Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-08T06:52:12.641Z Has data issue: false hasContentIssue false

5 - Univariate, Nonstationary Processes: Tests and Modeling

Published online by Cambridge University Press:  05 December 2014

Janet M. Box-Steffensmeier
Affiliation:
Ohio State University
John R. Freeman
Affiliation:
University of Minnesota
Matthew P. Hitt
Affiliation:
Louisiana State University
Jon C. W. Pevehouse
Affiliation:
University of Wisconsin, Madison
Get access

Summary

STATIONARY DATA

Thus far, all of our models assumed that our data are stationary. A stationary series does not have statistical properties that depend on time. All shocks and past values in a stationary series eventually lose their influence on the value of the variable today. A stationary stochastic process is defined such that

  1. • A stochastic process is stationary if the mean and variance are constant overtime and covariance between two time points depends only on the distance of the lag between the two time periods and not on the actual time that the covariances are computed.

  2. • In other words, if a time series is stationary, its mean, variance, and auto-covariance (at various lags) remain the same, no matter when we measure them.

Why should analysts care if variables are stationary? Econometric problems may occur when we run a regression with variables that are not stationary. For example, in the Box-Jenkins identification stage, because of nonstationarity, we may fail to diagnose a higher order AR process. We need to diagnose and correctly account for the characteristics of the data-generating process.

Several other issues arise with nonstationary data, which we discuss in this and the following chapters. At a basic level, nonstationary data violate the invertibility condition for the value of φ (the AR process in our ARMA model)and bias our estimate of φ (that is, the extent to which past values of the dependent variable influence the current value).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×