Physics. Plenum Press, New York, 1990.CrossRefGoogle Scholar
[267]
Devaney, A. J., Mathematical Foundation of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge, 2012.Google Scholar
[268]
Liu, H., Liu, D., Mansour, H., Boufounos, P. T., Waller, L., and Kamilov, U. S., “Seagle: sparsity-driven image reconstruction under multiple scattering,” IEEE Transactions on Computational Imaging, vol. 4, no. 1, pp. 73–86, 2018.CrossRefGoogle Scholar
[269]
Colton, D. and Kress, R., “Looking back on inverse scattering theory,” SIAM Review, vol. 60, no. 4, pp. 779–807, 2018.CrossRefGoogle Scholar
[270]
Jin, J.-M., Theory and Computation of Electromangetic Fields, 2nd ed. John Wiley & Sons, Hoboken, 2010.CrossRefGoogle Scholar
[271]
Kaku, M., Quantum Field Theory.A Modern Introduction. Oxford University Press, New York, 1993.Google Scholar
[272]
Sementilli, P. J., Hunt, B. R., and Nadar, M. S., “Analysis of the limit to superresolution in incoherent imaging,” Journal of the Optical Society of America A, vol. 10, pp. 2265–2276, 1993.CrossRefGoogle Scholar
[273]
Newton, R. G., “Optical theorem and beyond,” American Journal of Physics, vol. 44, no. 7, p. 639, 1976.CrossRefGoogle Scholar
[274]
Feenberg, E., “The scattering of slow electrons by neutral atoms,” Physical Review, vol. 40, p. 40, 1932.CrossRefGoogle Scholar
[275]
Levine, H. and Schwinger, J., “On the theory of diffraction by an aperture in an infinite plane screen I,” Physical Review, vol. 74, p. 958, 1948.CrossRefGoogle Scholar
[276]
van de Hulst, H. C., “On the attenuation of plane waves by obstacles of arbitrary size and form,” Physica, vol. 15, p. 740, 1949.CrossRefGoogle Scholar
[277]
Lock, J. A., Hodges, J. T., and Gouesbet, G., “Failure of the optical theorem for Gaussianbeam scattering by a spherical particle,” Journal of the Optical Society of America A, vol. 12, pp. 2708–2715, 1995.CrossRefGoogle Scholar
[278]
Berg, M. J., Sorensen, C. M., and Chakrabarti, A., “Extinction and the optical theorem. Part I. Single particles,” Journal of the Optical Society of America A, vol. 25, no. 7, pp. 1504–1513, 2008.CrossRefGoogle ScholarPubMed
[279]
Berg, M. J., Sorensen, C. M., and Chakrabarti, A., “Extinction and the optical theorem. Part II. Multiple particles,” Journal of the Optical Society of America A, vol. 25, no. 7, pp. 1514–1520, 2008.CrossRefGoogle ScholarPubMed
[280]
Mishchenko, M. I. and Travis, L. D., Multiple Scattering of Light by Particles. Cambridge Univesrity Press, New York, 2006.Google Scholar
[281]
Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles. Wiley-VCH, Weinheim, 2004.Google Scholar
[282]
Reali, G. C., “Reflection from dielectric materials,” American Journal of Physics, vol. 50, no. 12, pp. 1133–1136, 1982.CrossRefGoogle Scholar
[283]
Ballenegger, V. C., “The Ewald–Oseen extinction theorem and extinction lengths,” American Journal of Physics, vol. 67, no. 7, pp. 599–605, 1999.CrossRefGoogle Scholar
[284]
Goodman, J. W., Statistical Optics, 2nd ed. John Wiley and Sons., Greenwood Village, 2007.Google Scholar
[285]
Wolf, E., Introduction to the Theory of Coherence and Polarization of Light. Cambridge University Press, 2007.Google Scholar
[286]
Wolf, E., “A macroscopic theory of interference and diffraction of light from finite sources ii. fields with a spectral range of arbitrary width.” Proceedings of the Royal Society of London, vol. 230, p. 246–265, 1955.Google Scholar
[287]
Wolf, E., “Unified theory of coherence and polarization of random electromagnetic beams,” Physical Letters A, vol. 312, pp. 263–267, 2003.CrossRefGoogle Scholar
[288]
Wolf, E., “Correlation-induced changes in the degree of polarization, the degree of coherence and the spectrum of random electromagnetic beams on propagation,” Optics Letters, vol. 28, pp. 1078–1080, 2003.CrossRefGoogle ScholarPubMed
[289]
Tervo, J., Setälä, T., and Friberg, A. T., “Theory of partially coherent electromagnetic fields in the space–frequency domain,” Journal of the Optical Society of America A, vol. 21, pp. 2205–2215, 2005.CrossRefGoogle Scholar
[290]
Gbur, G. and Visser, T. D., “The structure of partially coherent fields, in progress in optics, Emil Wolf ed.” Progess in Optics, vol. 55, pp. 285–341, 2010.CrossRefGoogle Scholar
[291]
Labeyrie, A., Lipson, S. G., and Nisenson, P., An Introduction to Optical Stellar Interferometry. Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
[292]
Dogariu, A. and Wolf, E., “Spectral changes produced by static scattering on a system of particles,” Optics Letters, vol. 23, pp. 1340–1342, 1998.CrossRefGoogle ScholarPubMed
[293]
Gbur, G. and Wolf, E., “Determination of density correlation functions from scattering of polychromatic light,” Optics Communications, vol. 168, pp. 39–45, 1999.CrossRefGoogle Scholar
[294]
Schell, A. C., “Multiple plate antenna,” Ph.D. Thesis, Massachusetts Institute of Technology, 1961.Google Scholar
[295]
Nugent, K. A., “A generalization of Schell’s theorem,” Optics Communications, vol. 79, pp. 267–269, 1990.CrossRefGoogle Scholar
[296]
Ewald, P. P., “Introduction to the dynamical theory of X-ray diffraction,” Acta Crystallographica, vol. A25, pp. 103–108, 1969.CrossRefGoogle Scholar
[297]
Goodstein, D. L., States of Matter. Dover Publications, Mineola, 1985.Google Scholar
[298]
Torquato, S. and Stillinger, F. H., “Local density fluctuations, hyperuniformity, and order metrics,” Physical Review E, vol. 68, p. 041113, 2003.Google ScholarPubMed
[299]
Torquato, S., Zhang, G., and Stillinger, F. H., “Ensemble theory for stealthy hyperuniform disordered ground states,” Physical Review X, vol. 5, p. 021010, 2015.CrossRefGoogle Scholar
[300]
Sorensen, C. M., “Light scattering by fractal aggregates: a review,” Aerosol Science and Technology, vol. 35, pp. 648–687, 2001.CrossRefGoogle Scholar
[301]
Mishchenko, M. I., Travis, L. D., and Lacis, A. A., Scattering,Absorption and Emission of Light by Small Particles. Cambridge Univesrity Press, Edinburgh, 2002.Google Scholar
[302]
Conley, G. M., Burresi, M., Pratesi, F., Vynck, K., and Wiersma, D. S., “Light transport and localization in two-dimensional correlated disorder,” Physical Review Letters, vol. 112, p. 143901, 2014.CrossRefGoogle ScholarPubMed
[303]
Sivia, D. S., Elementry Scattering Theory. Oxford University Press, New York, 2011.CrossRefGoogle Scholar
[304]
Hansen, J. and McDonald, I. R., Theory of Simple Liquids with Applications to Soft Matter, 4th ed. Academic Press, San Diego, 2013.Google Scholar
[305]
Khare, K., Fourier Optics and Computational Imaging. John Wiley and Ane Books Pvt. Ltd., 2016.Google Scholar
