Skip to main content Accessibility help
×
Hostname: page-component-cd4964975-4wks4 Total loading time: 0 Render date: 2023-03-29T14:45:36.670Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Chapter 12 - Metabolic regulation

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Barnard, A., Wolfe, A. & Busby, S. (2004). Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Current Opinion in Microbiology 7, 102108.
Battesti, A., Majdalani, N. & Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annual Review of Microbiology 65, 189213.
Fimlaid, K. A. & Shen, A. (2015). Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Current Opinion in Microbiology 24, 8895.
Grabowicz, M. and Silhavy, T. J., (2017). Envelope stress responses: an interconnected safety net. Trends in Biochemical Sciences 42, 232242.
Gruber, T. M. & Gross, C. A. (2003). Multiple sigma subunits and the partitioning of bacterial transcription space. Annual Review of Microbiology 57, 441466.
Helmann, J. D. (2016). Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Current Opinion in Microbiology 30, 122132.
Herrou, J., Foreman, R., Fiebig, A. & Crosson, S. (2010). A structural model of anti-anti-σ inhibition by a two-component receiver domain: the PhyR stress response regulator. Molecular Microbiology 78, 290304.
Kazmierczak, M. J., Wiedmann, M. & Boor, K. J. (2005). Alternative sigma factors and their roles in bacterial virulence. Microbiology and Molecular Biology Reviews 69, 527543.
Österberg, S., del Pesos-Santos, T. & Shingler, V. (2011). Regulation of alternative sigma factor use. Annual Review of Microbiology 65, 3755.
Yang, Y., Darbari, V. C., Zhang, N., Lu, D., Glyde, R., Wang, Y.-P., Winkelman, J. T., Gourse, R. L., Murakami, K. S., Buck, M., & Zhang, X. (2015). Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Science 349, 882885.

Secondary Sources

Cai, J., Tong, H., Qi, F. & Dong, X. (2012). CcpA-dependent carbohydrate catabolite repression regulates galactose metabolism in Streptococcus oligofermentans. Journal of Bacteriology 194, 38243832.
Chavarría, M., Fuhrer, T., Sauer, U., Pflüger-Grau, K. & de Lorenzo, V. (2013). Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate: phosphotransferase system of Pseudomonas putida. Environmental Microbiology 15, 121132.
Fonseca, P., Moreno, R. & Rojo, F. (2013). Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. Environmental Microbiology 15, 2435.
Galinier, A. & Deutscher, J. (2017). Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Journal of Molecular Biology 429, 773789.
Hartmann, T., Zhang, B., Baronian, G., Schulthess, B., Homerova, D., Grubmueller, S., Kutzner, E., Gaupp, R., Bertram, R., Powers, R., Eisenreich, W., Kormanec, J., Herrmann, M., Molle, V., Somerville, G. A. & Bischoff, M. (2013). Catabolite Control Protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus. Journal of Biological Chemistry 288, 3611636128.
Joshua, C. J., Dahl, R. Benke, P. I. & Keasling, J. D. (2011). Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. Journal of Bacteriology 193, 12931301.
Babitzke, P. (2004). Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. Current Opinion in Microbiology 7, 132139.
Gollnick, P., Babitzke, P., Antson, A. & Yanofsky, C. (2005). Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. Annual Review of Genetics 39, 4768.
Wallecha, A., Oreh, H., van der Woude, M. W. & deHaseth, P. L. (2014). Control of gene expression at a bacterial leader RNA, the agn43 gene encoding outer membrane protein Ag43 of Escherichia coli. Journal of Bacteriology 196, 27282735.
Bastet, L., Dubé, A., Massé, E. & Lafontaine, D. A. (2011). New insights into riboswitch regulation mechanisms. Molecular Microbiology 80, 11481154.
Dambach, M. D. & Winkler, W. C. (2009). Expanding roles for metabolite-sensing regulatory RNAs. Current Opinion in Microbiology 12, 161169.
DebRoy, S., Gebbie, M., Ramesh, A., Goodson, J. R., Cruz, M. R., van Hoof, A., Winkler, W. C. & Garsin, D. A. (2014). A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345, 937940.
Fürtig, B., Nozinovic, S., Reining, A. & Schwalbe, H. (2015). Multiple conformational states of riboswitches fine-tune gene regulation. Current Opinion in Structural Biology 30, 112124.
