Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-zkswk Total loading time: 3.341 Render date: 2022-11-28T09:42:58.087Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true
This chapter is part of a book that is no longer available to purchase from Cambridge Core

Suggested Reading and Selected References

Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stahl's Essential Psychopharmacology
Neuroscientific Basis and Practical Applications
, pp. 579 - 614
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Brunton, LL (ed.) (2018) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 13th edition. New York, NY: McGraw Medical.Google Scholar
Schatzberg, AF, Nemeroff, CB (eds.) (2017) Textbook of Psychopharmacology, 5th edition. Washington, DC: American Psychiatric Publishing.Google Scholar

Secondary Sources

Cummings, M, Stahl, SM (2021) Management of Complex, Treatment-Resistant Psychiatric Disorders. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goldberg, J, Stahl, SM (2021) Practical Psychopharmacology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kalali, A, Kwentus, J, Preskorn, S, Stahl, SM (eds.) (2012) Essential CNS Drug Development. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Marazzitti, D, Stahl, SM (2019) Evil, Terrorism and Psychiatry. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Moutier, C, Pisani, A, Stahl, SM (2021) Stahl’s Handbooks: Suicide Prevention Handbook. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Pappagallo, M, Smith, H, Stahl, SM (2012) Essential Pain Pharmacology: the Prescribers Guide. Cambridge: Cambridge University Press.Google Scholar
de Oliveira I, Reis, Schwartz, T, Stahl, SM. (2014) Integrating Psychotherapy and Psychopharmacology. New York, NY: Routledge Press.Google Scholar
Silberstein, SD, Marmura, MJ, Hsiangkuo, Y, Stahl, SM (2016) Essential Neuropharmacology: the Prescribers Guide, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Stahl, SM (2009) Stahl’s Illustrated: Antidepressants. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2009) Stahl’s Ilustrated: Mood Stabilizers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2009) Stahl’s Illustrated: Chronic Pain and Fibromyalgia. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Mignon, L (2009) Stahl’s Illustrated: Attention Deficit Hyperactivity Disorder. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Mignon, L (2010) Stahl’s Illustrated: Antipsychotics, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Grady, MM (2010) Stahl’s Illustrated: Anxiety and PTSD. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2011) Essential Psychopharmacology Case Studies. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2018) Stahl’s Essential Psychopharmacology: the Prescribers Guide Children and Adolescents. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2019) Stahl’s Self-Assessment Examination in Psychiatry: Multiple Choice Questions for Clinicians, 3rd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2021) Stahl’s Essential Psychopharmacology: the Prescribers Guide, 7th edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Davis, RL (2011) Best Practices for Medical Educators, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Stahl, SM, Grady, MM (2012) Stahl’s Illustrated: Substance Use and Impulsive Disorders. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Moore, BA (eds.) (2013) Anxiety Disorders: a Concise Guide and Casebook for Psychopharmacology and Psychotherapy Integration. New York, NY: Routledge Press.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2014) Stahl’s Illustrated: Violence: Neural Circuits, Genetics and Treatment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2016) Stahl’s Illustrated: Sleep and Wake Disorders, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2018) Stahl’s Illustrated: Dementia. Cambridge: Cambridge University Press..Google Scholar
Stahl, SM, Schwartz, T (2016) Case Studies: Stahl’s Essential Psychopharmacology, Volume 2. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stein, DJ, Lerer, B, Stahl, SM (eds.) (2012) Essential Evidence Based Psychopharmacolgy, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Warburton, KD, Stahl, SM (2016) Violence in Psychiatry. Cambridge: Cambridge University Press.Google Scholar
Warburton, KD, Stahl, SM (2021) Decriminalizing Mental Illness. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Byrne, JH, Roberts, JL (eds.) (2004) From Molecules to Networds: An Introduction to Cellular and Molecular Neuroscience. New York, NY: Elsevier.Google Scholar
Charney, DS, Buxbaum, JD, Sklar, P, Nestler, EJ (2018) Charney and Nestler’s Neurbiology of Mental Illness, 5th edition. New York, NY: Oxford University Press.Google Scholar
Iversen, LL, Iversen, SD, Bloom, FE, Roth, RH (2009) Introduction to Neuropsychopharmacology. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Meyer, JS, Quenzer, LF (2019) Psychopharmacology: Drugs, the Brain, and Behavior, 3rd edition. New York, NY: Sinauer Associates, Oxford University Press.Google Scholar
Nestler, EJ, Kenny, PJ, Russo, SJ, Schaefer, A (2020) Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, 4th edition. New York, NY: McGraw Medical.Google Scholar
Purves, D, Augustine, GJ, Fitzpatrick, D, et al. (2018) Neuroscience, 6th edition. New York, NY: Sinauer Associates, Oxford University Press.Google Scholar
Squire, LR, Berg, D, Bloom, FE, et al. (eds.) (2012) Fundamental Neuroscience, 4th edition. San Diego, CA: Academic Press.Google Scholar
Alex, KD, Pehak, EA (2007) Pharmacological mechanisms of serotoninergic regulation of dopamine neurotransmission. Pharmacol Ther 113: 296320.CrossRefGoogle Scholar
Amargos-Bosch, M, Bortolozzi, A, Buig, MV, et al. (2004) Co-expression and in vivo interaction of serotonin 1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cerbral Cortex 14: 281–99.Google ScholarPubMed
Baez, MV, Cercata, MC, Jerusalinsky, DA (2018) NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast, doi.org/10,1155/2018/5093048.CrossRefGoogle Scholar
Beaulier, JM, Gainetdinov, RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63: 182217.CrossRefGoogle Scholar
Belmer, A, Quentin, E, Diaz, SL, et al. (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 42: 1623–32.Google Scholar
Calabresi, P, Picconi, B, Tozzi, A, Ghiglieri, V, Di Fillippo, M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neurosci 17: 102230.CrossRefGoogle ScholarPubMed
Cathala, A, Devroye, C, Drutel, G, et al. (2019) Serotonin 2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitor control on serotonin neurons. Exp Neurol 311: 5766.CrossRefGoogle ScholarPubMed
De Bartolomeis, A, Fiore, G, Iasevoli, F (2005) Dopamine glutamate interaction and antipsychotics mechanism of action: implication for new pharmacologic strategies in psychosis. Curr Pharmaceut Design 11: 3561–94.CrossRefGoogle ScholarPubMed
DeLong, MR, Wichmann, T (2007) Circuits and Ciruit disorders of the basal ganglia. Arch Neurol 64: 20–4.CrossRefGoogle Scholar
Fink, KB, Gothert, M (2007) 5HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360417.CrossRefGoogle Scholar
Hansen, KB, Yi, F, Perszyk, RE, et al (2018) Structure, function and allosteric modulation of NMDA receptors. J Gen Physiol 150: 1081105.CrossRefGoogle ScholarPubMed
Homayoun, H, Moghaddam, B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27: 11496–500.CrossRefGoogle ScholarPubMed
Nicoll, RA (2017) A brief history of long-term potentiation. Neuron 93: 28199.CrossRefGoogle ScholarPubMed
Paoletti, P, Neyton, J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7: 3947.CrossRefGoogle ScholarPubMed
Scheefhals, N, MacGillavry, HD (2018) Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 91: 8294.CrossRefGoogle ScholarPubMed
Sokoloff, P, Le Foil, B (2017) The dopamine D3 receptor: a quarter century later. Eur J Neurosci 45: 219.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Dazzled by the dominions of dopamine: clinical roles of D3, D2, and D1 receptors. CNS Spectrums 22: 305–11.CrossRefGoogle ScholarPubMed
Aghajanian, GK, Marek, GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31: 302–12.CrossRefGoogle ScholarPubMed
Bloomfield, MAP, Morgan, CJA, Egerton, A, et al. (2014) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 75: 470–8.CrossRefGoogle ScholarPubMed
Brugger, SP, Anelescu, I, Abi-Dargham, A, et al. (2020) Heterogeneity and striatal dopamine function in schizophrenia: meta analysis of variance. Biol Psychiatry 67: 215–24.Google Scholar
Bubenikova-Valesova, V, Horacek, J, Vrajova, M, et al. (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32: 1014–23.CrossRefGoogle ScholarPubMed
Demjaha, A, Murray, RM, McGuire, PK (2012) Dopamine synthesis capacity in patients with treatment resistant schizophrenia. Am J Psychiatry 169: 1203–10.CrossRefGoogle ScholarPubMed
Driesen, N, McCarthy, G, Bhagwagar, Z, et al (2013) The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacol 38: 2613–22.CrossRefGoogle ScholarPubMed
Egerton, A, Chaddock, CA, Winton-Brown, TT, et al. (2013) Presynaptic striatal dopamine dysfunction in people at ultra high risk for psychosis: findings in a second cohort. Biol Psychiatry 74: 106–12.CrossRefGoogle ScholarPubMed
Gellings Lowe, N, Rapagnani, MP, Mattei, C, Stahl, SM (2012)The psychopharmacology of hallucinations: ironic insights into mechanisms of action. In The Neuroscience of Hallucinations, Jardri, R, Thomas, P, Cachia, A and Pins, D. (eds.), Berlin: Springer, 471–92.Google Scholar
Howes, OD, Bose, SK, Turkheimer, F, et al. (2011) Dopamine synthsis capacity before onset of psychosis: a prospective 18F-DOPA PET imaging study. Am J Psychiatry 169: 1311–17.Google Scholar
Howes, OD, Montgomery, AJ, Asselin, MC, et al. (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66: 1320.CrossRefGoogle ScholarPubMed
Juahar, S, Nour, MM, Veronese, M, et al. (2017) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 74: 1206–13.Google Scholar
Lodge, DJ, Grace, AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32: 507–13.CrossRefGoogle ScholarPubMed
McCutcheon, RA, Abi-Dargham, A, Howes, OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42: 205–20.CrossRefGoogle ScholarPubMed
Mizrahi, R, Kenk, M, Suridjan, I, et al (2014) Stress induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39: 1479–89.CrossRefGoogle ScholarPubMed
Paz, RD, Tardito, S, Atzori, M (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18: 773–86.CrossRefGoogle Scholar
Stahl, SM (2016) Parkinson’s disease psychosis as a serotonin–dopamine imbalance syndrome. CNS Spectrums 21: 355–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums 23: 187–91.CrossRefGoogle ScholarPubMed
Weinstein, JJ, Chohan, MO, Slifstein, M, et al. (2017) Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 81: 3142.CrossRefGoogle Scholar
Alphs, LD, Summerfelt, A, Lann, H, Muller, RJ (1989) The Negative Symptom Assessment: A new instrument to assess negative symptoms of schizophrenia. Psychopharmacol Bull 25: 159–63.Google ScholarPubMed
Arango, C, Rapado-Castro, M, Reig, S, et al. (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69: 1626.CrossRefGoogle ScholarPubMed
Cruz, DA, Weawver, CL, Lovallo, EM, Melchitzky, DS, Lewis, DA. (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacology 34: 2112–24.CrossRefGoogle ScholarPubMed
Dragt, S, Nieman, DH, Schultze-Lutter, F, et al. (2012) Cannabis use and age at onset of symptoms in subjects at clinical high risk for psychosis. Acta Psychiatr Scand 125: 4553.CrossRefGoogle ScholarPubMed