[306]
Cowley, J. M., Difraction Physics. Elsevier, 1995.Google Scholar
[307]
Inui, T., Tanabe, Y., and Onodera, Y., Group Theory and Its Applications in Physics. Sprringer-Verlag, Berlin and Heidelberg, 1990.CrossRefGoogle Scholar
[308]
Kritikos, H. N., “Radiation symmetries of antenna arrays,” Journal of the Franklin Institute, vol. 295, no. 4, pp. 283–292, 1973.CrossRefGoogle Scholar
[309] Lee, S. Y. K., Amsden, J. J., et al., “Spatial and spectral detection of protein mono-layers with deterministic aperiodic arrays of metal nanoparticles,” PNAS, vol. 107, pp. 12 086–12 090, 2010.CrossRefGoogle Scholar
[310] Boriskina, S. V., Lee, S. Y. K., Amseden, J. J., Omenetto, F., and Dal Negro, L., “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Optics Express, vol. 18, no. 14, pp. 14 568–14 576, 2010.CrossRefGoogle ScholarPubMed
[311]
Trevino, J., Forestiere, C., Di Martino, G., Yerci, S., Priolo, F., and Dal Negro, L., “Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells,” Optics Express, vol. 20, pp. A418–A430, 2012.CrossRefGoogle ScholarPubMed
[312]
Pierro, V., Galdi, V., Castaldi, G., Pinto, I. M., and Felsen, L. B., “Radiation properties of planar antenna arrays based on certain categories of aperiodic tilings,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 2, pp. 635–644, 2005.CrossRefGoogle Scholar
[313]
Lang, S., Algebraic Number Theory. Addison-Wesley, Reading, 1970.Google Scholar
[314]
Cohen, H., A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin, 1993.CrossRefGoogle Scholar
[315]
Dekker, T. J., “Prime numbers in quadratic fields,” CWI Quarterly, vol. 7, pp. 367–394, 1994.Google Scholar
[316]
Baake, M. and Grimm, U., Aperiodic Order,vol.1AMathematical Invitation. Cambridge University Press, New York, 2013.CrossRefGoogle Scholar
[317]
Dal Negro, L., Henderson, D. T., Sgrignuoli, F., “Wave transport and localization in prime number landscapes”, Frontiers in Physics, 9, 490 (2021).CrossRefGoogle Scholar
[318]
Berthier, S., Iridescences: The Physical Colors of Insects. Springer, New York, 2007.Google Scholar
[319]
Kinoshita, S., Structural Colors in the Realm of Nature. World Scientific, 2008.CrossRefGoogle Scholar
[320] Gorsky, S., Zhang, R.,Gok, A., et al., “Directonal light emission enhancement from led-phosphor converters using dielectric vogel spiral arrays,” Applied Physics Letters Photonics, vol. 3, pp. 126 103–126 114, 2018.Google Scholar
[321]
Gorsky, S., Britton, W. A., Chen, Y., et al., “Engineered hyperuniformity for directional light extraction,” Applied Physics Letters Photonics, no. 4, p. 110801, 2019.Google Scholar
[322]
Levine, D. and Steinhardt, P. J., “Quasicrystals. I. Definition and structure,” Physical Review B, vol. 34, pp. 596–616, 1986.CrossRefGoogle ScholarPubMed
[323]
Maciá-Barber, E., Quasicrystals: Fundamentals and Applications. CRC Press, Boca Raton, 2021.Google Scholar
[324]
Queffélec, M., Substitution Dynamical Systems – Spectral Analysis. Springer-Verlag, Berlin, 2010.CrossRefGoogle Scholar
[325]
Schroeder, M., Fractals, Chaos,Power Laws. W. H. Freeman, New York, 1991.Google Scholar
[326]
Luck, J. M., “Cantor spectra and scaling of gap widths in deterministic aperiodic systems,” Physical Review B, vol. 39, pp. 5834–5849, 1989.CrossRefGoogle ScholarPubMed
[327]
Maciá-Barber, E., Aperiodic Structures in Condensed Matter: Fundamentals and Applications. CRC Press Taylor and Francis, Boca Raton, 2009.Google Scholar
[328]
Maciá, E., “The role of aperiodic order in science and technology,” Reports on Progress in Physics, vol. 69, pp. 397–441, 2006.CrossRefGoogle Scholar
[329]
Dulea, M., Johansson, M., and Riklund, R., “Localization of electrons and electromagnetic waves in a deterministic aperiodic system,” Physical Review B, vol. 45, pp. 105–114, 1992.CrossRefGoogle Scholar
[330]
Dulea, M., Johansson, M., and Riklund, R., “Unusual scaling of the spectrum in a deterministic aperiodic tight-binding model,” Physical Review B, vol. 47, pp. 8547–8551, 1993.CrossRefGoogle Scholar
[331]
Dal Negro, L., Feng, N. N., and Gopinath, A., “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” Journal of Optics A: Pure and Applied Optics, vol. 10, p. 064013, 2008.Google Scholar
[332]
Kroon, L., Lennholm, E., and Riklund, R., “Localization-delocalization in aperiodic systems,” Physical Review B, vol. 66, p. 094204, 2002.CrossRefGoogle Scholar
[333]
Kroon, L. and Riklund, R., “Absence of localization in a model with correlation measure as a random lattice,” Physical Review B, vol. 69, p. 094204, 2004.CrossRefGoogle Scholar
[334]
García de Abajo, F. J., Gómez-Medina, R., and Sáenz, J. J., “Full transmission through perfect-conductor subwavelength hole arrays,” Physical Review E, vol. 72, no. 016608, pp. 1–4, 2005.CrossRefGoogle ScholarPubMed
[335]
García de Abajo, F. J., Sáenz, J. J., Campillo, I., and Dolado, J. S., “Site and lattice resonances in metallic hole arrays,” Optics Express, vol. 14, no. 1, pp. 7–18, 2006.CrossRefGoogle ScholarPubMed
[336] Zou, S. and Schatz, G. C., “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticles arrays,” Journal of Chemical Physics, vol. 121, pp. 12 606–12 612, 2004.CrossRefGoogle Scholar
[337] Zou, S., Janel, N., and Schatz, G. C., “Silver nanoparticle array structures that produce remarkable narrow plasmon lineshapes,” Journal of Chemical Physics, vol. 120, pp. 10 871–10 875, 2004.CrossRefGoogle Scholar
[338]
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., and Wolff, P. A., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667–669, 1998.CrossRefGoogle Scholar
[339]
García de Abajo, F. J., “Colloquium: light scattering by particles and hole arrays,” Reviews of Modern Physics, vol. 79, pp. 1267–1290, 2007.CrossRefGoogle Scholar
[340]
Authier, A., Dynamical Theory of X-Ray Diffraction. Oxford University Press, Oxford, 2001.Google Scholar
[341]
Wood, R. W., “Anomalous diffraction gratings,” Physical Review, vol. 48, pp. 928–936, 1935.CrossRefGoogle Scholar
[342]
Fano, U., “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” Journal of the Optical Society of America, vol. 31, pp. 213–222, 1941.CrossRefGoogle Scholar
[343]
Fano, U., “Effects of configuration interaction on intensities and phase shifts,” Physical Review, vol. 124, pp. 1866–1878, 1961.CrossRefGoogle Scholar
[344]
Matsui, T., Agrawal, A., Nahata, A., and Vardeny, Z. V., “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature, vol. 446, pp. 517–521, 2007.CrossRefGoogle ScholarPubMed