Garst, A. D., Porter, E. B. & Batey, R. T. (2012). Insights into the regulatory landscape of the lysine riboswitch. Journal of Molecular Biology 423, 1733.
Johnson, J. E. Jr, Reyes, F. E., Polaski, J. T. & Batey, R. T. (2012). B12 cofactors directly stabilize an mRNA regulatory switch. Nature 49, 133137.
Kulshina, N., Baird, N. J. & Ferre-D’Amare, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Structural and Molecular Biology 16, 12121217.
Serganov, A., Huang, L. & Patel, D. J. (2009). Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458, 233237.
Alvarez, A. F., Barba-Ostria, C., Silva-Jiménez, H. & Georgellis, D. (2016). Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environmental Microbiology 18, 32103226.
Beier, D. & Gross, R. (2006). Regulation of bacterial virulence by two-component systems. Current Opinion in Microbiology 9, 143152.
Buelow, D. R. & Raivio, T. L. (2010). Three (and more) component regulatory systems – auxiliary regulators of bacterial histidine kinases. Molecular Microbiology 75, 547566.
Capra, E. J. & Laub, M. T. (2012). Evolution of two-component signal transduction systems. Annual Review of Microbiology 66, 325347.
Desai, S. K. & Kenney, L. J. (2017). To ∼P or Not to ∼P? Non-canonical activation by two-component response regulators. Molecular Microbiology 103, 203213.
Göpel, Y. & Görke, B. (2012). Rewiring two-component signal transduction with small RNAs. Current Opinion in Microbiology 15, 132139.
Groisman, E. A. (2016). Feedback control of two-component regulatory systems. Annual Review of Microbiology 70, 103124.
Jung, K., Fried, L., Behr, S. & Heermann, R. (2012). Histidine kinases and response regulators in networks. Current Opinion in Microbiology 15, 118124.
Podgornaia, A. I. & Laub, M. T. (2013). Determinants of specificity in two-component signal transduction. Current Opinion in Microbiology 16, 156162.
Salazar, M. E. & Laub, M. T. (2015). Temporal and evolutionary dynamics of two-component signaling pathways. Current Opinion in Microbiology 24, 714.
Silversmith, R. E. (2010). Auxiliary phosphatases in two-component signal transduction. Current Opinion in Microbiology 13, 177183.
Aseev, L. V., Koledinskaya, L. S. & Boni, I. V. (2016). Regulation of ribosomal protein operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the transcriptional and translational levels. Journal of Bacteriology 198, 24942502.
Schneider, D. A., Ross, W. & Gourse, R. L. (2003). Control of rRNA expression in Escherichia coli. Current Opinion in Microbiology 6, 151156.
Mata, J., Marguerat, S. & Bahler, J. (2005). Post-transcriptional control of gene expression: a genome-wide perspective. Trends in Biochemical Sciences 30, 506514.
Nogueira, T. & Springer, M. (2000). Post-transcriptional control by global regulators of gene expression in bacteria. Current Opinion in Microbiology 3, 154158.
Romeo, T., Vakulskas, C. A. & Babitzke, P. (2013). Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environmental Microbiology 15, 313324.
Aït-Bara, S. & Carpousis, A. J. (2015). RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Molecular Microbiology 97, 10211135.
Babitzke, P. (2004). Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. Current Opinion in Microbiology 7, 132139.
Condon, C. & Bechhofer, D. H. (2011). Regulated RNA stability in the Gram positives. Current Opinion in Microbiology 14, 148154.
Hui, M. P., Foley, P. L. & Belasco, J. G. (2014). Messenger RNA degradation in bacterial cells. Annual Review of Genetics 48, 537559.
Kennell, D. (2002). Processing endoribonucleases and mRNA degradation in bacteria. Journal of Bacteriology 184, 46454657.
Kushner, S. R. (2002). mRNA decay in Escherichia coli comes of age. Journal of Bacteriology 184, 46584665.
Mackie, G. A. (2013). RNase E: at the interface of bacterial RNA processing and decay. Nature Reviews Microbiology 11, 4557.
Wang, Y., Liu, C. L., Storey, J. D., Tibshirani, R. J., Herschlag, D. & Brown, P. O. (2002). Precision and functional specificity in mRNA decay. Proceedings of the National Academy of Sciences of the USA 99, 58605865.