Eisenberg, DP, Berman, KF (2010) Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35: 258–77.CrossRefGoogle Scholar
Foti, DJ, Kotov, R, Guey, LT, Bromet, EJ (2010) Cannabis use and the course of schizophrenia: 10-year follow-up after first hospitalization. Am J Psychiatry 167: 987–93.CrossRefGoogle ScholarPubMed
Fusar-Poli, P, Bonoldi, I, Yung, AR, et al. (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69: 220–9.CrossRefGoogle ScholarPubMed
Goff, DC, Zeng, B, Ardelani, BA, et al. (2018) Association of hippocampal atrophy with duration of untreated psychosis and molecular biomarkers during initial antipsychotic treatment of first episode psychosis. JAMA Psychiatry 75: 370–8.CrossRefGoogle ScholarPubMed
Henry, LP, Amminger, GP, Harris, MG, et al. (2010) The EPPIC follow up study of first episode psychosis: longer term clinical and functional outcome 7 years after index admission. J Clin Psychiatry 71: 716–28.CrossRefGoogle ScholarPubMed
Kane, JM, Robinson, DG, Schooler, NR, et al. (2016) Comprehensive versus usual community care for first-episode psychosis: 2-year outcomes from the NIMH RAISE early treatment program. Am J Psychiatry 173: 362–72.CrossRefGoogle ScholarPubMed
Kendler, KS, Ohlsson, H, Sundquist, J, et al. (2019) Prediction of onset of substance induced psychotic disorder and its progression to schizophrenia in a Swedish National Sample. Am J Psychiatry 176: 711–19.CrossRefGoogle Scholar
Large, M, Sharma, S, Compton, MT, Slade, T, Nielssen, O (2011) Cannabis use and earlier onset of psychosis. Arch Gen Psychiatry 68: 555–61.CrossRefGoogle Scholar
Lieberman, JA, Small, SA, Girgis, RR (2019) Early detection and preventive intervention in schizophrenia: from fantasy to reality. Am J Psychiatry 176: 794810.CrossRefGoogle Scholar
Mechelli, A, Riecher-Rossler, A, Meisenzahl, EM, et al. (2011) Neuroanatomical abnormalities that predate the onset of psychosis. Arch Gen Psychiatry 68: 489–95.CrossRefGoogle Scholar
Morrissette, DA, Stahl, SM (2014) Treating the violent patient with psychosis or impulsivity utilizing antipsychotic polypharmacy and high-dose monotherapy. CNS Spectrums 19: 439–48.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits. CNS Spectrums 19: 357–65.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Is impulsive violence an addiction? The habit hypothesis. CNS Spectrums 20: 165–9.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Cummings, M (2014) California State Hospital Violence Assessment and Treatment (Cal-VAT) guidelines. CNS Spectrums 19: 44965.CrossRefGoogle ScholarPubMed
Wykes, T, Huddy, V, Cellard, C, McGurk, SR, Czobar, P (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168: 472–85.CrossRefGoogle ScholarPubMed
Artukoglu, BB, Li, F, Szejko, N, et al. (2020) Pharmacologic treatment of tardive dyskinesia: a meta analysis and systematic review. J Clin Psychiatry 81: e111.CrossRefGoogle ScholarPubMed
Bhidayasin, R, Jitkretsandakul, O, Friedman, JH (2018) Updating the recommendations for treatment of tardive syndromes: a systematic review of new evidence and practical treatment algorithm. J Neurol Sci 389: 6775.CrossRefGoogle Scholar
Carbon, M, Kane, JM, Leucht, S, et al. (2018) Tardive dyskinesia risk with first- and second-generation antipsychotics in comparative randomized controlled trials: a meta analysis. World Psychiatry 173: 330–40.Google Scholar
Citrome, L (2017) Valbenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.12964.CrossRefGoogle Scholar
Citrome, L (2017) Deutetrabenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.13030.CrossRefGoogle Scholar
Jacobsen, FM (2015) Second generation antipsychotics and tardive syndromes in affective illness: a public health problem with neuropsychiatric consequences. Am J Public Health 105: e1016.CrossRefGoogle ScholarPubMed
Niemann, N, Jankovic, J (2018) Treatment of tardive dyskinesia: a general overview with focus on the vesicular monoamine transporter 2 inhibitors. Drugs 78: 525–41.Google ScholarPubMed
Stahl, SM (2017) Neuronal traffic signals in tardive dyskinesia: not enough “stop” in the motor striatum. CNS Spectrums 22: 427–34.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects. CNS Spectrums 23: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Comparing pharmacological mechanism of action for the vesicular monoamine transporter 2 (VMAT2) inhibitors valbenazine and deutetrabenazine in treating tardive dyskinesia: does one have advantages over the other? CNS Spectrums 23: 239–47.CrossRefGoogle ScholarPubMed
Woods, SW, Morgenstern, H, Saksa, JR, et al. (2010) Incidence of tardive dyskinesia with atypical versus conventional antipsychotic medications: a prospective cohort study. J Clin Psychiatry 71: 463–74.CrossRefGoogle ScholarPubMed
Brissos, S, Veguilla, MR, Taylor, D, et al. (2014) The role of long-acting injectable antipsychotics in schizophrenia: a critical appraisal. Ther Adv Psychopharmacol 4: 198219.CrossRefGoogle ScholarPubMed
Kishimoto, T, Nitto, M, Borenstein, M, et al. (2013) Long acting injectable versus oral antipsychotics in schizophrenia: a systematic review and meta analysis of mirror image studies. J Clin Psychiatry 74: 957–65.CrossRefGoogle ScholarPubMed
MacEwan, JP, Kamat, SA, Duffy, RA, et al. (2016) Hospital readmission rates among patients with schizophrenia treated with long acting injectables or oral antipsychotics. Psychiatr Serv 67: 1183–8.CrossRefGoogle ScholarPubMed
Meyer, JM (2013) Understanding depot antipsychotics: an illustrated guide to kinetics. CNS Spectrums 18: 5868.CrossRefGoogle ScholarPubMed
Meyer, JM (2017) Converting oral to long acting injectable antipsychotics: a guide for the perplexed. CNS Spectrums 22: 1727.CrossRefGoogle Scholar
Stahl, SM (2014) Long-acting injectable antipsychotics: shall the last be first? CNS Spectrums 19: 35.CrossRefGoogle ScholarPubMed
Tiihonen, J, Haukka, J, Taylor, M, et al. (2011) A nationwide cohort study of oral and depot antipsychotics after first hospitalization for schizophrenia. Am J Psychiatry 168: 603–9.CrossRefGoogle Scholar
Berry, MD, Gainetdinov, RR, Hoener, MC, et al. (2017) Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther 180: 16180.CrossRefGoogle ScholarPubMed
Brannan, S (2020) KarXT (a new mechanism antipsychotic based on xanomeline) is superior to placebo in patients with schizophrenia: phase 2 clinical trial results. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
Citrome, L (2015) Brexpiprazole for schizophrenia and as adjunct for major depressive disorder: a systematic review of the efficacy and safety profile for the newly approved antipsychotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 69: 978–97.Google ScholarPubMed
Correll, CU, Davis, RE, Weingart, M, et al. (2020) Efficacy and safety of lumateperone for treatment of schizophrenia: a randomized clinical trial. JAMA Psychaitry 77: 349–58.Google ScholarPubMed
Dedic, N, Jones, PG, Hopkins, SC, et al. (2019) SEP363856: a novel psychotropic agent with unique non D2 receptor mechanism of actions. J Pharmacol Exp Ther 371: 114.CrossRefGoogle Scholar
Earley, W, Burgess, MV, Rekeda, L, et al. (2019) Cariprazine treatment of bipolar depression: a randomized double-blind placebo-controlled phase 3 study, Am J Psychiatry 176: 439–48.CrossRefGoogle ScholarPubMed
Gainetdinov, RR, Hoener, MC, Berry, MD (2018) Trace amines and their receptors. Pharmacol Rev 70: 549620.CrossRefGoogle ScholarPubMed
Koblan, KS, Kent, J, Hopkins, SC, Krystal, JH, et al. (2020) A non-D2-receptor-binding drug for the treatment of schizophrenia. New Engl J Med 382: 1407–506.CrossRefGoogle ScholarPubMed
Lieberman, JA, Davis, RE, Correll, CU, et al. (2016) ITI-007 for the treatment of schizophrenia: a 4-week randomized, double-blind, controlled trial. Biol Psychiatry 79: 952–6.CrossRefGoogle ScholarPubMed
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone monotherapy in the treatment of bipolar I depression: a randomized double-blind, placebo-controlled study. Am J Psychiatry 171: 160–8.Google Scholar
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone as adjunctive therapy with lithium or valproate for the treatment of bipolar I depression: a randomized, double blind, placebo-controlled study. Am J Psychiatry 171: 169–77.Google ScholarPubMed
Marder, SR, Davis, JM, Couinard, G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the north American trials. J Clin Psychiatry 58: 538–46.CrossRefGoogle ScholarPubMed
McIntyre, RS, Suppes, T, Early, W, Patel, M, Stahl, SM (2020) Cariprazine efficacy in bipolar I depression with and without concurrent manic symptoms: post hoc analysis of three randomized, placebo-controlled studies. CNS Spectrums 25: 502–10.CrossRefGoogle Scholar
Meyer, JM, Cummings, MA, Proctor, G, Stahl, SM (2016) Psychopharmacology of persistent violence and aggression. Psychiatr Clin N Am 39: 541–56.CrossRefGoogle ScholarPubMed
Meyer, JM, Stahl, SM (2020) Stahl’s Handbooks: the Clozapine Handbook. Cambridge: Cambridge University Press.Google Scholar
Nemeth, G, Laszlovszky, I, Czoboar, P, et al. (2017) Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomized double-blind controlled trial. Lancet 389: 1103–13.CrossRefGoogle Scholar
Pei, Y, Asif-Malik, A, Canales, JJ (2016) Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry and clinical implications. Front Neurosci 10: 148.CrossRefGoogle ScholarPubMed
Perkins, DO, Gu, H, Boteva, K, Lieberman, JA (2005) Relationship between duration of untreated psychosis and outcome in first episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry 162: 1785–804.CrossRefGoogle ScholarPubMed
Roth, BL. Ki determinations, receptor binding profiles, agonist and/or antagonist functional data, HERG data, MDR1 data, etc. as appropriate was generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271–2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP website http://pdsp.med.unc.edu/Google Scholar
Schwartz, MD, Canales, JJ, Zucci, R, et al. (2018) Trace amine associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 22: 513–26.CrossRefGoogle ScholarPubMed
Shekar, A, Potter, WZ, Lightfoot, J, et al. (2008) Seletive muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165: 1033–9.Google Scholar
Snyder, GL, Vanover, KE, Zhu, H, et al. (2014) Functional profile of a novel modulator of serotonin, dopamine and glutamate neurotransmission. Psychopharmacology 232 : 605–21.Google ScholarPubMed
Stahl, SM (2013) Classifying psychotropic drugs by mode of action and not by target disorder. CNS Spectrums 18: 11317.CrossRefGoogle Scholar
Stahl, SM (2013) Role of α1 adrenergic antagonism in the mechanism of action of iloperidone: reducing extrapyramidal symptoms. CNS Spectrums 18: 285–8.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Clozapine: is now the time for more clinicians to adopt this orphan? CNS Spectrums 19: 279–81.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectrums 21: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of cariprazine. CNS Spectrums 21: 1237.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectums 21: 271–5.Google ScholarPubMed
Stahl, SM (2017) Drugs for psychosis and mood: unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectrums 22: 375–84.CrossRefGoogle ScholarPubMed
Stahl, SM, Cucchiaro, J, Sinonelli, D, et al. (2013) Effectiveness of lurasidone for patients with schizophrenia following 6 weeks of acute treatment with lurasidone, olanazapine, or placebo: a 6-month, open-label study. J Clin Psychiatry 74: 507–15.CrossRefGoogle Scholar