[345] Przybilla, F., Genet, C., and Ebbesen, T. W., “Enhanced transmission through Penrose subwavelength hole arrays,” Applied Physics Letters, vol. 89, no. 121115, 2006.CrossRefGoogle Scholar
[346]
Bellissard, J. V., Bovier, A., and Ghez, J., “Gap labelling theorems for one-dimensional discrete Schrödinger operators,” Reviews in Mathematical Physics, vol. 4, pp. 1–37, 1992.CrossRefGoogle Scholar
[347] Dal Negro, L. and Feng, N. N., “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Optics Express, vol. 15, pp. 14 396–14 403, 2007.CrossRefGoogle ScholarPubMed
[348] Huang, F. M., Zheludev, N. I., Chen, Y., and García de Abajo, F. J., “Focusing of light by a nano-hole array,” Applied Physics Letters, vol. 90, no. 091119, 2007.CrossRefGoogle Scholar
[349]
Sgrignuoli, F., Wang, R., Pinheiro, F., and Dal Negro, L., “Localization of scattering resonances in aperiodic Vogel spirals,” Physical Review B, vol. 99, p. 104202, 2019.CrossRefGoogle Scholar
[350] Chen, Y., Sgrignuoli, F., and Dal Negro, L., “Optical superoscillations of prime number arrays,” in preparation.Google Scholar
[351]
Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley, Chichester, 2008.Google Scholar
[352]
Torquato, S., Scardicchio, A., and Zachary, C. E., “Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory,” Journal of Statistical Mechanics, 2008.CrossRefGoogle Scholar
[353]
Gabrielli, A., Jancovici, B., Joyce, M., Lebowitz, J. L., Pietronero, L., and Sylos Labini, F., “Generation of primordial cosmological perturbations from statistical mechanical models,” Physical Review D, vol. 67, p. 043506, 2003.CrossRefGoogle Scholar
[354]
Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag, New York, 2012.Google Scholar
[355]
Huang, K., Statistical Mechanics, 2nd ed. John Wiley and Sons, California, 1987.Google Scholar
[356]
Isihara, A., Condensed Matter Physics. Oxford University Press, New York and Oxford, 1991.Google Scholar
[357] Ornstein, L. S. and Zernike, F., “Accidental deviations of density and opalescence at the critical point of a single substance,” Royal Netherlands Academy of Arts and Sciences (KNAW). Proceedings, vol. 17, p. 793–806, 1914.Google Scholar
[358]
Percus, J. K. and Yevick, G. J., “Analysis of classical statistical mechanics by means of collective coordinates,” Physical Review, vol. 110, p. 1–13, 1958.CrossRefGoogle Scholar
[359]
Tsang, L. and Kong, K., Ding, J. A., Scattering of Electromangetic Waves: Numerical Simulations, vol. 3. John Wiley, New York, 2001.Google Scholar
[360]
Wertheim, M. S., “Exact solution of the Percus–Yevick integral equation for hard spheres,” Physical Review Letters, vol. 20, p. 321–323, 1963.CrossRefGoogle Scholar
[361]
ben Avraham, D. and Havlin, S., Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, 2000.CrossRefGoogle Scholar
[362]
Goodman, J. W., Speckle Phenomena in Optics: Theory and Applications. Ben Roberts and Company, US, 2015.Google Scholar
[363]
Papoulis, A., Probability, Random Variables, and Stochastic Processes, 3rd ed. McGraw-Hill, New York, 1991.Google Scholar
[364]
Jakeman, E. and Ridley, K. D., Modeling Fluctuations in Scattered Waves. Taylorand Francis, New York, 2006.CrossRefGoogle Scholar
[365]
Kallenberg, O., Foundations of Modern Probability, 2nd ed. Springer-Verlag, New York, 2002.CrossRefGoogle Scholar
[366]
Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions. Dover, New York, 1965.Google Scholar
[367]
van Rossum, M. C. W. and Nieuwenhuizen, T. M., “Multiple scattering of classical waves: microscopy, mesoscopy and diffusion,” Reviews of Modern Physics, vol. 71, pp. 313–371, 1999.CrossRefGoogle Scholar
[370] Feng, S., Kane, C., Lee, P. A., and Stone, A. D., “Correlations and fluctuations of coherent wave transmission through disordered media,” Physical Review Letters, vol. 61, pp. 834–837, August 1988. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRevLett.61.834CrossRefGoogle ScholarPubMed
[372] Bertolotti, J., van Putten, E. G., Blum, C., Lagendijk, A., Vos, W. L., and Mosk, A. P., “Non-invasive imaging through opaque scattering layers,” Nature, vol. 491, no. 7423, pp. 232–234, November 2012. [Online]. Available: https://doi.org/10.1038/nature11578CrossRefGoogle ScholarPubMed
[374] Mosk, A. P., Lagendijk, A., Lerosey, G., and Fink, M., “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photonics, vol. 6, no. 5, pp. 283–292, May 2012. [Online]. Available: https://doi.org/10.1038/nphoton.2012.88CrossRefGoogle Scholar
Klages, R., Radons, G., and Igor, M.Sokolov, (eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2008.CrossRefGoogle Scholar
[378]
de Gennes, P., “On a relation between percolation theory and the elasticity of gels,” Journal de Physique Lettres, vol. 37, pp. 1–2, 1976.CrossRefGoogle Scholar
[379]
Gouyet, J., Physics and Fractal Structures. Masson and Springer, Paris, 1996.Google Scholar
[380]
Lévy, P., Calcul des probabilités. Gauthier-Villars, Paris, 1925.Google Scholar
[381]
Mandelbrot, B., “Stable paretian random functions and the multiplicative variation of income,” Econometrica, vol. 29, no. 4, p. 517–543, 1961.CrossRefGoogle Scholar
[382]
Bouchaud, J. and Potters, J., Theory of Financial Risk and Derivative Pricing, 2nd ed. Cambridge University Press, Cambridge 2003.CrossRefGoogle Scholar
[383]
Gnedenko, B. V. and Kolmogorov, A. N., Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, 1954.Google Scholar
[384]
Montroll, E. W. and Weiss, G. H., “Random walks on lattices,” Journal of Mathematical Physics, vol. 6, pp. 167–181, 1965.CrossRefGoogle Scholar
[385]
Scher, H. and Montroll, E. W., “Anomalous transit-time dispersion in amorphous solids,” Physical Review B, vol. 12, pp. 2455–2477, 1975.CrossRefGoogle Scholar
[386]
Klafter, J. and Sokolov, I. M., First Steps in Random Walks. Oxford University Press, Oxford, 2011.CrossRefGoogle Scholar
[387]
Barthelemy, P., Bertolotti, J., and Wiersma, D. S., “A lévy flight for light,” Nature, vol. 453, pp. 495–498, 2008.CrossRefGoogle ScholarPubMed
[388]
Bertolotti, J., Light Transport beyond Diffusion. Ph.D. Thesis, University of Florence, 2007.Google Scholar
[389] Sgrignuoli, F. and Dal Negro, L., “Subdiffusive light transport in three-dimensional subrandom arrays,” Physical Review B, vol. 101, no. 214204, 2020.CrossRefGoogle Scholar
[390]
Chen, Y., Fiorentino, A., and Dal Negro, L., “A fractional diffusion random laser,” Scientific Reports, vol. 9, no. 1, pp. 1–14, 2019.Google ScholarPubMed
[392] Gorenflo, R. and Mainardi, F., “Fractional calculus: integral and differential equations of fractional order,” arXiv preprint arXiv:0805.3823, 2008.Google Scholar