Altegoer, F., Rensing, S. A. & Bange, G. (2016). Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. Proceedings of the National Academy of Sciences of the USA 113, 1016810173.
Boni, I. V. (2006). Diverse molecular mechanisms of translation initiation in prokaryotes. Molecular Biology 40, 587596.
Cahova, H., Winz, M.-L., Hofer, K., Nubel, G. & Jaschke, A. (2015). NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374377.
Schlax, P. J. & Worhunsky, D. J. (2003). Translational repression mechanisms in prokaryotes. Molecular Microbiology 48, 11571169.
Bobrovskyy, M. & Vanderpool, C. K. (2013). Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annual Review of Genetics 47, 209232.
Bossi, L. & Figueroa-Bossi, N. (2016). Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nature Reviews Microbiology 14, 775784.
Bouloc, P. & Repoila, F. (2016). Fresh layers of RNA-mediated regulation in Gram-positive bacteria. Current Opinion in Microbiology 30, 3035.
Brantl, S. (2002). Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta 1575, 1525.
DebRoy, S., Gebbie, M., Ramesh, A., Goodson, J. R., Cruz, M. R., van Hoof, A., Winkler, W. C. & Garsin, D. A. (2014). A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345, 937940.
Mars, R. A. T., Nicolas, P., Denham, E. L. & van Dijl, J. M. (2016). Regulatory RNAs in Bacillus subtilis: a Gram-positive perspective on bacterial RNA-mediated regulation of gene expression. Microbiology and Molecular Biology Reviews 80, 10291057.
Mellin, J. R., Koutero, M., Dar, D., Nahori, M.-A., Sorek, R. & Cossart, P. (2014). Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 345, 940943.
Sherwood, A. V. & Henkin, T. M. (2016). Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses. Annual Review of Microbiology 70, 361374.
Storz, G., Opdyke, J. A. & Zhang, A. (2004). Controlling mRNA stability and translation with small, noncoding RNAs. Current Opinion in Microbiology 7, 140144.
Bush, M. J., Tschowri, N., Schlimpert, S., Flardh, K. & Buttner, M. J. (2015). c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nature Reviews Microbiology 13, 749760.
Chou, S.-H. & Galperin, M. Y. (2016). Diversity of cyclic di-GMP-binding proteins and mechanisms. Journal of Bacteriology 198, 3246.
Gao, J., Tao, J., Liang, W. & Jiang, Z. (2016). Cyclic (di)nucleotides: the common language shared by microbe and host. Current Opinion in Microbiology 30, 7987.
Hallez, R., Delaby, M., Sanselicio, S. & Viollier, P. H. (2017). Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nature Reviews Microbiology 15, 137148.
Hengge, R., Gründling, A., Jenal, U., Ryan, R. & Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. Journal of Bacteriology 198, 1526.
Jenal, U., Reinders, A. & Lori, C. (2017). Cyclic di-GMP: second messenger extraordinaire. Nature Reviews Microbiology 15, 271284.
Römling, U., Galperin, M. Y. & Gomelsky, M. (2013). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews 77, 152.
Ryan, R. P. (2013). Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology 159, 12861297.
Bell, S. D. (2005). Archaeal transcriptional regulation – variation on a bacterial theme? Trends in Microbiology 13, 262265.
Dennis, P. P., Omer, A. & Lowe, T. (2001). A guided tour: small RNA function in Archaea. Molecular Microbiology 40, 509519.
Geiduschek, E. P. & Ouhammouch, M. (2005). Archaeal transcription and its regulators. Molecular Microbiology 56, 13971407.
Karr, E. A. (2014). Transcription regulation in the third domain. Advances in Applied Microbiology. 89, 101133.
Marchfelder, A., Fischer, S., Brendel, J., Stoll, B., Maier, L.-K., Jäger, D., Prasse, D., Plagens, A., Schmitz, R. & Randau, L. (2012). Small RNAs for defence and regulation in archaea. Extremophiles 16, 685696.
Boutte, C. C. & Crosson, S. (2013). Bacterial lifestyle shapes stringent response activation. Trends in Microbiology 21, 174180.
Braeken, K., Moris, M., Daniels, R., Vanderleyden, J. & Michiels, J. (2006). New horizons for (p)ppGpp in bacterial and plant physiology. Trends in Microbiology 14, 4554.
Brown, A., Fernández, I. S., Gordiyenko, Y. & Ramakrishnan, V. (2016). Ribosome-dependent activation of stringent control. Nature 534, 277280.