Stahl, SM, Laredo, SA, Morrissette, DA (2020) Cariprazine as a treatment across the bipolar I spectrum from depression to mania: mechanism of action and review of clinical data. Ther Adv Psychopharmacol 10: 111.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Citrome, L, et al. (2013) “Meta-guidelines” for the management of patients with schizophrenia. CNS Spectrums 18: 15062.CrossRefGoogle ScholarPubMed
Suppes, T, Silva, R, Cuccharino, J, et al. (2016) Lurasidone for the treatment of major depressive disorder with mixed features: a randomized, double blind placebo controlled study. Am J Psychiatry 173: 400–7.CrossRefGoogle Scholar
Tarazi, F, Stahl, SM (2012) Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opin Pharmacother 13: 1911–22.CrossRefGoogle ScholarPubMed
Thase, ME, Youakim, JM, Skuban, A, et al. (2015) Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder. J Clin Psychiatry 76: 1224–31.CrossRefGoogle ScholarPubMed
Zhang, L, Hendrick, JP (2018) The presynaptic D2 partial agonist lumateperone acts as a postsynaptic D2 antagonist. Matters: doi: 10.19185/matters.201712000006.CrossRefGoogle Scholar
Alex, KD, Pehak, EA (2007) Pharmacological mechanisms of serotoninergic regulation of dopamine neurotransmission. Pharmacol Ther 113: 296320.CrossRefGoogle Scholar
Amargos-Bosch, M, Bortolozzi, A, Buig, MV, et al. (2004) Co-expression and in vivo interaction of serotonin 1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cerbral Cortex 14: 281–99.Google ScholarPubMed
Baez, MV, Cercata, MC, Jerusalinsky, DA (2018) NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast, doi.org/10,1155/2018/5093048.CrossRefGoogle Scholar
Beaulier, JM, Gainetdinov, RR (2011) The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev 63: 182217.CrossRefGoogle Scholar
Belmer, A, Quentin, E, Diaz, SL, et al. (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 42: 1623–32.Google Scholar
Calabresi, P, Picconi, B, Tozzi, A, Ghiglieri, V, Di Fillippo, M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nature Neurosci 17: 102230.CrossRefGoogle ScholarPubMed
Cathala, A, Devroye, C, Drutel, G, et al. (2019) Serotonin 2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitor control on serotonin neurons. Exp Neurol 311: 5766.CrossRefGoogle ScholarPubMed
De Bartolomeis, A, Fiore, G, Iasevoli, F (2005) Dopamine glutamate interaction and antipsychotics mechanism of action: implication for new pharmacologic strategies in psychosis. Curr Pharmaceut Design 11: 3561–94.CrossRefGoogle ScholarPubMed
DeLong, MR, Wichmann, T (2007) Circuits and Ciruit disorders of the basal ganglia. Arch Neurol 64: 20–4.CrossRefGoogle Scholar
Fink, KB, Gothert, M (2007) 5HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360417.CrossRefGoogle Scholar
Hansen, KB, Yi, F, Perszyk, RE, et al (2018) Structure, function and allosteric modulation of NMDA receptors. J Gen Physiol 150: 1081105.CrossRefGoogle ScholarPubMed
Homayoun, H, Moghaddam, B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27: 11496–500.CrossRefGoogle ScholarPubMed
Nicoll, RA (2017) A brief history of long-term potentiation. Neuron 93: 28199.CrossRefGoogle ScholarPubMed
Paoletti, P, Neyton, J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7: 3947.CrossRefGoogle ScholarPubMed
Scheefhals, N, MacGillavry, HD (2018) Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 91: 8294.CrossRefGoogle ScholarPubMed
Sokoloff, P, Le Foil, B (2017) The dopamine D3 receptor: a quarter century later. Eur J Neurosci 45: 219.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Dazzled by the dominions of dopamine: clinical roles of D3, D2, and D1 receptors. CNS Spectrums 22: 305–11.CrossRefGoogle ScholarPubMed
Aghajanian, GK, Marek, GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Rev 31: 302–12.CrossRefGoogle ScholarPubMed
Bloomfield, MAP, Morgan, CJA, Egerton, A, et al. (2014) Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry 75: 470–8.CrossRefGoogle ScholarPubMed
Brugger, SP, Anelescu, I, Abi-Dargham, A, et al. (2020) Heterogeneity and striatal dopamine function in schizophrenia: meta analysis of variance. Biol Psychiatry 67: 215–24.Google Scholar
Bubenikova-Valesova, V, Horacek, J, Vrajova, M, et al. (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32: 1014–23.CrossRefGoogle ScholarPubMed
Demjaha, A, Murray, RM, McGuire, PK (2012) Dopamine synthesis capacity in patients with treatment resistant schizophrenia. Am J Psychiatry 169: 1203–10.CrossRefGoogle ScholarPubMed
Driesen, N, McCarthy, G, Bhagwagar, Z, et al (2013) The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacol 38: 2613–22.CrossRefGoogle ScholarPubMed
Egerton, A, Chaddock, CA, Winton-Brown, TT, et al. (2013) Presynaptic striatal dopamine dysfunction in people at ultra high risk for psychosis: findings in a second cohort. Biol Psychiatry 74: 106–12.CrossRefGoogle ScholarPubMed
Gellings Lowe, N, Rapagnani, MP, Mattei, C, Stahl, SM (2012)The psychopharmacology of hallucinations: ironic insights into mechanisms of action. In The Neuroscience of Hallucinations, Jardri, R, Thomas, P, Cachia, A and Pins, D. (eds.), Berlin: Springer, 471–92.Google Scholar
Howes, OD, Bose, SK, Turkheimer, F, et al. (2011) Dopamine synthsis capacity before onset of psychosis: a prospective 18F-DOPA PET imaging study. Am J Psychiatry 169: 1311–17.Google Scholar
Howes, OD, Montgomery, AJ, Asselin, MC, et al. (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66: 1320.CrossRefGoogle ScholarPubMed
Juahar, S, Nour, MM, Veronese, M, et al. (2017) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 74: 1206–13.Google Scholar
Lodge, DJ, Grace, AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32: 507–13.CrossRefGoogle ScholarPubMed
McCutcheon, RA, Abi-Dargham, A, Howes, OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42: 205–20.CrossRefGoogle ScholarPubMed
Mizrahi, R, Kenk, M, Suridjan, I, et al (2014) Stress induced dopamine response in subjects at clinical high risk for schizophrenia with and without concurrent cannabis use. Neuropsychopharmacology 39: 1479–89.CrossRefGoogle ScholarPubMed
Paz, RD, Tardito, S, Atzori, M (2008) Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 18: 773–86.CrossRefGoogle Scholar
Stahl, SM (2016) Parkinson’s disease psychosis as a serotonin–dopamine imbalance syndrome. CNS Spectrums 21: 355–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums 23: 187–91.CrossRefGoogle ScholarPubMed
Weinstein, JJ, Chohan, MO, Slifstein, M, et al. (2017) Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 81: 3142.CrossRefGoogle Scholar
Alphs, LD, Summerfelt, A, Lann, H, Muller, RJ (1989) The Negative Symptom Assessment: A new instrument to assess negative symptoms of schizophrenia. Psychopharmacol Bull 25: 159–63.Google ScholarPubMed
Arango, C, Rapado-Castro, M, Reig, S, et al. (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69: 1626.CrossRefGoogle ScholarPubMed
Cruz, DA, Weawver, CL, Lovallo, EM, Melchitzky, DS, Lewis, DA. (2009) Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia. Neuropsychopharmacology 34: 2112–24.CrossRefGoogle ScholarPubMed
Dragt, S, Nieman, DH, Schultze-Lutter, F, et al. (2012) Cannabis use and age at onset of symptoms in subjects at clinical high risk for psychosis. Acta Psychiatr Scand 125: 4553.CrossRefGoogle ScholarPubMed
Eisenberg, DP, Berman, KF (2010) Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35: 258–77.CrossRefGoogle Scholar
Foti, DJ, Kotov, R, Guey, LT, Bromet, EJ (2010) Cannabis use and the course of schizophrenia: 10-year follow-up after first hospitalization. Am J Psychiatry 167: 987–93.CrossRefGoogle ScholarPubMed
Fusar-Poli, P, Bonoldi, I, Yung, AR, et al. (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69: 220–9.CrossRefGoogle ScholarPubMed
Goff, DC, Zeng, B, Ardelani, BA, et al. (2018) Association of hippocampal atrophy with duration of untreated psychosis and molecular biomarkers during initial antipsychotic treatment of first episode psychosis. JAMA Psychiatry 75: 370–8.CrossRefGoogle ScholarPubMed
Henry, LP, Amminger, GP, Harris, MG, et al. (2010) The EPPIC follow up study of first episode psychosis: longer term clinical and functional outcome 7 years after index admission. J Clin Psychiatry 71: 716–28.CrossRefGoogle ScholarPubMed
Kane, JM, Robinson, DG, Schooler, NR, et al. (2016) Comprehensive versus usual community care for first-episode psychosis: 2-year outcomes from the NIMH RAISE early treatment program. Am J Psychiatry 173: 362–72.CrossRefGoogle ScholarPubMed
Kendler, KS, Ohlsson, H, Sundquist, J, et al. (2019) Prediction of onset of substance induced psychotic disorder and its progression to schizophrenia in a Swedish National Sample. Am J Psychiatry 176: 711–19.CrossRefGoogle Scholar
Large, M, Sharma, S, Compton, MT, Slade, T, Nielssen, O (2011) Cannabis use and earlier onset of psychosis. Arch Gen Psychiatry 68: 555–61.CrossRefGoogle Scholar
Lieberman, JA, Small, SA, Girgis, RR (2019) Early detection and preventive intervention in schizophrenia: from fantasy to reality. Am J Psychiatry 176: 794810.CrossRefGoogle Scholar
Mechelli, A, Riecher-Rossler, A, Meisenzahl, EM, et al. (2011) Neuroanatomical abnormalities that predate the onset of psychosis. Arch Gen Psychiatry 68: 489–95.CrossRefGoogle Scholar
Morrissette, DA, Stahl, SM (2014) Treating the violent patient with psychosis or impulsivity utilizing antipsychotic polypharmacy and high-dose monotherapy. CNS Spectrums 19: 439–48.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits. CNS Spectrums 19: 357–65.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Is impulsive violence an addiction? The habit hypothesis. CNS Spectrums 20: 165–9.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Cummings, M (2014) California State Hospital Violence Assessment and Treatment (Cal-VAT) guidelines. CNS Spectrums 19: 44965.CrossRefGoogle ScholarPubMed
Wykes, T, Huddy, V, Cellard, C, McGurk, SR, Czobar, P (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168: 472–85.CrossRefGoogle ScholarPubMed
Artukoglu, BB, Li, F, Szejko, N, et al. (2020) Pharmacologic treatment of tardive dyskinesia: a meta analysis and systematic review. J Clin Psychiatry 81: e111.CrossRefGoogle ScholarPubMed
Bhidayasin, R, Jitkretsandakul, O, Friedman, JH (2018) Updating the recommendations for treatment of tardive syndromes: a systematic review of new evidence and practical treatment algorithm. J Neurol Sci 389: 6775.CrossRefGoogle Scholar
Carbon, M, Kane, JM, Leucht, S, et al. (2018) Tardive dyskinesia risk with first- and second-generation antipsychotics in comparative randomized controlled trials: a meta analysis. World Psychiatry 173: 330–40.Google Scholar
Citrome, L (2017) Valbenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.12964.CrossRefGoogle Scholar
Citrome, L (2017) Deutetrabenazine for tardive dyskinesia: a systematic review of the efficacy and safety profile for this newly approved novel medication – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Practice, doi.org 10.1111/ijcp.13030.CrossRefGoogle Scholar
Jacobsen, FM (2015) Second generation antipsychotics and tardive syndromes in affective illness: a public health problem with neuropsychiatric consequences. Am J Public Health 105: e1016.CrossRefGoogle ScholarPubMed