[395] Mainardi, F., Mura, A., Pagnini, G., and Gorenflo, R., “Sub-diffusion equations of fractional order and their fundamental solutions,” in Mathematical Methods in Engineering, K. Taḑ, J. A. Tenreiro Machado, and D. Baleanu, Eds. Springer, 2007, pp. 23–55.CrossRefGoogle Scholar
[397] Mainardi, F., Luchko, Y., and Pagnini, G., “The fundamental solution of the space-time fractional diffusion equation,” arXiv preprint cond-mat/0702419, 2007.Google Scholar
[400] Mainardi, F., Mura, A., Pagnini, G., and Gorenflo, R., “Time-fractional diffusion of distributed order,” Journal of Vibration and Control, vol. 14, no. 9–10, pp. 1267–1290, 2008. [Online]. Available: https://doi.org/10.1177/1077546307087452CrossRefGoogle Scholar
[401] Chechkin, A. V., Gorenflo, R., and Sokolov, I. M., “Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,” Physical Review E, vol. 66, p. 046129, October 2002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.66.046129CrossRefGoogle ScholarPubMed
[402] Florescu, M., Torquato, S., and Steinhardt, P. J., “Designer disordered materials with large, complete photonic band gaps,” PNAS, vol. 106, no. 49, pp. 20 658–20 663, 2009.CrossRefGoogle ScholarPubMed
[403]
Batten, R. D., Stillinger, F. H., and Torquato, S., “Classical disordered ground states: super-ideal gasses and stealth and equi-luminous materials,” Journal of Applied Physics, vol. 104, p. 033504, 2008.CrossRefGoogle Scholar
[404]
Zachary, C. E. and Torquato, S., “Hyperuniformity in point patterns and two-phase random heterogeneous media,” Journal of Statistical Mechanics, p. P12015, 2009.CrossRefGoogle Scholar
[405] Jiao, Y., Lau, T., Hatzikirou, H., Meyer-Hermann, M., Corbo, J. C., and Torquato, S., “Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem,” Physical Review E, vol. 89, p. 022721, February 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.89.022721CrossRefGoogle ScholarPubMed
[406]
Torquato, S., Zhang, G., and de Courcy-Ireland, M., “Uncovering multiscale order in the prime numbers via scattering,” Journal of Statistical Mechanics, no. 093401, pp. 1–15, 2018.Google Scholar
[407] Torquato, S., Zhang, G., and Courcy-Ireland, M. D., “Hidden multiscale order in the primes,” Journal of Physics A: Mathematical and Theoretical, vol. 52, no. 13, p. 135002, March 2019. [Online]. Available: https://doi.org/10.1088%2F1751–8121%2Fab0588CrossRefGoogle Scholar
[408]
Ma, Z. and Torquato, S., “Random scalar fields and hyperuniformity,” Journal of Applied Physics, vol. 121, no. 244904, pp. 1–15, 2017.CrossRefGoogle Scholar
[409]
Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers. Oxford University Press, New York, 2008.Google Scholar
[410]
Leseur, O., Pierrat, R., and Carminati, R., “High-density hyperuniform materials can be transparent,” Optica, vol. 3, no. 7, pp. 763–767, 2016.CrossRefGoogle Scholar
[411]
Kendall, D. G., “On the number of lattice points inside a random oval,” Quarterly Journal of Mathematics, vol. 19, pp. 1–26, 1948.CrossRefGoogle Scholar
[412]
Kendall, D. G. and Rankin, R. A., “On the number of points of a given lattice in a random hypersphere,” Quarterly Journal of Mathematics, vol. 4, pp. 178–189, 1953.CrossRefGoogle Scholar
[413]
Hardy, G. H., “On the expression of a number as the sum of two squares,” Quarterly Journal of Mathematics, vol. 46, pp. 263–283, 1915.Google Scholar
[414]
Beck, J., “Irregularities of distribution i,” Acta Mathematica, vol. 159, pp. 1–49, 1987.CrossRefGoogle Scholar
[415]
Gabrielli, A., Joyce, M., and Torquato, S., “Tilings of space and superhomogeneous point processes,” Physical Review E, vol. 77, p. 031125, 2008.CrossRefGoogle ScholarPubMed
Froufe-Pérez, L. S., Engel, M., Saénz, J. J., and Scheffold, F., “Band gap formation and anderson localization in disordered photonic materials with structural correlations,” PNAS, vol. 114, no. 36, pp. 9570–9574, 2017.CrossRefGoogle ScholarPubMed
[418] Aubry, G. J., Froufe-Pérez, L. S., Kuhl, U., Legrand, O., Scheffold, F., and Mortessagne, F., “Experimental evidence for transparency, band gaps and anderson localization in two-dimensional hyperuniform disordered photonic materials,” arXiv preprint arXiv:2003.00913, 2020.Google Scholar
[419] Sgrignuoli, F., Torquato, S. and Dal Negro, L., “Localization in three-dimensional stealthy hyperuniform disordered systems,” arXiv:2109.03894, 2021.Google Scholar
[420]
Oğuz, E. C., Socolar, J. E. S., Steinhardt, P. J., and Torquato, S., “Hyperuniformity of quasicrystals,” Physical Review B, vol. 95, no. 054119, pp. 1–10, 2017.CrossRefGoogle Scholar
[421]
Oğuz, E. C., Socolar, J. E. S., Steinhardt, P. J., and Torquato, S., “Hyperuniformity and anti-heperuniformity in one-dimensional substitution tilings,” Acta Crystallographica, vol. A75, pp. 3–13, 2019.Google Scholar
[422]
Korobov, N. M., Exponential Sums and Their Applications. Springer, Dordrecht, 1992.CrossRefGoogle Scholar
[423]
Lemieux, C., Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York, 2009.Google Scholar
[424]
Weyl, H., “Über die gleichverteilung von zahlen mod. eins.” Mathematische Annalen, vol. 77, pp. 313–352, 1916.CrossRefGoogle Scholar
[425]
Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences. John Wiley, New York, 1974.Google Scholar
[426]
Miller, S. J. and Takloo-Bighash, R., An Invitation to Modern Number Theory. Princeton University Press, Princeton, 2006.CrossRefGoogle Scholar
[427]
Niederreiter, H., “Low-discrepancy and low-dispersion sequences,” Journal of Number Theory, vol. 30, pp. 51–70, 1988.CrossRefGoogle Scholar
[428]
Mckay, M., Beckman, R., and Conover, W., “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics, vol. 21, pp. 239–245, 1979.Google Scholar
[429]
Bohigas, O., Haq, R. U., and Pandey, A., “Higher-order correlations in spectra of complex systems,” Physical Review Letters, vol. 54, no. 15, p. 1645, 1985.CrossRefGoogle ScholarPubMed
[430]
Mehta, M. L., Random Matrices. Elesvier, Amsterdam, 2004.Google Scholar
[431]
Gardner, M., “Mathematical games: the remarkable lore of the prime number,” Scientific American, vol. 210, pp. 120–128, 1964.CrossRefGoogle Scholar
[432]
Hardy, G. H. and Littlewood, J. E., “Some problems of partitions numerorum III: on the expression of a number as a sum of primes,” Acta Mathematica, vol. 44, no. 1, pp. 1–70, 1923.CrossRefGoogle Scholar
Radin, C., “The pinwheel tilings of the plane,” Annals of Mathematics, vol. 139, pp. 661–702, 1994.CrossRefGoogle Scholar
[435]
Sgrignuoli, F. and Dal Negro, L., “Hyperuniformity and wave localization in pinwheel scattering,” Physics Review B, vol. 103, no. 22, 224202, 2021.CrossRefGoogle Scholar