Dalebroux, Z. D., Svensson, S. L., Gaynor, E. C. & Swanson, M. S. (2010). ppGpp conjures bacterial virulence. Microbiology & Molecular Biology Reviews 74, 171199.
Dalebroux, Z. D. & Swanson, M. S. (2012). ppGpp: magic beyond RNA polymerase. Nature Reviews Microbiology 10, 203212.
Gaca, A. O., Colomer-Winter, C. & Lemos, J. A. (2015). Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. Journal of Bacteriology 197, 11461156.
Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. (2015). Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nature Reviews Microbiology 13, 298309.
Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews 66, 373395.
Magnusson, L. U., Farewell, A. & Nystrom, T. (2005). ppGpp: a global regulator in Escherichia coli. Trends in Microbiology 13, 236242.
Amon, J., Titgemeyer, F. & Burkovski, A. (2010). Common patterns – unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiology Reviews 34, 588605.
Arcondeguy, T., Jack, R. & Merrick, M. (2001). P-II signal transduction proteins, pivotal players in microbial nitrogen control. Microbiology and Molecular Biology Reviews 65, 80105.
Commichau, F. M., Forchhammer, K. & Stulke, J. (2006). Regulatory links between carbon and nitrogen metabolism. Current Opinion in Microbiology 9, 167172.
Forchhammer, K. (2004). Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiology Reviews 28, 319333.
Huergo, L. F., Chandra, G. & Merrick, M. (2013). PII signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiology Reviews 37, 251283.
Ninfa, A. J. & Jiang, P. (2005). PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Current Opinion in Microbiology 8, 168173.
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology 57, 155176.
Groisman, E. A. (2001). The pleiotropic two-component regulatory system PhoP-PhoQ. Journal of Bacteriology 183, 18351842.
Hsieh, Y.-J. & Wanner, B. L. (2010). Global regulation by the seven-component Pi signaling system. Current Opinion in Microbiology 13, 198203.
Lamarche, M. G., Wanner, B. L., Crepin, S. & Harel, J. (2008). The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiology Reviews 32, 461473.
Martin, J. F. (2004). Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. Journal of Bacteriology 186, 51975201.
Santos-Beneit, F. (2015). The Pho regulon: a huge regulatory network in bacteria. Frontiers in Microbiology 6, 402.
Vershinina, O. A. & Znamenskaya, L. V. (2002). The pho regulons of bacteria. Microbiology-Moscow 71, 497511.
Alvarez, A. F., Rodriguez, C. & Georgellis, D. (2013). Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. Journal of Bacteriology 195, 30543061.
Bekker, M., Alexeeva, S., Laan, W., Sawers, G., Teixeira de Mattos, J. & Hellingwerf, K. (2010). The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. Journal of Bacteriology 192, 746754.
Bettenbrock, K., Bai, H., Ederer, M., Green, J., Hellingwerf, K. J., Holcombe, M., Kunz, S., Rolfe, M. D., Sanguinetti, G., Sawodny, O., Sharma, P., Steinsiek, S. & Poole, R. K. (2014). Towards a systems level understanding of the oxygen response of Escherichia coli. Advances in Microbial Physiology 64, 65114.
Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. (2004). RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiology and Molecular Biology Reviews 68, 263279.
Lemmer, K. C., Dohnalkova, A. C., Noguera, D. R. & Donohue, T. J. (2015). Oxygen-dependent regulation of bacterial lipid production. Journal of Bacteriology 197, 16491658.
Bauer, C. E., Elsen, S. & Bird, T. H. (1999). Mechanisms for redox control of gene expression. Annual Review of Microbiology 53, 495523.
Crack, J. C., Green, J., Thomson, A. J. & Le Brun, N. E. (2012). Iron–sulfur cluster sensor-regulators. Current Opinion in Chemical Biology 16, 3544.
Durand, S. & Storz, G. (2010). Reprogramming of anaerobic metabolism by the FnrS small RNA. Molecular Microbiology 75, 12151231.
Green, J. & Paget, M. S. (2004). Bacterial redox sensors. Nature Reviews Microbiology 2, 954966.
Härtig, E. & Jahn, D. (2012). Regulation of the anaerobic metabolism in Bacillus subtilis. Advances in Microbial Physiology 61, 195216.