Niemann, N, Jankovic, J (2018) Treatment of tardive dyskinesia: a general overview with focus on the vesicular monoamine transporter 2 inhibitors. Drugs 78: 525–41.Google ScholarPubMed
Stahl, SM (2017) Neuronal traffic signals in tardive dyskinesia: not enough “stop” in the motor striatum. CNS Spectrums 22: 427–34.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects. CNS Spectrums 23: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2018) Comparing pharmacological mechanism of action for the vesicular monoamine transporter 2 (VMAT2) inhibitors valbenazine and deutetrabenazine in treating tardive dyskinesia: does one have advantages over the other? CNS Spectrums 23: 239–47.CrossRefGoogle ScholarPubMed
Woods, SW, Morgenstern, H, Saksa, JR, et al. (2010) Incidence of tardive dyskinesia with atypical versus conventional antipsychotic medications: a prospective cohort study. J Clin Psychiatry 71: 463–74.CrossRefGoogle ScholarPubMed
Brissos, S, Veguilla, MR, Taylor, D, et al. (2014) The role of long-acting injectable antipsychotics in schizophrenia: a critical appraisal. Ther Adv Psychopharmacol 4: 198219.CrossRefGoogle ScholarPubMed
Kishimoto, T, Nitto, M, Borenstein, M, et al. (2013) Long acting injectable versus oral antipsychotics in schizophrenia: a systematic review and meta analysis of mirror image studies. J Clin Psychiatry 74: 957–65.CrossRefGoogle ScholarPubMed
MacEwan, JP, Kamat, SA, Duffy, RA, et al. (2016) Hospital readmission rates among patients with schizophrenia treated with long acting injectables or oral antipsychotics. Psychiatr Serv 67: 1183–8.CrossRefGoogle ScholarPubMed
Meyer, JM (2013) Understanding depot antipsychotics: an illustrated guide to kinetics. CNS Spectrums 18: 5868.CrossRefGoogle ScholarPubMed
Meyer, JM (2017) Converting oral to long acting injectable antipsychotics: a guide for the perplexed. CNS Spectrums 22: 1727.CrossRefGoogle Scholar
Stahl, SM (2014) Long-acting injectable antipsychotics: shall the last be first? CNS Spectrums 19: 35.CrossRefGoogle ScholarPubMed
Tiihonen, J, Haukka, J, Taylor, M, et al. (2011) A nationwide cohort study of oral and depot antipsychotics after first hospitalization for schizophrenia. Am J Psychiatry 168: 603–9.CrossRefGoogle Scholar
Berry, MD, Gainetdinov, RR, Hoener, MC, et al. (2017) Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther 180: 16180.CrossRefGoogle ScholarPubMed
Brannan, S (2020) KarXT (a new mechanism antipsychotic based on xanomeline) is superior to placebo in patients with schizophrenia: phase 2 clinical trial results. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
Citrome, L (2015) Brexpiprazole for schizophrenia and as adjunct for major depressive disorder: a systematic review of the efficacy and safety profile for the newly approved antipsychotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 69: 978–97.Google ScholarPubMed
Correll, CU, Davis, RE, Weingart, M, et al. (2020) Efficacy and safety of lumateperone for treatment of schizophrenia: a randomized clinical trial. JAMA Psychaitry 77: 349–58.Google ScholarPubMed
Dedic, N, Jones, PG, Hopkins, SC, et al. (2019) SEP363856: a novel psychotropic agent with unique non D2 receptor mechanism of actions. J Pharmacol Exp Ther 371: 114.CrossRefGoogle Scholar
Earley, W, Burgess, MV, Rekeda, L, et al. (2019) Cariprazine treatment of bipolar depression: a randomized double-blind placebo-controlled phase 3 study, Am J Psychiatry 176: 439–48.CrossRefGoogle ScholarPubMed
Gainetdinov, RR, Hoener, MC, Berry, MD (2018) Trace amines and their receptors. Pharmacol Rev 70: 549620.CrossRefGoogle ScholarPubMed
Koblan, KS, Kent, J, Hopkins, SC, Krystal, JH, et al. (2020) A non-D2-receptor-binding drug for the treatment of schizophrenia. New Engl J Med 382: 1407–506.CrossRefGoogle ScholarPubMed
Lieberman, JA, Davis, RE, Correll, CU, et al. (2016) ITI-007 for the treatment of schizophrenia: a 4-week randomized, double-blind, controlled trial. Biol Psychiatry 79: 952–6.CrossRefGoogle ScholarPubMed
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone monotherapy in the treatment of bipolar I depression: a randomized double-blind, placebo-controlled study. Am J Psychiatry 171: 160–8.Google Scholar
Loebel, A, Cucchiaro, J, Silva, R, et al. (2014) Lurasidone as adjunctive therapy with lithium or valproate for the treatment of bipolar I depression: a randomized, double blind, placebo-controlled study. Am J Psychiatry 171: 169–77.Google ScholarPubMed
Marder, SR, Davis, JM, Couinard, G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the north American trials. J Clin Psychiatry 58: 538–46.CrossRefGoogle ScholarPubMed
McIntyre, RS, Suppes, T, Early, W, Patel, M, Stahl, SM (2020) Cariprazine efficacy in bipolar I depression with and without concurrent manic symptoms: post hoc analysis of three randomized, placebo-controlled studies. CNS Spectrums 25: 502–10.CrossRefGoogle Scholar
Meyer, JM, Cummings, MA, Proctor, G, Stahl, SM (2016) Psychopharmacology of persistent violence and aggression. Psychiatr Clin N Am 39: 541–56.CrossRefGoogle ScholarPubMed
Meyer, JM, Stahl, SM (2020) Stahl’s Handbooks: the Clozapine Handbook. Cambridge: Cambridge University Press.Google Scholar
Nemeth, G, Laszlovszky, I, Czoboar, P, et al. (2017) Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomized double-blind controlled trial. Lancet 389: 1103–13.CrossRefGoogle Scholar
Pei, Y, Asif-Malik, A, Canales, JJ (2016) Trace amines and the trace amine-associated receptor 1: pharmacology, neurochemistry and clinical implications. Front Neurosci 10: 148.CrossRefGoogle ScholarPubMed
Perkins, DO, Gu, H, Boteva, K, Lieberman, JA (2005) Relationship between duration of untreated psychosis and outcome in first episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry 162: 1785–804.CrossRefGoogle ScholarPubMed
Roth, BL. Ki determinations, receptor binding profiles, agonist and/or antagonist functional data, HERG data, MDR1 data, etc. as appropriate was generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271–2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details please refer to the PDSP website http://pdsp.med.unc.edu/Google Scholar
Schwartz, MD, Canales, JJ, Zucci, R, et al. (2018) Trace amine associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 22: 513–26.CrossRefGoogle ScholarPubMed
Shekar, A, Potter, WZ, Lightfoot, J, et al. (2008) Seletive muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165: 1033–9.Google Scholar
Snyder, GL, Vanover, KE, Zhu, H, et al. (2014) Functional profile of a novel modulator of serotonin, dopamine and glutamate neurotransmission. Psychopharmacology 232 : 605–21.Google ScholarPubMed
Stahl, SM (2013) Classifying psychotropic drugs by mode of action and not by target disorder. CNS Spectrums 18: 11317.CrossRefGoogle Scholar
Stahl, SM (2013) Role of α1 adrenergic antagonism in the mechanism of action of iloperidone: reducing extrapyramidal symptoms. CNS Spectrums 18: 285–8.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Clozapine: is now the time for more clinicians to adopt this orphan? CNS Spectrums 19: 279–81.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectrums 21: 16.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of cariprazine. CNS Spectrums 21: 1237.CrossRefGoogle ScholarPubMed
Stahl, SM (2016) Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectums 21: 271–5.Google ScholarPubMed
Stahl, SM (2017) Drugs for psychosis and mood: unique actions at D3, D2, and D1 dopamine receptor subtypes. CNS Spectrums 22: 375–84.CrossRefGoogle ScholarPubMed
Stahl, SM, Cucchiaro, J, Sinonelli, D, et al. (2013) Effectiveness of lurasidone for patients with schizophrenia following 6 weeks of acute treatment with lurasidone, olanazapine, or placebo: a 6-month, open-label study. J Clin Psychiatry 74: 507–15.CrossRefGoogle Scholar
Stahl, SM, Laredo, SA, Morrissette, DA (2020) Cariprazine as a treatment across the bipolar I spectrum from depression to mania: mechanism of action and review of clinical data. Ther Adv Psychopharmacol 10: 111.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Citrome, L, et al. (2013) “Meta-guidelines” for the management of patients with schizophrenia. CNS Spectrums 18: 15062.CrossRefGoogle ScholarPubMed
Suppes, T, Silva, R, Cuccharino, J, et al. (2016) Lurasidone for the treatment of major depressive disorder with mixed features: a randomized, double blind placebo controlled study. Am J Psychiatry 173: 400–7.CrossRefGoogle Scholar
Tarazi, F, Stahl, SM (2012) Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opin Pharmacother 13: 1911–22.CrossRefGoogle ScholarPubMed
Thase, ME, Youakim, JM, Skuban, A, et al. (2015) Efficacy and safety of adjunctive brexpiprazole 2 mg in major depressive disorder. J Clin Psychiatry 76: 1224–31.CrossRefGoogle ScholarPubMed
Zhang, L, Hendrick, JP (2018) The presynaptic D2 partial agonist lumateperone acts as a postsynaptic D2 antagonist. Matters: doi: 10.19185/matters.201712000006.CrossRefGoogle Scholar
Alvarez, LD, Pecci, A, Estrin, DA (2019) In searach of GABA A receptor’s neurosteroid binding sites. J Med Chem 62: 5250–60.CrossRefGoogle Scholar
Belelli, D, Hogenkamp, D, Gee, KW, et al. (2020) Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 12: 100207.CrossRefGoogle Scholar
Botella, GM, Salitur, FG, Harrison, BL, et al. (2017) Neuroactive steroids. 2. 3α-hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1ʹ-yl)-19-nor-5β-pregnan-20-one (SAGE 217): a clinical next generation neuroactive steroid positive allosteric modulator of the GABA A receptor. J Med Chem 60: 7810–19.Google Scholar
Chen, ZW, Bracomonies, JR, Budelier, MM, et al. (2019) Multiple functional neurosteroid binding sites on GABA A receptors. PLOS Biol 17: e3000157; doi.org/10.137/journal.pbio.3000157.CrossRefGoogle Scholar
Gordon, JL, Girdler, SS, Meltzer-Brody, SE, et al. (2015) Ovarian hormone fluctuation, neurosteroids and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry 172: 227–36.CrossRefGoogle ScholarPubMed
Gunduz-Bruce, H, Silber, C, Kaul, I, et al. (2019) Trial of SAGE 217 in patients with major depressive disorder. New Engl J Med 381: 903–11.CrossRefGoogle ScholarPubMed
Luscher, B, Mohler, H (2019) Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster reliance. F1000Research 8: 751.CrossRefGoogle Scholar
Marek, GJ, Aghajanian, GK (1996) Alpha 1B-adrenoceptor-mediated excitation of piriform cortical interneurons. Eur J Pharmacol 305: 95100.CrossRefGoogle ScholarPubMed
Marek, GJ, Aghajanian, GK (1999) 5HT2A receptor or alpha 1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367: 197206.CrossRefGoogle Scholar
Meltzer-Brody, S, Kanes, SJ (2020) Allopregnanolone in postpartum depression: role in pathophysiology and treatment. Neurobiol Stress 12: 100212.CrossRefGoogle ScholarPubMed
Pieribone, VA, Nicholas, AP, Dagerlind, A, et al. (1994) Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype specific probes. J Neurosci 14: 4252–68.CrossRefGoogle ScholarPubMed
Price, DT, Lefkowitz, RJ, Caron, MG, et al. (1994) Localization of mRNA for three distinct alpha1 adrenergic receptor sybtypes in human tissues: implications for human alpha adrenergic physiology. Mol Pharmacol 45: 171–5.Google Scholar
Ramos, BP, Arnsten, AFT (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113: 523–36.CrossRefGoogle ScholarPubMed
Santana, N, Mengod, G, Artigas, F (2013) Expression of alpha1 adrenergic receptors in rat prefrontal cortex: cellular colocalization with 5HT2A receptors. Int J Neuropsychopharmacol 16: 1139–51.CrossRefGoogle Scholar