[436]
Schwarz, W. and Spilker, J., Arithmetical Functions. An Introduction to Elementary and Anlytic Properties of Arithmetic Functions and to Some of Their Almost-Periodic Properties. Cambridge University Press, Cambridge, 1994.Google Scholar
[437]
Sander, J., Steuding, J., and Steuding, R., From Arithmetic to Zeta-Functions.Springer International Publishing AG, Switzerland, 2016.CrossRefGoogle Scholar
[438]
Ramanujan, S., “On certain trigonometrical sums and their applications in the theory of numbers,” Transactions of the Cambridge Philosophical Society, vol. 22, no. 13, pp. 259–276, 1918.Google Scholar
[439]
Apostol, T. M., Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.Google Scholar
[440]
Wendt, H., Abry, P., and Jaffard, S., “Bootstrap for empirical multifractal analysis,” IEEE Signal Processing Magazine, vol. 1053, no. July, pp. 38–48, 2007.CrossRefGoogle Scholar
[441]
Wendt, H. and Abry, P., “Multifractality tests using bootstrapped wavelet leaders,” IEEE Transactions on Signal Processing, vol. 55, no. 10, pp. 4811–4820, 2007.CrossRefGoogle Scholar
[442]
Mallat, S., A Wavelet Tour of Signal Processing, 3rd ed. Elsevier, 2009.Google Scholar
[443]
Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 3rded. John Wiley and Sons Ltd, Chichester, 2014.Google Scholar
[444]
Arneodo, A., Bacry, E., and Muzy, J. F., “The thermodynamics of fractals revisited with wavelets,” Physica A: Statistical Mechanics and Its Applications, vol. 213, pp. 232–275, 1995.CrossRefGoogle Scholar
[445]
Arneodo, A., Grasseau, G., and Holschneider, M., “Wavelet transform of multifractals,” Physical Review Letters, vol. 61, pp. 2281–2284, 1988.CrossRefGoogle ScholarPubMed
[446]
Jaffard, S., “Wavelet techniques in multifractal analysis,” Proceedings of Symposia Pure Mathematics, Americal Mathematical Society, vol. 72, no. 2, pp. 91–152, 2004.CrossRefGoogle Scholar
[447] Jaffard, S., Lashermes, B., and Abry, P., “Wavelet leaders in multifractal analysis,” in Wavelet Analysis and Applications, T. Quian, M. I. Vai, X. Yuesheng, Eds. Birkhäuser, pp. 219–264, 2006.Google Scholar
[448]
Jaffard, S., “Multifractal formalism for functions. part 2: Self-similar functions,” SIAM Journal on Mathematical Analysis, vol. 28, no. 4, pp. 971–998, 1997.CrossRefGoogle Scholar
[449] Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, vol 46, Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1995.Google Scholar
[450]
Mazur, B. and Stein, W., Prime Numbers and the Riemann Hypothesis. Cambridge University Press, New York, 2016.CrossRefGoogle Scholar
[451]
Schmidt, E., “Über die anzahl der primzahlen unter gegebener grenze,” Mathematische Annalen, vol. 57, pp. 195–204, 1903.CrossRefGoogle Scholar
[452]
Hardy, G. H. and Littlewood, J. E., “Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes,” Acta Mathematica, vol. 41, p. 119–196, 1916.CrossRefGoogle Scholar
[453]
Schoenfeld, L., “Sharper bounds for the Chebyshev functions θ(x) and ψ(x). ii,” Mathematics of Computation, vol. 30, no. 134, pp. 337–360, 1976.Google Scholar
[454]
Schumayer, D. and Hutchinson, D. A. W., “Colloquium: physics of the Riemann hypothesis,” Reviews of Modern Physics, vol. 83, no. 2, pp. 307–330, 2011.CrossRefGoogle Scholar
[455]
Conrey, J. B., “The Riemann hypothesis,” Notices of the American Mathematical Society, vol. 50, no. 3, pp. 341–353, 2003.Google Scholar
[456] Riemann, B., “Ueber die anzahl der primzahlen unter einer gegebenen grösse,” Monatsberichte der Berliner Akademie, pp. 1–9, 1859.Google Scholar
[457]
Tenenbaum, G. and France, M. M., The Prime Numbers and Their Distribution, vol.6. American Mathematical Society, 2000.CrossRefGoogle Scholar
[458]
Steuding, J., An Introdution to the Theory of L-Functions. A course given at the Autonoma University, Madrid, 2005.Google Scholar
[459]
Edwards, H. M., Riemann’s Zeta Function. Academic Press, New York and London, 1974.Google Scholar
[460]
Ivic, A., The Riemann Zeta Function: The Theory of the Riemann Zeta Function with Applications. John Wiley and Sons, New York, 1985.Google Scholar
[461]
Wu, H. and Sprung, D. W. L., “Riemann zeros and a fractal potential,” Physical Review E, vol. 48, no. 4, pp. 2595–2598, 1993.CrossRefGoogle Scholar
[462]
Schumayer, D., van Zyl, B. P., and Hutchinson, D. A. W., “Quantum mechanical potentials related to the prime numbers and Riemann zeros,” Physical Review E, vol. 78, no. 5, p. 056215, 2008.CrossRefGoogle Scholar
[463]
Bohr, H., “Über eine quasi-periodische eigenshaft dirichletscher reihen mit anwendung auf dirichletschen l-functione,” Mathematische Annalen, vol. 85, pp. 115–122, 1922.CrossRefGoogle Scholar
[464]
Crandall, R. and Pomerance, C., Prime Numbers. A Computational Perspective, 2nd ed. Springer, New York, 2005.Google Scholar
[465]
Riesel, H. and Gohl, G., “Some calculations related to Riemann’s prime number formula,” Mathematics of Computations, vol. 24, no. 112, pp. 969–983, 1970.Google Scholar
[466]
Bombieri, E., Problems of the Millennium: The Riemann Hypothesis. Clay Mathematics Institute, 2008.Google Scholar
[467]
Borwein, C. S. R. B. W. A., P., “Localization of waves,” in The Riemann Hypothesis. A Resource for the Afficionado and Virtuoso Alike, Borwein, C.S.R.B.W.A.,P.,Ed. Springer, New York, 2008, pp. 3–7.CrossRefGoogle Scholar
[468]
Odlyzko, A. M., “On the distribution of spacings between zeros of the zeta function,” Mathematics of Computation, vol. 48, no. 177, pp. 273–308, 1987.CrossRefGoogle Scholar
[469] Goetschy, A. and Skipetrov, S. E., “Euclidean random matrices and their applications in physics,” arXiv:1303.2880, 2013.Google Scholar
[470]
Goetschy, A. and Skipetrov, S. E., “Non-Hermitian Euclidean random matrix theory,” Physical Review E, vol. 84, pp. 011 150–1–011 150–10, 2011.CrossRefGoogle ScholarPubMed
[471]
Mitchell, G. E., Richter, A., and Weidenmüller, H. A., “Random matrices and chaos in nuclear physics: nuclear reactions,” Reviews of Modern Physics, vol. 82, no. 4, pp. 2845–2901, 2010.CrossRefGoogle Scholar
[472] Bourgade, P. and Keating, J. P., “Quantum chaos, random matrix theory, and the Riemann ζ-function,” Séminaire Poincaré XIV, pp. 115–153, 2010.Google Scholar
[473]
Beenakker, C. W. J., “Random-matrix theory of quantum transport,” Reviews of Modern Physics, vol. 69, no. 3, pp. 731–808, 1997.CrossRefGoogle Scholar
[474]
Guhr, T., Müller-Groeling, A., and Weidenmüller, H. A., “Random-matrix theories in quantum physics: common concepts,” Physics Reports, vol. 299, pp. 189–425, 1998.CrossRefGoogle Scholar
[475]
