Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:05:52.593Z Has data issue: false hasContentIssue false

Chapter 5 - Tricarboxylic acid (TCA) cycle, electron transport and oxidative phosphorylation

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Austin, C. M., Wang, G. & Maier., R. J. (2015). Aconitase functions as a pleiotropic posttranscriptional regulator in Helicobacter pylori. Journal of Bacteriology 197, 30763086.CrossRefGoogle ScholarPubMed
Bott, M. (2007). Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends in Microbiology 15, 417425.CrossRefGoogle ScholarPubMed
Hu, Y. & Holden, J. F. (2006). Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate. Journal of Bacteriology 188, 43504355.CrossRefGoogle ScholarPubMed
Meyer, F. M., Gerwig, J., Hammer, E., Herzberg, C., Commichau, F. M., Völker, U. & Stülke, J. (2011). Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon. Metabolic Engineering 13, 1827.CrossRefGoogle ScholarPubMed
Pechter, K. B., Meyer, F. M., Serio, A. W., Stülke, J. & Sonenshein, A. L. (2013). Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. Journal of Bacteriology 195, 15251537.CrossRefGoogle ScholarPubMed
van der Rest, M. E., Frank, C. & Molenaar, D. (2000). Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. Journal of Bacteriology 182, 68926899.CrossRefGoogle ScholarPubMed
Zhang, S. & Bryant, D. A. (2011). The tricarboxylic acid cycle in cyanobacteria. Science 334, 15511553.CrossRefGoogle ScholarPubMed