Kiley, P. J. & Beinert, H. (2003). The role of Fe–S proteins in sensing and regulation in bacteria. Current Opinion in Microbiology 6, 181185.
Taylor, B. L., Zhulin, I. B. & Johnson, M. S. (1999). Aerotaxis and other energy-sensing behavior in bacteria. Annual Review of Microbiology 53, 103128.
Unden, G. & Schirawski, J. (1997). The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Molecular Microbiology 25, 205210.
Dubbs, J. M. & Mongkolsuk, S. (2012). Peroxide-sensing transcriptional regulators in bacteria. Journal of Bacteriology 194, 54955503.
Glaeser, J., Nuss, A. M., Berghoff, B. A. & Klug, G. (2011). Singlet oxygen stress in microorganisms. Advances in Microbial Physiology 58, 141173.
Gray, M. J. & Jakob, U. (2015). Oxidative stress protection by polyphosphate – new roles for an old player. Current Opinion in Microbiology 24, 16.
Henningham, A., Döhrmann, S., Nizet, V. & Cole, J. N. (2015). Mechanisms of group A Streptococcus resistance to reactive oxygen spp. FEMS Microbiology Reviews 39, 488508.
Imlay, J. A. (2015). Transcription factors that defend bacteria against reactive oxygen spp. Annual Review of Microbiology 69, 93108.
Mols, M. & Abee, T. (2011). Primary and secondary oxidative stress in Bacillus. Environmental Microbiology 13, 13871394.
Thamsen, M. & Jakob, U. (2011). The redoxome: proteomic analysis of cellular redox networks. Current Opinion in Chemical Biology 15, 113119.
Yesilkaya, H., Andisi, V. F., Andrew, P. W. & Bijlsma, J. J. E. (2013). Streptococcus pneumoniae and reactive oxygen spp.: an unusual approach to living with radicals. Trends in Microbiology 21, 187195.
Zhao, X. & Drlica, K. (2014). Reactive oxygen spp. and the bacterial response to lethal stress. Current Opinion in Microbiology 21, 16.
Zuber, P. (2009). Management of oxidative stress in Bacillus. Annual Review of Microbiology 63, 575597.
Bowman, L. A. H., McLean, S., Poole, R. K. & Fukuto, J. M. (2011). The diversity of microbial responses to nitric oxide and agents of nitrosative stress: close cousins but not identical twins. Advances in Microbial Physiology 59, 135219.
Husain, M., Jones-Carson, J., Song, M., McCollister, B. D., Bourret, T. J. & Vázquez-Torres, A. (2010). Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proceedings of the National Academy of Sciences of the USA 107, 1439614401.
Helmann, J. D., Wu, M. F. W., Kobel, P. A., Gamo, F. J., Wilson, M., Morshedi, M. M., Navre, M. & Paddon, C. (2001). Global transcriptional response of Bacillus subtilis to heat shock. Journal of Bacteriology 183, 73187328.
Hirtreiter, A. M., Calloni, G., Forner, F., Scheibe, B., Puype, M., Vandekerckhove, J., Mann, M., Hartl, F. U. & Hayer-Hartl, M. (2009). Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Molecular Microbiology 74, 11521168.
Kortmann, J. & Narberhaus, F. (2012). Bacterial RNA thermometers: molecular zippers and switches. Nature Reviews Microbiology 10, 255265.
Laksanalamai, P., Maeder, D. L. & Robb, F. T. (2001). Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology 183, 51985202.
Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews 33, 785800.
Meyer, A. S. & Baker, T. A. (2011). Proteolysis in the Escherichia coli heat shock response: a player at many levels. Current Opinion in Microbiology 14, 194199.
Schumann, W. (2016). Regulation of bacterial heat shock stimulons. Cell Stress and Chaperones 21, 959968.
Barria, C., Malecki, M. & Arraiano, C. M. (2013). Bacterial adaptation to cold. Microbiology 159, 24372443.
Cavicchioli, R., Thomas, T. & Curmi, P. M. G. (2000). Cold stress response in Archaea. Extremophiles 4, 321331.
Graumann, P. & Marahiel, M. A. (1996). Some like it cold: response of micro-organisms to cold shock. Archives of Microbiology 166, 293300.
Keto-Timonen, R., Hietala, N., Palonen, E., Hakakorpi, A., Lindström, M. & Korkeala, H. (2016). Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Frontiers in Microbiology 7, 1151.