Zorumski, CF, Paul, SM, Covey, DF, et al. (2019) Neurosteroids as novel antidepressants and anxiolytics: GABA A receptors and beyond. Neurobiol Stress 11: 100196.CrossRefGoogle ScholarPubMed
Bergink, V, Bouvy, PF, Vervoort, JSP, et al. (2012) Prevention of postpartum psychosis and mania in women at high risk. Am J Psychiatry 169: 609–16.CrossRefGoogle ScholarPubMed
Bogdan, R, Williamson, DE, Hariri, AR. (2012) Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169: 515–22.CrossRefGoogle ScholarPubMed
Brites, D, Fernandes, A (2015) Neuroinflammation and depression: microglia activion, extracellular microvesicles and micro RNA dysregulation. Front Cell Neurosci 9: 476.CrossRefGoogle Scholar
Fiedorowicz, JG, Endicott, J, Leon, AC, et al. (2011) Subthreshold hypomanic symptoms in progression from unipolar major depression to bipolar disorder. Am J Psychiatry 168: 40–8.CrossRefGoogle ScholarPubMed
Goldberg, JF, Perlis, RH, Bowden, CL, et al. (2009) Manic symptoms during depressive episodes in 1,380 patients with bipolar disorder: findings from the STEP-BD. Am J Psychiatry 166: 173–81.CrossRefGoogle ScholarPubMed
McIntyre, RS, Anderson, N, Baune, BT, et al. (2019) Expert consensus on screening assessment of cognition in psychiatry. CNS Spectrums 24: 15462.CrossRefGoogle Scholar
Price, JL, Drevets, WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35: 192216.CrossRefGoogle ScholarPubMed
Rao, U, Chen, LA, Bidesi, AS, et al. (2010) Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67: 357–64.CrossRefGoogle ScholarPubMed
Roiser, JP, Elliott, R, Sahakian, BJ (2012) Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37: 117–36.CrossRefGoogle ScholarPubMed
Roiser, JP, Sahakian, BJ (2013) Hot and cold cognition in depression. CNS Spectrums 18: 139–49.CrossRefGoogle ScholarPubMed
Roy, A, Gorodetsky, E, Yuan, Q, Goldman, D, Enoch, MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35: 1674–83.CrossRefGoogle ScholarPubMed
Semkovska, M, Quinlivan, L, Ogrady, T, et al. (2019) Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry 6: 851–61.CrossRefGoogle Scholar
Stahl, SM (2017) Psychiatric pharmacogenomics: how to integrate into clinical practice. CNS Spectrums 22: 14.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Mixed-up about how to diagnose and treat mixed features in major depressive episodes. CNS Spectrums 22: 11115.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA (2017) Does a “whiff” of mania in a major depressive episode shift treatment from a classical antidepressant to an atypical/second-generation antipsychotic? Bipolar Disord 19: 595–6.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2019) Mixed mood states: baffled, bewildered, befuddled and bemused.Bipolar Disord 21: 560–1.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Faedda, G, et al. (2017) Guidelines for the recognition and management of mixed depression. CNS Spectrums 22: 203–19.CrossRefGoogle ScholarPubMed
Yatham, LN, Liddle, PF, Sossi, V, et al. (2012) Positron emission tomography study of the effects of tryptophan depletion on brain serotonin2 receptors in subjects recently remitted from major depression. Arch Gen Psychiatry 69: 601–9.CrossRefGoogle Scholar
Aan het Rot, M, Collins, KA, Murrough, JW, et al. (2010) Safety and efficacy of repeated dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 67: 139–45.CrossRefGoogle ScholarPubMed
Abdallah, CG, DeFeyter, HM, Averill, LA, et al. (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43: 2154–60.CrossRefGoogle ScholarPubMed
Anderson, A, Iosifescu, DV, Macobsen, M, et al. (2019) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double blind active controlled trial. Abstract, American Society of Clincal Psychopharmacology Annual Meeting.Google Scholar
Deyama, S, Bang, E, Wohleb, ES, et al. (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176: 388-400.CrossRefGoogle ScholarPubMed
DiazGranados, N, Ibrahim, LA, Brutsche, NE, et al. (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant depressive disorder. J Clin Psychiatry 71: 1605–11.CrossRefGoogle Scholar
Duman, RS, Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35: 4756.CrossRefGoogle ScholarPubMed
Dwyer, JM, Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid acting antidepressants. Biol Psychiatry 73: 1189–98.CrossRefGoogle ScholarPubMed
Fu, DJ, Ionescu, DF, Li, X, et al. (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double blind randomized study (ASPIRE K). J Clin Psychiatry 61: doi.org/10.4088/JCP.19m13191.Google Scholar
Hanania, T, Manfredi, P, Inturrisi, C, et al. (2020) The NMDA antagonist dextromethadone acutely improves depressive like behavior in the forced swim test performance of rats. AA Rev Public Health 34: 119–38.Google Scholar
Hasler, G (2020) Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums 25: 445–7.CrossRefGoogle ScholarPubMed
Ibrahim, L, Diaz Granados, N, Franco-Chaves, J (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs. add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37: 1526–33.CrossRefGoogle ScholarPubMed
Li, N, Lee, Lin RJ, et al. (2010) mTor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antgonists. Science 329: 959–64.CrossRefGoogle Scholar
Monteggia, LM, Gideons, E, Kavalali, EG (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73: 1199–203.CrossRefGoogle ScholarPubMed
Mosa-Sava, RN, Murdock, MH, Parekh, PK, et al. (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant induced spine formation. Science 364: doi: 10.1126/Science.aat80732019.Google Scholar
Murrough, JW, Perez, AM, Pillemer, S, et al. (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment resistant major depression. Biol Psychiatry 74: 250–6.CrossRefGoogle ScholarPubMed
O’Gorman, C, Iosifescu, DV, Jones, A, et al. (2018) Clinical development of AXS-05 for treatment resistant depression and agitation associated with Alzheimer’s disease. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
O’Gorman, C, Jones, A, Iosifescu, DV, et al. (2020) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity in major depressive disorder: results from the GEMINI phase 3, double blind placebo-controlled trial. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.CrossRefGoogle Scholar
Phillips, JL, Norris, S, Talbot, J, et al. (2019) Single, repeated and maintenance ketamine infusions for treatment resistant depression: a randomized controlled trial. Am J Psychiatry 176: 401–9.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS, Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–6.CrossRefGoogle ScholarPubMed
Salvadore, G, Cornwell, BR, Sambataro, F, et al. (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35: 1415–22.CrossRefGoogle Scholar
Stahl, SM (2013) Mechanism of action of ketamine. CNS Spectrums 18: 171–4.Google ScholarPubMed
Stahl, SM (2013) Mechanism of action of dextromethorphan/quinidine: comparison with ketamine. CNS Spectrums 18: 225–7.Google ScholarPubMed
Stahl, SM (2016) Dextromethorphan–quinidine-responsive pseudobulbar affect (PBA): psychopharmacological model for wide-ranging disorders of emotional expression? CNS Spectrums 21: 419–23.CrossRefGoogle ScholarPubMed
Stahl, SM (2019) Mechanism of action of dextromethorphan/bupropion: a novel NMDA antagonist with multimodal activity. CNS Spectrums 24: 461–6.CrossRefGoogle ScholarPubMed
Wajs, E, Aluisio, L, Holder, R, et al. (2020) Esketamine nasal spray plus oral antidepressant in patients with treatment resistant depression: assessment of long term safety in a phase 3 open label study (SUSTAIN2). J Clin Psychiatry 81: 19m12891.CrossRefGoogle Scholar
Williams, NR, Heifets, B, Blasey, C, et al. (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175: 1205–15CrossRefGoogle ScholarPubMed
Zarate, Jr. CA, Brutsche, NE, Ibrahim, L (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71: 939–46.CrossRefGoogle ScholarPubMed
Alvarez, E, Perez, V, Dragheim, M, Loft, H, Artigas, F (2012) A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int J Neuropsychopharmacol 15: 589600.CrossRefGoogle ScholarPubMed
BALANCE investigators and collaborators, et al. (2010) Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomized open-label trial. Lancet 375: 385–95.Google Scholar
Baldessarini, RJ, Tondo, L, Vazquez, GH (2019) Pharmacological treatment of adult bipolar disorder. Mol Psychiatry 24: 198217.CrossRefGoogle ScholarPubMed
Bang-Andersen, B, Ruhland, T, Jorgensen, M, et al. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl] piperazine (LuAA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54: 3206–21.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Day, CMG, et al. (2018) Psilocybin with psychological support for treatment-resistant depression: six month follow up. Psychopharmacology 235: 399408.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Rucker, J, et al. (2016) Psilocybin with psychological support for treatment resistant depression: an open label feasibility study. Lancet Psychiatry 3: 619–27.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Goodwin, GM (2017) The therapeutic potential of psychedelic drugs: past, present and future, Neuropsychopharmacology 42: 2105–13.CrossRefGoogle Scholar
Carhart-Harris, RL, Leech, R, Williams, TM, et al. (2012) Implications for psychedelic assisted psychotherapy: a functional magnetic resonance imaging study with psilocybin. Br J Psychiatry: doi:10.1192/bjp.bp.111.103309.CrossRefGoogle Scholar
Chiu, CT, Chuan, DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128: 281304.CrossRefGoogle ScholarPubMed
Cipriani, A, Pretty, H, Hawton, K, Geddes, JR (2005) Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry 162: 1805–19.CrossRefGoogle ScholarPubMed
Frye, MA, Grunze, H, Suppes, T, et al. (2007) A placebo-controlled evaluation of adjunctive modafinil in the treatment of bipolar depression. Am J Psychiatry 164: 1242–9.CrossRefGoogle ScholarPubMed
Grady, M, Stahl, SM (2012) Practical guide for prescribing MAOI: Debunking myths and removing barriers. CNS Spectrums 17: 210.CrossRefGoogle Scholar
Mork, A, Pehrson, A, Brennum, LT, et al. (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340: 66675.CrossRefGoogle ScholarPubMed
Pasquali, L, Busceti, CL, Fulceri, F, Paparelli, A, Fornai, F (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21: 47392.CrossRefGoogle ScholarPubMed
Perlis, RH, Ostacher, MJ, Goldberg, JF, et al. (2010) Transition to mania during treatment of bipolar depression. Neuropsychopharmacology 35: 2545–52.CrossRefGoogle ScholarPubMed
Pompili, M, Vazquez, GH, Forte, A, Morrissette, DA, Stahl, SM (2020) Pharmacological treatment of mixed states. Psychiatr Clin N Am 43: 157–86. doi:10.1016/j.psc.2019.10.015CrossRefGoogle ScholarPubMed
Schwartz, TL, Siddiqui, US, Stahl, SM (2011) Vilazodone: a brief pharmacologic and clinical review of the novel SPARI (serotonin partial agonist and reuptake inhibitor). Ther Adv Psychopharmacol 1: 81–7.CrossRefGoogle Scholar
Settimo, L, Taylor, D (2018) Evaluating the dose-dependent mechanism of action of trazodone by estimation of occupancies for different brain neurotransmitter targets. J Psychopharmacol 32: 960104.CrossRefGoogle ScholarPubMed
Stahl, SM (2009) Mechanism of action of trazodone: a multifunctional drug. CNS Spectrums 14: 536–46.CrossRefGoogle ScholarPubMed