Mirlin, A. D., “Statistics of energy levels and eigenfunctions in disordered systems,” Physics Reports, vol. 326, pp. 259–382, 2000.CrossRefGoogle Scholar
[476] Skipetrov, S. E. and Sokolov, M. E., “Absence of Anderson localization of light in a random ensemble of point scatterers,” Physical Review Letters, vol. 112, pp. 023 905–1– 023 905–5, 2013.Google Scholar
[477] Skipetrov, S. E. and Goetschy, A., “Eigenvalue distributions of large Euclidean random matrices for waves in random media,” Journal of Physics A: Mathematical and Theoretical, vol. 44, pp. 065 102–065 127, 2011.CrossRefGoogle Scholar
[478] Goetschy, A. and Skipetrov, S. E., “Euclidean matrix theory of random lasing in a cloud of cold atoms,” European Physics Letters, vol. 96, pp. 34 005–p1–34 005–p6, 2011.CrossRefGoogle Scholar
[479] Timberlake, T. K. and Tucker, J. M., “Is there quantum chaos in the prime numbers?” arXiv:quant-ph/0708.2567, 2007.Google Scholar
[480]
Berry, M. V. and Robnik, M., “Semiclassical level spacings when regular and chaotic orbits coexist,” Journal of Physics A, vol. 17, no. 12, p. 2413, 1984.CrossRefGoogle Scholar
[481]
Steuding, J., Value-Distribution of L-Functions. Springer-Verlag, Berlin and Heidelberg, 2007.Google Scholar
[482]
Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, 2nd ed. Springer-Verlag, New York, 1990.CrossRefGoogle Scholar
[483]
Everest, G. and Ward, T., An Introduction to Number Theory. Springer-Verlag, London2005.Google Scholar
[484]
Littlewood, J. E., “Distribution des nombres premiers,” Comptes rendus de l’Académie des Sciences, vol. 158, pp. 1869–1872, 1914.Google Scholar
[485]
Granville, A. and Martin, G., “Prime number races,” American Mathematical Monthly, vol. 113, no. 1, pp. 1–33, 2006.CrossRefGoogle Scholar
[486]
Rubinstein, M. and Sarnak, P., “Chebyshev’s bias,” Experimental Mathematics, vol.3, no. 3, pp. 173–197, 1994.CrossRefGoogle Scholar
[487]
Lemke Oliver, R. J. and Soundararajan, K., “Unexpected biases in the distribution of consecutive primes,” PNAS, vol. 113, no. 31, pp. E4446–E4454, 2016.CrossRefGoogle ScholarPubMed
[488] Tao, T., “The dichotomy between structure and randomness, arithmetic progressions, and the primes,” arXiv:math/0512114v2, 2005.Google Scholar
[489]
Szemerédi, E., “On sets of integers containing no k elements in arithmetic progression,” Acta Arithmetica, vol. 27, pp. 299–345, 1975.CrossRefGoogle Scholar
[490]
Tao, T., “The Gaussian primes contain arbitrarily shaped constellations,” Journal d’Analyse Mathématique, vol. 99, pp. 109–176, 2006.CrossRefGoogle Scholar
[491]
Zhang, Y., “Bounded gaps between primes,” Annals of Mathematics, vol. 179, no. 3, pp. 1121–1174, 2014.CrossRefGoogle Scholar
[492] Zhang, G., Martelli, F., and Torquato, S., “The structure factor of primes,” Journal of Physics A: Mathematical and Theoretical, vol. 51, no. 11, p. 115001, February 2018. [Online]. Available: https://doi.org/10.1088%2F1751–8121%2Faaa52aCrossRefGoogle Scholar
[493]
Gallagher, P. X., “On the distribution of primes in short intervals,” Mathematika, vol. 23, no. 1, p. 4–9, 1976.CrossRefGoogle Scholar
[494]
Torquato, S., Scardicchio, A., and Zachary, C. E., “Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory,” Journal of Statistical Mechanics, vol. 2008, no. 11, p. P11019, 2008.CrossRefGoogle Scholar
Silverman, J. H., Friendly, AIntroduction to Number Theory, 4th ed. Pearson Education Inc., 2013.Google Scholar
[500]
Lange, L. J., “An elegant continued fraction for π,” American Mathematical Monthly, vol. 106, no. 5, pp. 456–458, 1999.Google Scholar
[501]
Cusick, T. W. and Flahive, M. E., The Markov and Lagrange Spectra. Mathematical Surveys and Monographs no. 30, American Mathematical Society, Providence, 1994.Google Scholar
[502]
Moreira, C. G., “Geometric properties of the Markov and Lagrange spectra,” Annals of Mathematics, vol. 188, no. 1, pp. 145–170, 2018.CrossRefGoogle Scholar
[503]
Bohr, H., Almost Periodic Functions. Julius Springer, Berlin, 1933.Google Scholar
[504]
Bohr, H., “Zur theorie der fastperiodischen funktionen i,” Acta Mathematica, vol. 45, p. 29127, 1925.CrossRefGoogle Scholar
[505]
Besicovitch, A. S., Almost Periodic Functions. Dover Publications, New York, 1954.Google Scholar
[506]
Cooke, R. L., “Almost-periodic functions,” American Mathematical Monthly, vol. 88, no. 7, pp. 515–526, 1981.CrossRefGoogle Scholar
[507]
Corduneanu, C., Almost Periodic Oscillations and Waves. Springer, Berlin and Heidelberg, 2008.Google Scholar
[508]
Berry, M. V. and Tabor, M., “Level clustering in the regular spectrum,” Proceedings of the Royal Society of London. Series A, vol. A356, pp. 375–394, 1977.Google Scholar
[509]
Rudnick, Z., Sarnak, P., and Zaharescu, A., “The distribution of spacings between the fractional parts of n2α,” Inventiones Mathematicae, vol. 145, pp. 37–57, 2001.CrossRefGoogle Scholar
[510]
Rudnick, Z. and Sarnak, P., “The pair correlation function of fractional parts of polynomials,” Communications in Mathematical Physics, vol. 194, pp. 61–70, 1998.CrossRefGoogle Scholar
[511]
Beltrami, E., What Is Random?Copernicus, Springer-Verlag, New York, 1999.CrossRefGoogle Scholar
[512]
Bartlett, M. S., “Chance or chaos?” Journal of the Royal Statistical Society, vol. 153, no. 3, pp. 321–347, 1990.CrossRefGoogle Scholar
[513]
Rudnick, Z. and Zaharescu, A., “The distribution of spacings between fractional parts of lacunary sequences,” Forum Mathematicum, vol. 14, no. 5, pp. 691–712, 2002.CrossRefGoogle Scholar
[514]
Rudnick, Z. and Zaharescu, A., “A metric result on the pair correlation of fractional parts of sequences,” Acta Arithmetica, vol. 89, no. 3, pp. 283–293, 1999.CrossRefGoogle Scholar
[515]
Cohen, H., A Classical Invitation to Algebraic Numbers and Class Fields. Springer-Verlag, New York, 1978.CrossRefGoogle Scholar
[516]
Goldman, J. R., The Queen of Mathematics.A Historically Motivated Guide to Number Theory. A. K. Peters Ltd., Natick, 2004.Google Scholar
[517]
Stewart, I. and Tall, D., Algebraic Number Theory and Fermat’s Last Theorem, 3rded. A. K. Peters Ltd., Canada, 2002.Google Scholar
[518]
Gethner, E., Wagon, S., and Wick, B., “A stroll through the Gaussian primes,” American Mathematical Monthly, vol. 105, pp. 327–333, 1998.CrossRefGoogle Scholar
[519]
Tsuchimura, N., “Computational results for Gaussian moat problem,” IEICETransactions, vol. 88-A, pp. 1267–1273, 2005.Google Scholar
[520]
Vardi, I., “Prime percolation,” Experimental Mathematics, vol. 7, no. 3, pp. 275–289, 1998.CrossRefGoogle Scholar
[521]