Sakamoto, T. & Murata, N. (2002). Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Current Opinion in Microbiology 5, 206210.
Shivaji, S. & Prakash, J. (2010). How do bacteria sense and respond to low temperature? Archives of Microbiology 192, 8595.
Singh, A. K., Sad, K., Singh, S. K. & Shivaji, S. (2014). Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology 160, 12911296.
Antunes, L. C. M., Ferreira, R. B. R., Buckner, M. M. C. & Finlay, B. B. (2010). Quorum sensing in bacterial virulence. Microbiology 156, 22712282.
Asfahl, K. L. & Schuster, M. (2017). Social interactions in bacterial cell–cell signaling. FEMS Microbiology Reviews 41, 92107.
Banerjee, G. & Ray, A. K. (2016). The talking language in some major Gram-negative bacteria. Archives of Microbiology 198, 489499.
Dandekar, A. A., Chugani, S. & Greenberg, E. P. (2012). Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264266.
Decho, A. W., Norman, R. S. & Visscher, P. T. (2010). Quorum sensing in natural environments: emerging views from microbial mats. Trends in Microbiology 18, 7380.
Frederix, M. & Downie, A. J. (2011). Quorum sensing: regulating the regulators. Advances in Microbial Physiology 58, 2380.
Hense, B. A. & Schuster, M. (2015). Core principles of bacterial autoinducer systems. Microbiology and Molecular Biology Reviews 79, 153169.
Jacob, E. B., Becker, I., Shapira, Y. & Levine, H. (2004). Bacterial linguistic communication and social intelligence. Trends in Microbiology 12, 366372.
Kalia, V. C. & Purohit, H. J. (2011). Quenching the quorum sensing system: potential antibacterial drug targets. Critical Reviews in Microbiology 37, 121140.
Monnet, V., Juillard, V. & Gardan, R. (2016). Peptide conversations in Gram-positive bacteria. Critical Reviews in Microbiology 42, 339351.
Parsek, M. R. & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology 13, 2733.
Rasmussen, T. B. & Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology 152, 895904.
Ryan, R. P. & Dow, J. M. (2011). Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends in Microbiology 19, 145152.
Schuster, M., Sexton, D. J., Diggle, S. P. & Greenberg, E. P. (2013). Acyl-homoserine lactone quorum sensing: from evolution to application. Annual Review of Microbiology 67, 4363.
Srivastava, D. & Waters, C. M. (2012). A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. Journal of Bacteriology 194, 44854493.
Zhang, G., Zhang, F., Ding, G., Li, J., Guo, X., Zhu, J., Zhou, L., Cai, S., Liu, X., Luo, Y., Zhang, G., Shi, W. & Dong, X. (2012). Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME Journal 6, 13361344.
Baños, R. C., Martínez, J., Polo, C., Madrid, C., Prenafeta, A. & Juárez, A. (2011). The yfeR gene of Salmonella enterica serovar Typhimurium encodes an osmoregulated LysR-type transcriptional regulator. FEMS Microbiology Letters 315, 6371.
Sleator, R. D. & Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26, 4971.
Tipton, K. A. & Rather, P. N. (2017). An ompR-envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075. Journal of Bacteriology 199, e0070516.
Wood, J. M. (2011). Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annual Review of Microbiology 65, 215238.
Aizawa, S., Harwood, C. S. & Kadner, R. J. (2000). Signaling components in bacterial locomotion and sensory reception. Journal of Bacteriology 182, 14591471.
Alexandre, G. (2010). Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156, 22832293.
Brown, M. T., Delalez, N. J. & Armitage, J. P. (2011). Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. Current Opinion in Microbiology 14, 734740.
De Lay, N. & Gottesman, S. (2012). A complex network of small non-coding RNAs regulate motility in Escherichia coli. Molecular Microbiology 86, 524538.
Hazelbauer, G. L. (2012). Bacterial chemotaxis: the early years of molecular studies. Annual Review of Microbiology 66, 285303.
Krell, T., Lacal, J., Muñoz-Martínez, F., Reyes-Darias, J. A., Cadirci, B. H., García-Fontana, C. & Ramos, J. L. (2011). Diversity at its best: bacterial taxis. Environmental Microbiology 13, 11151124.