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of the SPARI vilazodone: (serotonin partial agonist reuptake inhibitor). CNS Spectrums 19: 105–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of agomelatine: a novel antidepressant exploiting synergy between monoaminergic and melatonergic properties. CNS Spectrums 19: 207–12.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectrums 20: 937.CrossRefGoogle Scholar
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectrums 20: 515–19.Google ScholarPubMed
Stahl, SM, Fava, M, Trivedi, M (2010) Agomelatine in the treatment of major depressive disorder: an 8 week, multicenter, randomized, placebo-controlled trial. J Clin Psychiatry 71: 616–26.CrossRefGoogle ScholarPubMed
Undurraga, J, Baldessarini, RJ, Valenti, M, et al. (2012) Bipolar depression: clinical correlates of receiving antidepressants. J Affect Disord 139: 8993.CrossRefGoogle ScholarPubMed
Zajecka, J, Schatzberg, A, Stahl, SM, et al. (2010) Efficacy and safety of agomelatine in the treatment of major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 30: 135–44.CrossRefGoogle ScholarPubMed
Alvarez, LD, Pecci, A, Estrin, DA (2019) In searach of GABA A receptor’s neurosteroid binding sites. J Med Chem 62: 5250–60.CrossRefGoogle Scholar
Belelli, D, Hogenkamp, D, Gee, KW, et al. (2020) Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 12: 100207.CrossRefGoogle Scholar
Botella, GM, Salitur, FG, Harrison, BL, et al. (2017) Neuroactive steroids. 2. 3α-hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1ʹ-yl)-19-nor-5β-pregnan-20-one (SAGE 217): a clinical next generation neuroactive steroid positive allosteric modulator of the GABA A receptor. J Med Chem 60: 7810–19.Google Scholar
Chen, ZW, Bracomonies, JR, Budelier, MM, et al. (2019) Multiple functional neurosteroid binding sites on GABA A receptors. PLOS Biol 17: e3000157; doi.org/10.137/journal.pbio.3000157.CrossRefGoogle Scholar
Gordon, JL, Girdler, SS, Meltzer-Brody, SE, et al. (2015) Ovarian hormone fluctuation, neurosteroids and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry 172: 227–36.CrossRefGoogle ScholarPubMed
Gunduz-Bruce, H, Silber, C, Kaul, I, et al. (2019) Trial of SAGE 217 in patients with major depressive disorder. New Engl J Med 381: 903–11.CrossRefGoogle ScholarPubMed
Luscher, B, Mohler, H (2019) Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster reliance. F1000Research 8: 751.CrossRefGoogle Scholar
Marek, GJ, Aghajanian, GK (1996) Alpha 1B-adrenoceptor-mediated excitation of piriform cortical interneurons. Eur J Pharmacol 305: 95100.CrossRefGoogle ScholarPubMed
Marek, GJ, Aghajanian, GK (1999) 5HT2A receptor or alpha 1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367: 197206.CrossRefGoogle Scholar
Meltzer-Brody, S, Kanes, SJ (2020) Allopregnanolone in postpartum depression: role in pathophysiology and treatment. Neurobiol Stress 12: 100212.CrossRefGoogle ScholarPubMed
Pieribone, VA, Nicholas, AP, Dagerlind, A, et al. (1994) Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype specific probes. J Neurosci 14: 4252–68.CrossRefGoogle ScholarPubMed
Price, DT, Lefkowitz, RJ, Caron, MG, et al. (1994) Localization of mRNA for three distinct alpha1 adrenergic receptor sybtypes in human tissues: implications for human alpha adrenergic physiology. Mol Pharmacol 45: 171–5.Google Scholar
Ramos, BP, Arnsten, AFT (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113: 523–36.CrossRefGoogle ScholarPubMed
Santana, N, Mengod, G, Artigas, F (2013) Expression of alpha1 adrenergic receptors in rat prefrontal cortex: cellular colocalization with 5HT2A receptors. Int J Neuropsychopharmacol 16: 1139–51.CrossRefGoogle Scholar
Zorumski, CF, Paul, SM, Covey, DF, et al. (2019) Neurosteroids as novel antidepressants and anxiolytics: GABA A receptors and beyond. Neurobiol Stress 11: 100196.CrossRefGoogle ScholarPubMed
Bergink, V, Bouvy, PF, Vervoort, JSP, et al. (2012) Prevention of postpartum psychosis and mania in women at high risk. Am J Psychiatry 169: 609–16.CrossRefGoogle ScholarPubMed
Bogdan, R, Williamson, DE, Hariri, AR. (2012) Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 169: 515–22.CrossRefGoogle ScholarPubMed
Brites, D, Fernandes, A (2015) Neuroinflammation and depression: microglia activion, extracellular microvesicles and micro RNA dysregulation. Front Cell Neurosci 9: 476.CrossRefGoogle Scholar
Fiedorowicz, JG, Endicott, J, Leon, AC, et al. (2011) Subthreshold hypomanic symptoms in progression from unipolar major depression to bipolar disorder. Am J Psychiatry 168: 40–8.CrossRefGoogle ScholarPubMed
Goldberg, JF, Perlis, RH, Bowden, CL, et al. (2009) Manic symptoms during depressive episodes in 1,380 patients with bipolar disorder: findings from the STEP-BD. Am J Psychiatry 166: 173–81.CrossRefGoogle ScholarPubMed
McIntyre, RS, Anderson, N, Baune, BT, et al. (2019) Expert consensus on screening assessment of cognition in psychiatry. CNS Spectrums 24: 15462.CrossRefGoogle Scholar
Price, JL, Drevets, WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35: 192216.CrossRefGoogle ScholarPubMed
Rao, U, Chen, LA, Bidesi, AS, et al. (2010) Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67: 357–64.CrossRefGoogle ScholarPubMed
Roiser, JP, Elliott, R, Sahakian, BJ (2012) Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37: 117–36.CrossRefGoogle ScholarPubMed
Roiser, JP, Sahakian, BJ (2013) Hot and cold cognition in depression. CNS Spectrums 18: 139–49.CrossRefGoogle ScholarPubMed
Roy, A, Gorodetsky, E, Yuan, Q, Goldman, D, Enoch, MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35: 1674–83.CrossRefGoogle ScholarPubMed
Semkovska, M, Quinlivan, L, Ogrady, T, et al. (2019) Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry 6: 851–61.CrossRefGoogle Scholar
Stahl, SM (2017) Psychiatric pharmacogenomics: how to integrate into clinical practice. CNS Spectrums 22: 14.CrossRefGoogle ScholarPubMed
Stahl, SM (2017) Mixed-up about how to diagnose and treat mixed features in major depressive episodes. CNS Spectrums 22: 11115.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA (2017) Does a “whiff” of mania in a major depressive episode shift treatment from a classical antidepressant to an atypical/second-generation antipsychotic? Bipolar Disord 19: 595–6.CrossRefGoogle Scholar
Stahl, SM, Morrissette, DA (2019) Mixed mood states: baffled, bewildered, befuddled and bemused.Bipolar Disord 21: 560–1.CrossRefGoogle ScholarPubMed
Stahl, SM, Morrissette, DA, Faedda, G, et al. (2017) Guidelines for the recognition and management of mixed depression. CNS Spectrums 22: 203–19.CrossRefGoogle ScholarPubMed
Yatham, LN, Liddle, PF, Sossi, V, et al. (2012) Positron emission tomography study of the effects of tryptophan depletion on brain serotonin2 receptors in subjects recently remitted from major depression. Arch Gen Psychiatry 69: 601–9.CrossRefGoogle Scholar
Aan het Rot, M, Collins, KA, Murrough, JW, et al. (2010) Safety and efficacy of repeated dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 67: 139–45.CrossRefGoogle ScholarPubMed
Abdallah, CG, DeFeyter, HM, Averill, LA, et al. (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43: 2154–60.CrossRefGoogle ScholarPubMed
Anderson, A, Iosifescu, DV, Macobsen, M, et al. (2019) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double blind active controlled trial. Abstract, American Society of Clincal Psychopharmacology Annual Meeting.Google Scholar
Deyama, S, Bang, E, Wohleb, ES, et al. (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176: 388-400.CrossRefGoogle ScholarPubMed
DiazGranados, N, Ibrahim, LA, Brutsche, NE, et al. (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant depressive disorder. J Clin Psychiatry 71: 1605–11.CrossRefGoogle Scholar
Duman, RS, Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35: 4756.CrossRefGoogle ScholarPubMed
Dwyer, JM, Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid acting antidepressants. Biol Psychiatry 73: 1189–98.CrossRefGoogle ScholarPubMed
Fu, DJ, Ionescu, DF, Li, X, et al. (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double blind randomized study (ASPIRE K). J Clin Psychiatry 61: doi.org/10.4088/JCP.19m13191.Google Scholar
Hanania, T, Manfredi, P, Inturrisi, C, et al. (2020) The NMDA antagonist dextromethadone acutely improves depressive like behavior in the forced swim test performance of rats. AA Rev Public Health 34: 119–38.Google Scholar
Hasler, G (2020) Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums 25: 445–7.CrossRefGoogle ScholarPubMed
Ibrahim, L, Diaz Granados, N, Franco-Chaves, J (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs. add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37: 1526–33.CrossRefGoogle ScholarPubMed
Li, N, Lee, Lin RJ, et al. (2010) mTor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antgonists. Science 329: 959–64.CrossRefGoogle Scholar
Monteggia, LM, Gideons, E, Kavalali, EG (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73: 1199–203.CrossRefGoogle ScholarPubMed
Mosa-Sava, RN, Murdock, MH, Parekh, PK, et al. (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant induced spine formation. Science 364: doi: 10.1126/Science.aat80732019.Google Scholar
Murrough, JW, Perez, AM, Pillemer, S, et al. (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment resistant major depression. Biol Psychiatry 74: 250–6.CrossRefGoogle ScholarPubMed
O’Gorman, C, Iosifescu, DV, Jones, A, et al. (2018) Clinical development of AXS-05 for treatment resistant depression and agitation associated with Alzheimer’s disease. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
O’Gorman, C, Jones, A, Iosifescu, DV, et al. (2020) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity in major depressive disorder: results from the GEMINI phase 3, double blind placebo-controlled trial. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.CrossRefGoogle Scholar
Phillips, JL, Norris, S, Talbot, J, et al. (2019) Single, repeated and maintenance ketamine infusions for treatment resistant depression: a randomized controlled trial. Am J Psychiatry 176: 401–9.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS, Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–6.CrossRefGoogle ScholarPubMed
Salvadore, G, Cornwell, BR, Sambataro, F, et al. (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35: 1415–22.CrossRefGoogle Scholar
Stahl, SM (2013) Mechanism of action of ketamine. CNS Spectrums 18: 171–4.Google ScholarPubMed
Stahl, SM (2013) Mechanism of action of dextromethorphan/quinidine: comparison with ketamine. CNS Spectrums 18: 225–7.Google ScholarPubMed
Stahl, SM (2016) Dextromethorphan–quinidine-responsive pseudobulbar affect (PBA): psychopharmacological model for wide-ranging disorders of emotional expression? CNS Spectrums 21: 419–23.CrossRefGoogle ScholarPubMed
Stahl, SM (2019) Mechanism of action of dextromethorphan/bupropion: a novel NMDA antagonist with multimodal activity. CNS Spectrums 24: 461–6.CrossRefGoogle ScholarPubMed
Wajs, E, Aluisio, L, Holder, R, et al. (2020) Esketamine nasal spray plus oral antidepressant in patients with treatment resistant depression: assessment of long term safety in a phase 3 open label study (SUSTAIN2). J Clin Psychiatry 81: 19m12891.CrossRefGoogle Scholar
Williams, NR, Heifets, B, Blasey, C, et al. (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175: 1205–15CrossRefGoogle ScholarPubMed
Zarate, Jr. CA, Brutsche, NE, Ibrahim, L (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71: 939–46.CrossRefGoogle ScholarPubMed