Secondary Sources

Alber, B. E., Spanheimer, R., Ebenau-Jehle, C. & Fuchs, G. (2006). Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Molecular Microbiology 61, 297309.CrossRefGoogle ScholarPubMed
Borjian, F., Han, J., Hou, J., Xiang, H., Zarzycki, J. & Berg, I. A. (2017). Malate synthase and β-methylmalyl coenzyme A lyase reactions in the methylaspartate cycle in Haloarcula hispanica. Journal of Bacteriology 199(4).CrossRefGoogle ScholarPubMed
El-Mansi, M., Cozzone, A. J., Shiloach, J. & Eikmanns, B. J. (2006). Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Current Opinion in Microbiology 9, 173179.CrossRefGoogle ScholarPubMed
Ensign, S. A. (2006). Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation. Molecular Microbiology 61, 274276.CrossRefGoogle ScholarPubMed
Erb, T. J., Brecht, V., Fuchs, G., Müller, M. & Alber, B. E. (2009). Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proceedings of the National Academy of Sciences of the USA 106, 88718876.CrossRefGoogle ScholarPubMed
Khomyakova, M., Bükmez, Ö., Thomas, L. K., Erb, T. J. & Berg, I. A. (2011). A methylaspartate cycle in haloarchaea. Science 331, 334337CrossRefGoogle ScholarPubMed
Leroy, B., De Meur, Q., Moulin, C., Wegria, G. & Wattiez, R. (2015). New insight into the photoheterotrophic growth of the isocitrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. Microbiology 161, 10611072.CrossRefGoogle ScholarPubMed
Sauer, U. & Eikmanns, B. J. (2005). The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiology Reviews 29, 765794.CrossRefGoogle ScholarPubMed
Brutinel, E. D. & Gralnick, J. A. (2012). Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq. Molecular Microbiology 86, 273283.CrossRefGoogle ScholarPubMed
Juhnke, H. D., Hiltscher, H., Nasiri, H. R., Schwalbe, H. & Lancaster, C. R. D. (2009). Production, characterization and determination of the real catalytic properties of the putative ‘succinate dehydrogenase’ from Wolinella succinogenes. Molecular Microbiology 71, 10881101.CrossRefGoogle ScholarPubMed
Miura, A., Kameya, M., Arai, H., Ishii, M. & Igarashi, Y. (2008). A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6. Journal of Bacteriology 190, 71707177.CrossRefGoogle ScholarPubMed
Amend, J. P. & Shock, E. L. (2001). Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews 25, 175243.CrossRefGoogle ScholarPubMed
Schoepp-Cothenet, B., van Lis, R., Atteia, A., Baymann, F., Capowiez, L., Ducluzeau, A.-L., Duval, S., ten Brink, F., Russell, M. J. & Nitschke, W. (2013). On the universal core of bioenergetics. Biochimica et Biophysica Acta 1827, 7993.CrossRefGoogle ScholarPubMed
von Stockar, U., Maskow, T., Liu, J., Marison, I. W. & Patino, R. (2006). Thermodynamics of microbial growth and metabolism: an analysis of the current situation. Journal of Biotechnology 121, 517533.CrossRefGoogle ScholarPubMed
Au, K. M., Barabote, R. D., Hu, K. Y. & Saier, M. H. J. (2006). Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology 152, 12431247.CrossRefGoogle ScholarPubMed
Capaldi, R. & Aggeler, R. (2002). Mechanism of the F1Fo-type ATP synthase, a biological rotary motor. Trends in Biochemical Sciences 27, 154160.CrossRefGoogle Scholar
Ferguson, S. A., Keis, S. & Cook, G. M. (2006). Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. Journal of Bacteriology 188, 50455054.CrossRefGoogle ScholarPubMed
Hicks, D. B., Liu, J., Fujisawa, M. & Krulwich, T. A. (2010). F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochimica et Biophysica Acta 1797, 13621377.CrossRefGoogle ScholarPubMed
Junge, W. & Nelson, N. (2015). ATP synthase. Annual Review of Biochemistry 84, 631657.CrossRefGoogle ScholarPubMed
Lapierre, P., Shial, R. & Gogarten, J. P. (2006). Distribution of F- and A/V-type ATPases in Thermus scotoductus and other closely related species. Systematic and Applied Microbiology 29, 1523.CrossRefGoogle Scholar
Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y. & Koonin, E. V. (2007). Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nature Reviews Microbiology 5, 892899.CrossRefGoogle ScholarPubMed
Schlegel, K., Leone, V., Faraldo-Gómez, J. D. & Müller, V. (2012). Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proceedings of the National Academy of Sciences of the USA 109, 947952.CrossRefGoogle Scholar
Baker-Austin, C. & Dopson, M. (2007). Life in acid: pH homeostasis in acidophiles. Trends in Microbiology 15, 165171.CrossRefGoogle ScholarPubMed
Cotter, P. D. & Hill, C. (2003). Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 67, 429453.CrossRefGoogle ScholarPubMed
Hunte, C., Screpanti, E., Venturi, M., Rimon, A., Padan, E. & Michel, H. (2005). Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 11971202.CrossRefGoogle Scholar
Kanjee, U. & Houry, W. A. (2013). Mechanisms of acid resistance in Escherichia coli. Annual Review of Microbiology 67, 6581.CrossRefGoogle ScholarPubMed
Krulwich, T. A., Sachs, G. & Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology 9, 330343.CrossRefGoogle ScholarPubMed
Lund, P., Tramonti, A. & De Biase, D. (2014). Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews 38, 10911125.CrossRefGoogle Scholar
Quinn, M. J., Resch, C. T., Sun, J., Lind, E. J., Dibrov, P. & Häse, C. C. (2012). NhaP1 is a K+(Na+)/H+ antiporter required for growth and internal pH homeostasis of Vibrio cholerae at low extracellular pH. Microbiology 158, 10941105.CrossRefGoogle Scholar
Rhee, J. E., Jeong, H. G., Lee, J. H. & Choi, S. H. (2006). AphB influences acid tolerance of Vibrio vulnificus by activating expression of the positive regulator CadC. Journal of Bacteriology 188, 64906497.CrossRefGoogle ScholarPubMed
Antonyuk, S. V., Han, C., Eady, R. R. & Hasnain, S. S. (2013). Structures of protein–protein complexes involved in electron transfer. Nature 496, 123126.CrossRefGoogle ScholarPubMed
Arai, H., Kawakami, T., Osamura, T., Hirai, T., Sakai, Y. & Ishii, M. (2014). Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. Journal of Bacteriology 19, 42064215.CrossRefGoogle Scholar
Elling, F. J., Becker, K. W., Könneke, M., Schröder, J. M., Kellermann, M. Y., Thomm, M. & Hinrichs, K.-U. (2016). Respiratory quinones in archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environmental Microbiology 18, 692707.CrossRefGoogle Scholar
Fadeeva, M. S., Nunez, C., Bertsova, Y. V., Espin, G. & Bogachev, A. V. (2008). Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii. FEMS Microbiology Letters 279, 116123.CrossRefGoogle ScholarPubMed
Lunak, Z. R. & Noel, K. D. (2015). A quinol oxidase, encoded by cyoABCD, is utilized to adapt to lower O2 concentrations in Rhizobium etli CFN42. Microbiology 161, 203212.CrossRefGoogle ScholarPubMed
Magalon, A., Arias-Cartin, R. & Walburger, A. (2012). Supramolecular organization in prokaryotic respiratory systems. Advances in Microbial Physiology 61, 217266.CrossRefGoogle ScholarPubMed
Marreiros, B. C., Sena, F. V., Sousa, F. M., Batista, A. P. & Pereira, M. M. (2016). Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Environmental Microbiology 18, 46974709.CrossRefGoogle ScholarPubMed
Richardson, D. J. (2000). Bacterial respiration: a flexible process for a changing environment. Microbiology 146, 551571.CrossRefGoogle ScholarPubMed
Richhardt, J., Luchterhand, B., Bringer, S., Büchs, J. & Bott, M. (2013). Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. Journal of Bacteriology 195, 42104220.CrossRefGoogle ScholarPubMed
Simon, J. G., van Spanning, R. J. M. & Richardson, D. J. (2008). The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochimica et Biophysica Acta 1777, 14801490.CrossRefGoogle ScholarPubMed
Steuber, J., Vohl, G. Casutt, M. S., Vorburger, T., Diederichs, K. & Fritz, G. (2014). Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 516, 6267.CrossRefGoogle Scholar
Biegel, E. & Müller, V. (2010). Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proceedings of the National Academy of Sciences of the USA 107, 1813818142.CrossRefGoogle ScholarPubMed
Buckel, W. & Thauer, R. K. (2013). Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochimica et Biophysica Acta 1827, 94113.CrossRefGoogle ScholarPubMed
Hedderich, R. (2004). Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. Journal of Bioenergetics and Biomembranes 36: 6575.CrossRefGoogle ScholarPubMed
Kim, B. H., Lim, S. S., Daud, W. R. W., Gadd, G. M. & Chang, I. S. (2015). The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresource Technology 190, 395401.CrossRefGoogle ScholarPubMed
Lyell, N. L., Colton, D. M., Bose, J. L., Tumen-Velasquez, M. P., Kimbrough, J. H. & Stabb, E. V. (2013). Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. Journal of Bacteriology 195, 50515063.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×