West, P. P. and Sittinger, B. D., “A further stroll into the Eisenstein primes,” American Mathematical Monthly, vol. 124, no. 7, pp. 609–620, 2017.CrossRefGoogle Scholar
[522]
Bressoud, D. and Wagon, S., A Course in Computational Number Theory. John Wiley and Sons, Hoboken, 2000.Google Scholar
[523]
Renze, J., Wagon, S., and Wick, B., “The Gaussian zoo,” Experimental Mathematics, vol. 10, no. 2, pp. 161–173, 2001.CrossRefGoogle Scholar
Niederreiter, H. and Rivat, J., “On the correlation of pseudorandom numbers generated by inversive methods,” Monatshefte für Mathematik, vol. 153, pp. 251–264, 2008.CrossRefGoogle Scholar
[526]
Trappe, W. and Washington, L. C., Introduction to Cryptography with Coding Theory, 2nd ed. Pearson Prentice Hall, Upper Saddle River, 2006.Google Scholar
[527]
Meijer, A. R., Algebra for Cryptologists. Springer International Publishing, Switzerland, 2016.CrossRefGoogle Scholar
[528]
Calinger, R. S., Leonhard Euler: Mathematical Genius in the Enlightenment. Princeton and Oxford University Press, Princeton, 2016.Google Scholar
[529]
Cobeli, C. and Zaharescu, A., “On the distribution of primitive roots mod p,” Acta Arithmetica, vol. 83, no. 2, pp. 143–153, 1998.CrossRefGoogle Scholar
[530]
Rudnick, Z. and Zaharescu, A., “The distribution of spacings between small powers of a primitive root,” Israel Journal of Mathematics, vol. 120, pp. 271–287, 2000.CrossRefGoogle Scholar
[531]
Hoffstein, J., Pipher, J., and Silverman, J. H., An Introduction to Mathematical Cryptography. Springer, New York, 2008.Google Scholar
[532]
Lee, S. Y., Walsh, G. F., and Dal Negro, L., “Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection,” Optics Express, vol. 21, no. 4, pp. 4945–4957, 2013.CrossRefGoogle ScholarPubMed
[533]
Silverman, J. H., The Arithmetic of Elliptic Curves. Springer Science & Business Media Berlin and New York, 2009.CrossRefGoogle Scholar
[534]
Washington, L. C., Elliptic Curves Number Theory and Cryptography. Chapman and Hall/CRC, Boca Raton, 2008.Google Scholar
Taylor, R., “Automorphy for some ℓ-adic lifts of automorphic mod ℓ galois representations. ii.” Publications Mathematiques de l’Institut des Hautes Etudes Scientifiques, vol. 108, pp. 183–239, 2008.CrossRefGoogle Scholar
[537]
Blum, M. and Micali, S., “How to generate cryptographically strong sequences of pseudorandom bits,” SIAM Journal on Computing, vol. 13, no. 4, pp. 850–864, 1984.CrossRefGoogle Scholar
[538]
Blum, L., Blum, M., and Shub, M., “A simple unpredictable pseudo-random number generator,” SIAM Journal on Computing, vol. 15, no. 2, pp. 364–383, 1986.CrossRefGoogle Scholar
[539]
Marsaglia, G., “Random numbers fall mainly in the planes,” PNAS, vol. 61, no. 1, pp. 25–28, 1968.CrossRefGoogle ScholarPubMed
Cieślak, M. J., Gamage, K. A. A., and Glover, R.,”Coded-apertureimagingsystems: past, present and future development past, present and future development – a review.” Radiation Measurements, vol. 92, pp. 59–71, 2016.CrossRefGoogle Scholar
[543]
Chaitin, G. J., Algorithmic Information Theory. Cambridge University Press, 1987.CrossRefGoogle Scholar
[544] Chaitin, G. J., Thinking about Gödel and Turing. Essays on Complexity, 1970–2007. World Scientific, Singapore, 2007.CrossRefGoogle Scholar
[545]
Chaitin, G. J., The Limits of Mathematics. Springer-Verlag, Singapore, 1998.Google Scholar
[546]
Chaitin, G. J., “Information-theoretic limitations of formal systems,” Journal of the ACM, vol. 21, no. 3, pp. 403–434, 1974.CrossRefGoogle Scholar
[547] Nagel, E. and N. J. R., Gödel’s Proof. Revised Edition. New York University Press, New York, 2001.Google Scholar
[548]
Smullyan, R. M., A Beginner’s Guide to Mathematical Logic. Dover Publications, Mineola, 2014.Google Scholar
[549]
Shannon, C. E., “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.CrossRefGoogle Scholar
[550]
Pincus, S. M., “Approximate entropy as a measure of system complexity,” PNAS, vol. 88, pp. 2297–2301, 1991.CrossRefGoogle ScholarPubMed
[551]
Costa, M., Goldberger, A. L., and Peng, C. K., “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 89, no. 6, p. 068102, 2002.CrossRefGoogle ScholarPubMed
[552] Costa, M., Goldberger, A. L., and Peng, C. K., “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, no. 021906, 2005.CrossRefGoogle ScholarPubMed
[553]
Keeping, E. S., Introduction to Statistical Inference. Dover Publications Inc., New York, 1995.Google Scholar
[554]
Ramsey, F. P., “On a problem of formal logic,” Proceedings of the London Mathematical Society, vol. s2–30, pp. 264–286, 1930.CrossRefGoogle Scholar
[555]
Micciancio, D. and Goldwasser, S., Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer Academic Publishers, Dordrecht, 2002.CrossRefGoogle Scholar
[556] Zamir, R., Lattice Coding for Signals and Networks. Cambridge Univerity Press, Cambridge, 20014.Google Scholar
[557]
Pickover, C. A., The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling, New York, 2009.Google Scholar
[558]
Dunbabin, K. M., Mosaics of the Greek and Roman World. Cambridge Univeristy Press, Cambridge, 1999.Google Scholar
[559]
Broug, E., Islamic Geometric Patterns. Thames and Hudson, London, 2008.Google Scholar
[560] Kepler, J., Harmonice Mundi, Book II. Lincii, 1619.Google Scholar
[561] Fyodorov, E. S., “Simmetrija na ploskosti [symmetry in the plane],” Zapiski Imperatorskogo Sant-Petersburgskogo Mineralogicheskogo Obshchestva [Proceedings of the Imperial St. Petersburg Mineralogical Society], vol. 28, pp. 245–291, 1891.Google Scholar
[562]
Grünbaum, B. and Shephard, G. C., Tilings and Patterns, 2nd ed. Dover, New York, 2016.Google Scholar
[563]
Coxeter, H. S. M., Regular Polytopes. Dover Publications Inc., New York, 1973.Google Scholar
[564]
Minkowski, H., Diophantische Approximationen. Druck und Verlag Von B. G. Teubner, Leipzig, 1907.CrossRefGoogle Scholar
[565]
Fedorov, E. S., Das Kristallreich: Tabellen zur Kristallochemischen Analyse. Academy of Sciences, St. Petersburg, 1920.Google Scholar
[566]
Schoenflies, A., Kristallsystem und Kristallstruktur. Teubner, 1891.Google Scholar
[567]
Barlow, W., “Über die geometrischen eigenschaften homogener starrer strukturen und ihre anwendung auf krystalle, [on the geometrical properties of homogeneous rigid structures and their application to crystals],” Zeitschrift für Krystallographie und Mineralogie, vol. 23, pp. 1–63, 1894.Google Scholar
[568]
Hiller, H., “The crystallographic restriction in higher dimensions,” Acta Crystallographica, vol. A41, pp. 541–544, 1985.CrossRefGoogle Scholar
[569]