Aan het Rot, M, Collins, KA, Murrough, JW, et al. (2010) Safety and efficacy of repeated dose intravenous ketamine for treatment resistant depression. Biol Psychiatry 67: 139–45.CrossRefGoogle ScholarPubMed
Abdallah, CG, DeFeyter, HM, Averill, LA, et al. (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43: 2154–60.CrossRefGoogle ScholarPubMed
Anderson, A, Iosifescu, DV, Macobsen, M, et al. (2019) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity, in major depressive disorder: results of a phase 2, double blind active controlled trial. Abstract, American Society of Clincal Psychopharmacology Annual Meeting.Google Scholar
Deyama, S, Bang, E, Wohleb, ES, et al. (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176: 388-400.CrossRefGoogle ScholarPubMed
DiazGranados, N, Ibrahim, LA, Brutsche, NE, et al. (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant depressive disorder. J Clin Psychiatry 71: 1605–11.CrossRefGoogle Scholar
Duman, RS, Voleti, B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35: 4756.CrossRefGoogle ScholarPubMed
Dwyer, JM, Duman, RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid acting antidepressants. Biol Psychiatry 73: 1189–98.CrossRefGoogle ScholarPubMed
Fu, DJ, Ionescu, DF, Li, X, et al. (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double blind randomized study (ASPIRE K). J Clin Psychiatry 61: doi.org/10.4088/JCP.19m13191.Google Scholar
Hanania, T, Manfredi, P, Inturrisi, C, et al. (2020) The NMDA antagonist dextromethadone acutely improves depressive like behavior in the forced swim test performance of rats. AA Rev Public Health 34: 119–38.Google Scholar
Hasler, G (2020) Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums 25: 445–7.CrossRefGoogle ScholarPubMed
Ibrahim, L, Diaz Granados, N, Franco-Chaves, J (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs. add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37: 1526–33.CrossRefGoogle ScholarPubMed
Li, N, Lee, Lin RJ, et al. (2010) mTor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antgonists. Science 329: 959–64.CrossRefGoogle Scholar
Monteggia, LM, Gideons, E, Kavalali, EG (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73: 1199–203.CrossRefGoogle ScholarPubMed
Mosa-Sava, RN, Murdock, MH, Parekh, PK, et al. (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant induced spine formation. Science 364: doi: 10.1126/Science.aat80732019.Google Scholar
Murrough, JW, Perez, AM, Pillemer, S, et al. (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment resistant major depression. Biol Psychiatry 74: 250–6.CrossRefGoogle ScholarPubMed
O’Gorman, C, Iosifescu, DV, Jones, A, et al. (2018) Clinical development of AXS-05 for treatment resistant depression and agitation associated with Alzheimer’s disease. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.Google Scholar
O’Gorman, C, Jones, A, Iosifescu, DV, et al. (2020) Efficacy and safety of AXS-05, an oral NMDA receptor antagonist with multimodal activity in major depressive disorder: results from the GEMINI phase 3, double blind placebo-controlled trial. Abstract, American Society of Clinical Psychopharmacology Annual Meeting.CrossRefGoogle Scholar
Phillips, JL, Norris, S, Talbot, J, et al. (2019) Single, repeated and maintenance ketamine infusions for treatment resistant depression: a randomized controlled trial. Am J Psychiatry 176: 401–9.CrossRefGoogle ScholarPubMed
Price, RB, Nock, MK, Charney, DS, Mathew, SJ (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66: 522–6.CrossRefGoogle ScholarPubMed
Salvadore, G, Cornwell, BR, Sambataro, F, et al. (2010) Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 35: 1415–22.CrossRefGoogle Scholar
Stahl, SM (2013) Mechanism of action of ketamine. CNS Spectrums 18: 171–4.Google ScholarPubMed
Stahl, SM (2013) Mechanism of action of dextromethorphan/quinidine: comparison with ketamine. CNS Spectrums 18: 225–7.Google ScholarPubMed
Stahl, SM (2016) Dextromethorphan–quinidine-responsive pseudobulbar affect (PBA): psychopharmacological model for wide-ranging disorders of emotional expression? CNS Spectrums 21: 419–23.CrossRefGoogle ScholarPubMed
Stahl, SM (2019) Mechanism of action of dextromethorphan/bupropion: a novel NMDA antagonist with multimodal activity. CNS Spectrums 24: 461–6.CrossRefGoogle ScholarPubMed
Wajs, E, Aluisio, L, Holder, R, et al. (2020) Esketamine nasal spray plus oral antidepressant in patients with treatment resistant depression: assessment of long term safety in a phase 3 open label study (SUSTAIN2). J Clin Psychiatry 81: 19m12891.CrossRefGoogle Scholar
Williams, NR, Heifets, B, Blasey, C, et al. (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175: 1205–15CrossRefGoogle ScholarPubMed
Zarate, Jr. CA, Brutsche, NE, Ibrahim, L (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71: 939–46.CrossRefGoogle ScholarPubMed
Alvarez, E, Perez, V, Dragheim, M, Loft, H, Artigas, F (2012) A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int J Neuropsychopharmacol 15: 589600.CrossRefGoogle ScholarPubMed
BALANCE investigators and collaborators, et al. (2010) Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomized open-label trial. Lancet 375: 385–95.Google Scholar
Baldessarini, RJ, Tondo, L, Vazquez, GH (2019) Pharmacological treatment of adult bipolar disorder. Mol Psychiatry 24: 198217.CrossRefGoogle ScholarPubMed
Bang-Andersen, B, Ruhland, T, Jorgensen, M, et al. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl] piperazine (LuAA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54: 3206–21.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Day, CMG, et al. (2018) Psilocybin with psychological support for treatment-resistant depression: six month follow up. Psychopharmacology 235: 399408.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Bolstridge, M, Rucker, J, et al. (2016) Psilocybin with psychological support for treatment resistant depression: an open label feasibility study. Lancet Psychiatry 3: 619–27.CrossRefGoogle ScholarPubMed
Carhart-Harris, RL, Goodwin, GM (2017) The therapeutic potential of psychedelic drugs: past, present and future, Neuropsychopharmacology 42: 2105–13.CrossRefGoogle Scholar
Carhart-Harris, RL, Leech, R, Williams, TM, et al. (2012) Implications for psychedelic assisted psychotherapy: a functional magnetic resonance imaging study with psilocybin. Br J Psychiatry: doi:10.1192/bjp.bp.111.103309.CrossRefGoogle Scholar
Chiu, CT, Chuan, DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128: 281304.CrossRefGoogle ScholarPubMed
Cipriani, A, Pretty, H, Hawton, K, Geddes, JR (2005) Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry 162: 1805–19.CrossRefGoogle ScholarPubMed
Frye, MA, Grunze, H, Suppes, T, et al. (2007) A placebo-controlled evaluation of adjunctive modafinil in the treatment of bipolar depression. Am J Psychiatry 164: 1242–9.CrossRefGoogle ScholarPubMed
Grady, M, Stahl, SM (2012) Practical guide for prescribing MAOI: Debunking myths and removing barriers. CNS Spectrums 17: 210.CrossRefGoogle Scholar
Mork, A, Pehrson, A, Brennum, LT, et al. (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther 340: 66675.CrossRefGoogle ScholarPubMed
Pasquali, L, Busceti, CL, Fulceri, F, Paparelli, A, Fornai, F (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21: 47392.CrossRefGoogle ScholarPubMed
Perlis, RH, Ostacher, MJ, Goldberg, JF, et al. (2010) Transition to mania during treatment of bipolar depression. Neuropsychopharmacology 35: 2545–52.CrossRefGoogle ScholarPubMed
Pompili, M, Vazquez, GH, Forte, A, Morrissette, DA, Stahl, SM (2020) Pharmacological treatment of mixed states. Psychiatr Clin N Am 43: 157–86. doi:10.1016/j.psc.2019.10.015CrossRefGoogle ScholarPubMed
Schwartz, TL, Siddiqui, US, Stahl, SM (2011) Vilazodone: a brief pharmacologic and clinical review of the novel SPARI (serotonin partial agonist and reuptake inhibitor). Ther Adv Psychopharmacol 1: 81–7.CrossRefGoogle Scholar
Settimo, L, Taylor, D (2018) Evaluating the dose-dependent mechanism of action of trazodone by estimation of occupancies for different brain neurotransmitter targets. J Psychopharmacol 32: 960104.CrossRefGoogle ScholarPubMed
Stahl, SM (2009) Mechanism of action of trazodone: a multifunctional drug. CNS Spectrums 14: 536–46.CrossRefGoogle ScholarPubMed
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of the SPARI vilazodone: (serotonin partial agonist reuptake inhibitor). CNS Spectrums 19: 105–9.CrossRefGoogle ScholarPubMed
Stahl, SM (2014) Mechanism of action of agomelatine: a novel antidepressant exploiting synergy between monoaminergic and melatonergic properties. CNS Spectrums 19: 207–12.CrossRefGoogle ScholarPubMed
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectrums 20: 937.CrossRefGoogle Scholar
Stahl, SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectrums 20: 515–19.Google ScholarPubMed
Stahl, SM, Fava, M, Trivedi, M (2010) Agomelatine in the treatment of major depressive disorder: an 8 week, multicenter, randomized, placebo-controlled trial. J Clin Psychiatry 71: 616–26.CrossRefGoogle ScholarPubMed
Undurraga, J, Baldessarini, RJ, Valenti, M, et al. (2012) Bipolar depression: clinical correlates of receiving antidepressants. J Affect Disord 139: 8993.CrossRefGoogle ScholarPubMed
Zajecka, J, Schatzberg, A, Stahl, SM, et al. (2010) Efficacy and safety of agomelatine in the treatment of major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 30: 135–44.CrossRefGoogle ScholarPubMed
Batelaan, NM, Van Balkom, AJLM, Stein, DJ (2010) Evidence-based pharmacotherapy of panic disorder: an update. Int J Neuropsychopharmacol 15: 403–15.Google Scholar
De Oliveira, IR, Schwartz, T, Stahl, SM (eds.) (2014) Integrating Psychotherapy and Psychopharmacology. New York, NY: Routledge Press.Google Scholar
Etkin, A, Prater, KE, Hoeft, F, et al. (2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry 167: 545–54.CrossRefGoogle ScholarPubMed
Monk, S, Nelson, EE, McClure, EB, et al. (2006) Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. Am J Psychiatry 163: 1091–7.CrossRefGoogle ScholarPubMed
Otto, MW, Basden, SL, Leyro, TM, McHugh, K, Hofmann, SG (2007) Clinical perspectives on the combination of D-cycloserine and cognitive behavioral therapy for the treatment of anxiety disorders. CNS Spectrums 12: 5961.CrossRefGoogle ScholarPubMed
Otto, MW, Tolin, DF, Simon, NM, et al. (2010) Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol Psychiatry 67: 365–70.CrossRefGoogle ScholarPubMed
Stahl, SM (2010) Stahl’s Illustrated: Anxiety and PTSD. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM, Moore, BA (eds.) (2013) Anxiey Disorders: A Guide for Integrating Psychopharmacology and Psychotherapy. New York, NY: Routledge Press.CrossRefGoogle Scholar
Chen, Y, Baram, TZ (2016) Toward understanding how early life stress reprograms cognitive and emotional brain networks. Neuropsychopharm Rev 41: 187296.CrossRefGoogle ScholarPubMed
Hanson, JL, Nacewicz, BM, Suggerer, MJ, et al. (2015) Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biol Psychiatry 77: 314–23.CrossRefGoogle ScholarPubMed
Kundakavic, M, Champagne, FA (2015) Early life experience, epigenetics and the developing brain. Neuropsychopharmacol Rev 40: 141–53.Google Scholar
Marusak, HA, Martin, K, Etkin, A, et al. (2015) Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology 40: 1250–8.CrossRefGoogle ScholarPubMed
McEwen, BS, Nasca, C, Gray, JD (2016) Stress effects on neuronal structure: hippocampus, amygdala and prefrontal cortex. Neuropsychopharm Rev 41: 323.CrossRefGoogle ScholarPubMed