Porter, S. L., Wadhams, G. H. & Armitage, J. P. (2011). Signal processing in complex chemotaxis pathways. Nature Reviews Microbiology 9, 153165.
Szurmant, H. & Ordal, G. W. (2004). Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiology and Molecular Biology Reviews 68, 301319.
Yuan, J., Branch, R. W., Hosu, B. G. & Berg, H. C. (2012). Adaptation at the output of the chemotaxis signalling pathway. Nature 484, 233236.
Aertsen, A. & Michiels, C. W. (2005). Diversify or die: generation of diversity in response to stress. Critical Reviews in Microbiology 31, 6978.
Andersson, D. I. & Hughes, D. (2009). Gene amplification and adaptive evolution in bacteria. Annual Review of Genetics 43, 167195.
Dubnau, D. & Losick, R. (2006). Bistability in bacteria. Molecular Microbiology 61, 564572.
Foster, P. L. (1993). Adaptive mutation: the uses of adversity. Annual Review of Microbiology 47, 467504.
Wright, B. E. (2004). Stress-directed adaptive mutations and evolution. Molecular Microbiology 52, 643650.
Dworkin, J. (2015). Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology 24, 4752.
Eoh, H. & Rhee, K. Y. (2014). Allostery and compartmentalization: old but not forgotten. Current Opinion in Microbiology 18, 2329.
Gur, E., Biran, D. & Ron, E. Z. (2011). Regulated proteolysis in Gram-negative bacteria – how and when?Nature Reviews Microbiology 9, 839848.
Hu, L. I., Lima, B. P. & Wolfe, A. J. (2010). Bacterial protein acetylation: the dawning of a new age. Molecular Microbiology 77, 1521.
Itzen, A., Blankenfeldt, W. & Goody, R. S. (2011). Adenylylation: renaissance of a forgotten post-translational modification. Trends in Biochemical Sciences 36, 221228.
Loi, V. V., Rossius, M. & Antelmann, H. (2015). Redox regulation by reversible protein S-thiolation in bacteria. Frontiers in Microbiology 6, 187.
Mijakovic, I., Grangeasse, C. & Turgay, K. (2016). Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiology Reviews 40, 398417.
Pisithkul, T., Patel, N. M. & Amador-Noguez, D. (2015). Post-translational modifications as key regulators of bacterial metabolic fluxes. Current Opinion in Microbiology 24, 2937.
Soufi, B., Soares, N. C., Ravikumar, V. & Macek, B. (2012). Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. Current Opinion in Microbiology 15, 357363.
Basan, M., Hui, S., Okano, H., Zhang, Z., Shen, Y., Williamson, J. R. & Hwa, T. (2015). Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99104.
Edwards, J. S., Covert, M. & Palsson, B. (2002). Metabolic modelling of microbes: the flux-balance approach. Environmental Microbiology 4, 133140.
El-Mansi, M., Cozzone, A. J., Shiloach, J. & Eikmanns, B. J. (2006). Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Current Opinion in Microbiology 9, 173179.
Gerosa, L. & Sauer, U. (2011). Regulation and control of metabolic fluxes in microbes. Current Opinion in Biotechnology 22, 566575.
Hengge, R. & Gourse, R. L. (2004). Cell regulation: tying together the cellular regulatory network. Current Opinion in Microbiology 7, 99101.
Jung, K., Fried, L., Behr, S. & Heermann, R. (2012). Histidine kinases and response regulators in networks. Current Opinion in Microbiology 15, 118124.
Leyn, S. A. D., Kazanov, M., Sernova, N. V., Ermakova, E. O., Novichkov, P. S. & Rodionov, D. A. (2013). Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis. Journal of Bacteriology 195, 24632473.
Noirot, P. & Noirot-Gros, M. F. (2004). Protein interaction networks in bacteria. Current Opinion in Microbiology 7, 505512.
Potrykus, K., Murphy, H., Philippe, N. & Cashel, M. (2011). ppGpp is the major source of growth rate control in E. coli. Environmental Microbiology 13, 563575.
van Heeswijk, W. C., Westerhoff, H. V. & Boogerd, F. C. (2013). Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiology and Molecular Biology Reviews 77, 628695.
Liu, G., Chater, K. F., Chandra, G., Niu, G. & Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews 77, 112143.
Urem, M., Świątek-Połatyńska, M. A., Rigali, S. & van Wezel, G. P. (2016). Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Molecular Microbiology 102, 183195.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×