Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-01T20:17:21.108Z Has data issue: false hasContentIssue false

2 - Recent advances in paleoclimate modeling: toward better simulations of warm paleoclimates

from Part 1 - Approaches to the study of paleoclimates

Published online by Cambridge University Press:  06 July 2010

Brian T. Huber
Affiliation:
Smithsonian Institution, Washington DC
Kenneth G. Macleod
Affiliation:
University of Missouri, Columbia
Scott L. Wing
Affiliation:
Smithsonian Institution, Washington DC
Get access

Summary

ABSTRACT

Numerical climate models have been applied to problems of paleoclimatology for several decades. During that time, climate models have progressed in complexity from relatively simplistic Energy Balance Models (EBMs) to sophisticated three-dimensional General Circulation Models (GCMs) of the atmosphere and oceans. Recent advances in climate modeling, mainly the incorporation of climate system processes once generalized or ignored and the interactive ‘coupling’ of climate system components, are leading toward more realistic paleoclimate simulations and a new understanding of warm paleoclimate dynamics. The future promises even more comprehensive models running at higher resolutions, allowing paleoclimate modeling studies to focus on subcontinental to regional-scale problems. However, as the models gain sophistication, paleoclimate modeling strategies become more complex. The set-up and initialization of GCMs using Atmospheric General Circulation Models (AGCMs) coupled to full-depth, dynamical Ocean General Circulation Models (OGCMs) will provide one of the primary challenges for the paleoclimate modeling community in coming years.

INTRODUCTION

Climate, defined as the mean state of the atmosphere along with some statistical description of variability, has undergone constant change throughout earth history. Paleoclimatology is the study of those ancient climates. Perhaps no subject within the earth sciences is as interdisciplinary, bringing together atmospheric science, oceanography, biogeochemistry, biogeography, and paleontology with the solid-earth sciences of geology, marine geology, and geophysics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×