de Bruijn, N. G., “Algebraic theory of Penrose’s non-periodic tilings of the plane,” Indagationes Mathematicae, Proceedings of the Koninklijke Nederlandse Akademie van Wetenshappen Series, vol. A84, no. 1, pp. 38–66, 1981.Google Scholar
[570]
Moody, R. V. and Patera, J., “Quasicrystals and icosians,” Journal of Physics A: Mathematical and General, vol. 26, pp. 2829–2853, 1993.CrossRefGoogle Scholar
[571]
van Smaalen, S., Incommensurate Crystallography. Oxford University Press, Oxford, 2007.CrossRefGoogle Scholar
[572]
Berger, R., “The undecidability of the domino problem,” Memoirs American Mathematical Society, vol. 66, pp. 1–72, 1966.Google Scholar
[573] Jeandel, E. and Rao, M., “An aperiodic set of 11 Wang tiles,” eprint arXiv:1506.06492, pp. 1–40, 2015.Google Scholar
[574]
Penrose, R., “Pentaplexity,” Bulletin of the Institute for Mathematics and Applications, vol. 10, pp. 266–271, 1974.Google Scholar
[575]
de Wolff, P. M. and van Aalst, W., “The four-dimensional space group of γ − na2co3,” Acta Crystallographica A, vol. 28, p. 111, 1972.Google Scholar
[576]
de Wolff, P. M., “The pseudo-symmetry of modulated crystal structures,” Acta Crystallographica A, vol. 30, pp. 777–785, 1974.CrossRefGoogle Scholar
[577]
Bieberbach, L., “Über die bewegungsgruppen der n-dimensional en euklidischen räume mit einem endlichen fundamental bereich,” Matematische Annallen, vol. 72, pp. 400–412, 1912.CrossRefGoogle Scholar
[578]
Asher, E. and Janner, A., “Algebraic aspects of crystallography I: space groups as extensions,” Helvetica Physica Acta, vol. 38, pp. 551–572, 1965.Google Scholar
[579]
Asher, E. and Janner, A., “Algebraic aspects of crystallography II: non-primitive translations in space groups,” Communications in Mathematical Physics, vol. 11, pp. 138–167, 1968.Google Scholar
[580]
Fast, G. and Janssen, T., “Determination of n-dimensional space groups by means of an electronic computer,” Journal of Computational Physics, vol. 7, pp. 1–11, 1971.CrossRefGoogle Scholar
[581]
“Icru report of the executive committee,” Acta Crystallographica A, vol. 48, p. 922, 1992.Google Scholar
Prusinkiewicz, P. and Lindenmayer, A., The Algorithmic Beauty of Plants. Springer-Verlag, New York, 1990.CrossRefGoogle Scholar
[584]
Ball, P., Nature’s Patterns. Oxford University Press, New York, 2009.Google Scholar
[585]
Mitchison, G. J., “Phyllotaxis and the Fibonacci series,” Science, vol. 196, pp. 270–275, 1977.CrossRefGoogle ScholarPubMed
[586]
Adam, J. A., A Mathematical Nature Walk. Princeton University Press, Princeton, 2009.CrossRefGoogle Scholar
[587]
Jean, R. V., Phyllotaxis. Cambridge University Press, New York, 1995.Google ScholarPubMed
[588] Bonnet, C., Recherches sur l’usage des feuilles dans les plantes. E. Luzac, fils., Göttingen and Leyden, 1754.Google Scholar
[589]
Adler, I., Barabe, D., and Jean, R. V., “A history of the study of phillotaxis,” Annals of Bothany, vol. 80, pp. 231–244, 1997.CrossRefGoogle Scholar
[590]
Turing, A. M., “The chemical basis of morphogenesis,” Philosophical Transactions of the Royal Society London, vol. 237B, pp. 37–52, 1952.Google Scholar
[591]
Adler, I., “A model of contact pressure in phyllotaxis,” Journal of Theoretical Biology, vol. 45, pp. 1–79, 1974.CrossRefGoogle Scholar
√ [592] Naylor, M., “Golden, 2, and π flowers: a spiral story,” Mathematics Magazine, vol. 75, pp. 163–172, 2002.Google Scholar
[593] Dal Negro, L., Lawrence, N., and Trevino, J., “Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals,” Optics Express, vol. 20, pp. 18 209–18 223, 2012.CrossRefGoogle ScholarPubMed
[594]
Simon, D. S., Lawrence, N., Trevino, J., Dal Negro, L., and Sergienko, A. V., “High Capacity quantum Fibonacci coding for key distribution,” Physical Review A, vol. 87, p. 032312, 2013.CrossRefGoogle Scholar
[595]
Stanley, H. E., “Multifractal phenomena in physics and chemistry (review),” Nature, vol. 335, pp. 405–409, 1988.CrossRefGoogle Scholar
[596]
Mandelbrot, B. B., “An Introduction to multifractal distribution functions,” in Fluctuations and Pattern Formation, Stanley, H. E. and Ostrowsky, N., Ed. Kluwer, Dordrecht and Boston, 1988, 345–360.Google Scholar
[597]
Frisch, U. and Parisi, G., “Fully developed turbulence and intermittency.” New York Academy of Sciences, Annals, vol. 357, 359–367, 1980.CrossRefGoogle Scholar
[598]
Trevino, J., Liew, S. F., Noh, H., Cao, H., and Dal Negro, L., “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Optics Express, vol. 20, pp. 3015–3033, 2012.CrossRefGoogle ScholarPubMed
[599]
Dal Negro, L., Wang, R., and Pinheiro, F. A., “Structural and spectral properties of deterministic aperiodic optical structures,” Crystals, vol. 6, pp. 161–195, 2016.CrossRefGoogle Scholar
[600]
Halsey, T., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I., “Fractal measures and their singularities: the characterization of strange sets,” Physical Review A., vol. 33, pp. 1141–1151, 1986.CrossRefGoogle ScholarPubMed
[601]
Chhabra, A. and Jensen, R. V., “Direct determination of the f (α) singularity spectrum,” Physical Review Letters, vol. 62, pp. 1327–1330, 1989.CrossRefGoogle Scholar
[602]
Pollard, M. E. and Parker, G. J., “Low-contrast bandgaps of a planar parabolic spiral lattice,” Optics Letters, vol. 34, pp. 2805–2807, 2009.CrossRefGoogle ScholarPubMed
[603]
Hof, A., “On diffraction by aperiodic structures,” Communications in Mathematical Physics, vol. 169, pp. 25–43, 1995.CrossRefGoogle Scholar
[604]
Baake, M. and Grimm, U., “Mathematical diffraction of aperiodic structures,” Chemical Society Reviews, vol. 41, pp. 6821–6843, 2012.CrossRefGoogle ScholarPubMed
[605]
Baake, M. and Grimm, U., “Kinematic diffraction from a mathematical viewpoint,” Zeitschrift für Kristallographie, vol. 226, pp. 711–725, 2011.CrossRefGoogle Scholar
[606]
Janner, A. and Janssen, T., “Symmetry of periodically distorted crystals,” Physical Review B, vol. 15, pp. 643–658, 1977.CrossRefGoogle Scholar
[607]
Bombieri, E. and Taylor, J. E., “Quasicrystals, tilings, and algebraic number theory: some preliminary connections,” Contemporary Mathematics, vol. 64, pp. 241–264, 1987.CrossRefGoogle Scholar
[608]
Moody, R. V., “Model sets: a survey”. In From Quasicrystals to More Complex Systems. Centre de Physique des Houches, vol 13, F. Axel, F. Dénoyer, J. P. Gazeau, Ed. Springer, Berlin, Heidelberg, 2000.Google Scholar
[609]
Baake, M. and Moody, R. V., “Weighted Dirac combs with pure point diffraction,” Journal für die reine und angewandte Mathematik (Crelle), vol. 573, pp. 61–94, 2004.Google Scholar
[610]
Baake, M. and Grimm, U., “Diffraction of limit periodic point sets,” Philosophical Magazine, vol. 91, pp. 2661–2670, 2011.CrossRef