McLaughlin, KA, Sheridan, MA, Gold, AL, et al. (2016) Maltreatment exposure, brain structure and fear conditioning in children and adolescents. Neuropsychopharmacology 41: 1956–65.CrossRefGoogle ScholarPubMed
Teicher, MH, Anderson, CM, Ohashi, K, et al. (2014) Childhood maltreatment: altered network centrality of cingulate precuneus, temporal pole and insula. Biol Psychiatry 76: 297305.CrossRefGoogle ScholarPubMed
Tyrka, AR, Burgers, DE, Philip, NS (2013) The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatr Scand 138: 43447.CrossRefGoogle Scholar
Zhang, JY, Liu, TH, He, Y, et al. (2019) Chronic stress remodels synapses in an amygdala circuit-specific manner. Biol Psychiatry 85: 189201.CrossRefGoogle Scholar
Anderson, KC, Insel, TR (2006) The promise of extinction research for the prevention and treatment of anxiety disorders. Biol Psychiatry 60: 319–21.CrossRefGoogle ScholarPubMed
Barad, M, Gean, PW, Lutz, B. (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60: 322–8.CrossRefGoogle ScholarPubMed
Bonin, RP, De Koninck, Y (2015) Reconsolidation and the regulation of plasticity: moving beyond memory. Trends Neurosci 38: 336–44.CrossRefGoogle ScholarPubMed
Dejean, C, Courtin, J, Rozeaske, RR, et al. (2015) Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 78: 298306.CrossRefGoogle ScholarPubMed
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Fox, AS, Oler, JA, Tromp, DPM, et al. (2015) Extending the amygdala in theories of threat processing. Trends Neurosci 38: 319–29.CrossRefGoogle ScholarPubMed
Giustino, RF, Seemann, JR, Acca, GM, et al. (2017) Beta adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacol 42: 2537–44.CrossRefGoogle Scholar
Graham, BM, Milad, MR (2011) The study of fear extinction: implications for anxiety disorder. Am J Psychiatry 168: 1255–65.CrossRefGoogle Scholar
Hartley, CA, Phelps, EA (2010) Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacol Rev 35: 136–46.CrossRefGoogle ScholarPubMed
Haubrich, J, Crestani, AP, Cassini, LF, et al. (2015) Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 40: 315–26.CrossRefGoogle ScholarPubMed
Hermans, D, Craske, MG, Mineka, S, Lovibond, PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60: 361–8.CrossRefGoogle ScholarPubMed
Holbrook, TL, Galarneau, ME, Dye, JL, et al. (2010) Morphine use after combat injury in Iraq and post traumatic stress disorder. New Engl J Med 362: 110–17.CrossRefGoogle ScholarPubMed
Keding, TJ, Herringa, RJ (2015) Abnormal structure of fear circuitry in pediatric post traumatic stress disorder. Neuropsychopharmacology 40: 537–45.CrossRefGoogle ScholarPubMed
Krabbe, S, Grundemann, J, Luthi, A (2018) Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatry 83: 800–9.CrossRefGoogle ScholarPubMed
Kroes, MCW, Tona, KD, den Ouden, HEM, et al. (2016) How administration of the beta blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology 41: 1569–78.CrossRefGoogle ScholarPubMed
Kwapis, JL, Wood, MA (2014) Epigenetic mechanisms in fear conditioning: implications for treating post traumatic stress disorder. Trends Neurosci 37: 706–19.CrossRefGoogle ScholarPubMed
Lin, HC, Mao, SC, Su, CL, et al. (2010) Alterations of excitatory transmission in the lateral amygdala during expression and extinction of fear memory. Int J Neuropsychopharmacol 13: 335–45.CrossRefGoogle ScholarPubMed
Linnman, C, Zeidan, MA, Furtak, SC, et al. (2012) Resting amygdala and medial prefrontal metabolism predicts functional activation of the fear extinction circuit. Am J Psychiatry 169: 415–23.CrossRefGoogle ScholarPubMed
Mahan, AL, Ressler, KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for post traumatic stress disorder. Trends Neurosci 35: 2435.CrossRefGoogle Scholar
Mithoefer, MC, Wagner, MT, Mithoefer, AT, et al. (2011) The safety and efficacy of {+/−} 3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25: 439–52.CrossRefGoogle Scholar
Myers, KM, Carlezon, WA Jr. (2012) D-Cycloserine effects on extinction of conditioned responses to drug-related cues. Biol Psychiatry 71: 947–55.CrossRefGoogle ScholarPubMed
Onur, OA, Schlaepfer, TE, Kukolja, J, et al. (2010) The N-methyl-D-aspartate receptor co-agonist D-cycloserine facilitates declarative learning and hippocampal activity in humans. Biol Psychiatry 67: 1205–11.CrossRefGoogle ScholarPubMed
Otis, JM, Werner, CR, Muelier, D (2015) Noradrenergic regulation of fear and drug-associated memory reconsolidation. Neuropsychopharmacology 40: 793803.CrossRefGoogle ScholarPubMed
Ressler, KJ (2020) Translating across circuits and genetics toward progress in fear- and anxiety-related disorders. Am J Psychiatry 177: 214–22.CrossRefGoogle ScholarPubMed
Sandkuher, J, Lee, J (2013) How to erase memory traces of pain and fear. Trends Neurosci 36: 343–52.Google Scholar
Schwabe, L, Nader, K, Pruessner, JC (2011) Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol Psychiatry 76: 274–80.Google Scholar
Schwabe, L, Nader, K, Wold, OT (2012) Neural signature of reconsolidation impairments by propranolol in humans. Biol Psychiatry 71: 380–6.CrossRefGoogle ScholarPubMed
Shin, LM, Liberzon, I (2010) The neurocircuitry of fear, stress and anxiety disorders. Neuropsychopharmacol Rev 35: 169–91.CrossRefGoogle ScholarPubMed
Soeter, M, Kindt, M (2012) Stimulation of the noradrenergic system during memory formation impairs extinction learning but not the disruption of reconsolidation. Neuropsychopharmacology 37: 1204–15.CrossRefGoogle Scholar
Stern, CAJ, Gazarini, L, Takahashi, RN, et al. (2012) On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology 37: 2132–42.CrossRefGoogle ScholarPubMed
Tamminga, CA (2006) The anatomy of fear extinction. Am J Psychiatry 163: 961.CrossRefGoogle ScholarPubMed
Tronson, NC, Corcoran, KA, Jovasevic, V, et al. (2011) Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci 35: 145–55.Google ScholarPubMed
Batelaan, NM, Van Balkom, AJLM, Stein, DJ (2010) Evidence-based pharmacotherapy of panic disorder: an update. Int J Neuropsychopharmacol 15: 403–15.Google Scholar
De Oliveira, IR, Schwartz, T, Stahl, SM (eds.) (2014) Integrating Psychotherapy and Psychopharmacology. New York, NY: Routledge Press.Google Scholar
Etkin, A, Prater, KE, Hoeft, F, et al. (2010) Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry 167: 545–54.CrossRefGoogle ScholarPubMed
Monk, S, Nelson, EE, McClure, EB, et al. (2006) Ventrolateral prefrontal cortex activation and attentional bias in response to angry faces in adolescents with generalized anxiety disorder. Am J Psychiatry 163: 1091–7.CrossRefGoogle ScholarPubMed
Otto, MW, Basden, SL, Leyro, TM, McHugh, K, Hofmann, SG (2007) Clinical perspectives on the combination of D-cycloserine and cognitive behavioral therapy for the treatment of anxiety disorders. CNS Spectrums 12: 5961.CrossRefGoogle ScholarPubMed
Otto, MW, Tolin, DF, Simon, NM, et al. (2010) Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol Psychiatry 67: 365–70.CrossRefGoogle ScholarPubMed
Stahl, SM (2010) Stahl’s Illustrated: Anxiety and PTSD. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stahl, SM (2012) Psychotherapy as an epigenetic “drug”: psychiatric therapeutics target symptoms linked to malfunctioning brain circuits with psychotherapy as well as with drugs. J Clin Pharm Ther 37: 249–53.CrossRefGoogle ScholarPubMed
Stahl, SM, Moore, BA (eds.) (2013) Anxiey Disorders: A Guide for Integrating Psychopharmacology and Psychotherapy. New York, NY: Routledge Press.CrossRefGoogle Scholar
Chen, Y, Baram, TZ (2016) Toward understanding how early life stress reprograms cognitive and emotional brain networks. Neuropsychopharm Rev 41: 187296.CrossRefGoogle ScholarPubMed
Hanson, JL, Nacewicz, BM, Suggerer, MJ, et al. (2015) Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biol Psychiatry 77: 314–23.CrossRefGoogle ScholarPubMed
Kundakavic, M, Champagne, FA (2015) Early life experience, epigenetics and the developing brain. Neuropsychopharmacol Rev 40: 141–53.Google Scholar
Marusak, HA, Martin, K, Etkin, A, et al. (2015) Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology 40: 1250–8.CrossRefGoogle ScholarPubMed
McEwen, BS, Nasca, C, Gray, JD (2016) Stress effects on neuronal structure: hippocampus, amygdala and prefrontal cortex. Neuropsychopharm Rev 41: 323.CrossRefGoogle ScholarPubMed
McLaughlin, KA, Sheridan, MA, Gold, AL, et al. (2016) Maltreatment exposure, brain structure and fear conditioning in children and adolescents. Neuropsychopharmacology 41: 1956–65.CrossRefGoogle ScholarPubMed
Teicher, MH, Anderson, CM, Ohashi, K, et al. (2014) Childhood maltreatment: altered network centrality of cingulate precuneus, temporal pole and insula. Biol Psychiatry 76: 297305.CrossRefGoogle ScholarPubMed
Tyrka, AR, Burgers, DE, Philip, NS (2013) The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatr Scand 138: 43447.CrossRefGoogle Scholar
Zhang, JY, Liu, TH, He, Y, et al. (2019) Chronic stress remodels synapses in an amygdala circuit-specific manner. Biol Psychiatry 85: 189201.CrossRefGoogle Scholar
Anderson, KC, Insel, TR (2006) The promise of extinction research for the prevention and treatment of anxiety disorders. Biol Psychiatry 60: 319–21.CrossRefGoogle ScholarPubMed
Barad, M, Gean, PW, Lutz, B. (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60: 322–8.CrossRefGoogle ScholarPubMed
Bonin, RP, De Koninck, Y (2015) Reconsolidation and the regulation of plasticity: moving beyond memory. Trends Neurosci 38: 336–44.CrossRefGoogle ScholarPubMed
Dejean, C, Courtin, J, Rozeaske, RR, et al. (2015) Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 78: 298306.CrossRefGoogle ScholarPubMed
Feduccia, AA, Mithoefer, MC (2018) MDMA-assisted psychotherapy for PTSD: are memory reconsolidation and fear extinction underlying mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 84: 221–8.CrossRefGoogle ScholarPubMed
Fox, AS, Oler, JA, Tromp, DPM, et al. (2015) Extending the amygdala in theories of threat processing. Trends Neurosci 38: 319–29.CrossRefGoogle ScholarPubMed
Giustino, RF, Seemann, JR, Acca, GM, et al. (2017) Beta adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacol 42: 2537–44.CrossRefGoogle Scholar
Graham, BM, Milad, MR (2011) The study of fear extinction: implications for anxiety disorder. Am J Psychiatry 168: 1255–65.CrossRefGoogle Scholar
Hartley, CA, Phelps, EA (2010) Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacol Rev 35: 136–46.CrossRefGoogle ScholarPubMed
Haubrich, J, Crestani, AP, Cassini, LF, et al. (2015) Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 40: 315–26.CrossRefGoogle ScholarPubMed
Hermans, D, Craske, MG, Mineka, S, Lovibond, PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60: 361–8.CrossRefGoogle ScholarPubMed
Holbrook, TL, Galarneau, ME, Dye, JL, et al. (2010) Morphine use after combat injury in Iraq and post traumatic stress disorder. New Engl J Med 362: 110–17.CrossRefGoogle ScholarPubMed
Keding, TJ, Herringa, RJ (2015) Abnormal structure of fear circuitry in pediatric post traumatic stress disorder. Neuropsychopharmacology 40: 537–45.CrossRefGoogle ScholarPubMed
Krabbe, S, Grundemann, J, Luthi, A (2018) Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatry 83: 800–9.CrossRefGoogle ScholarPubMed
Kroes, MCW, Tona, KD, den Ouden, HEM, et al. (2016) How administration of the beta blocker propranolol before extinction can prevent the return of fear. Neuropsychopharmacology 41: 1569–78.CrossRefGoogle ScholarPubMed