Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-gz6rp Total loading time: 1.495 Render date: 2022-11-26T15:14:24.664Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 3 - Membrane transport – nutrient uptake and protein excretion

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Busch, W. & Saier, M. H. Jr. (2002). The transporter classification (TC) system, 2002. Critical Reviews in Biochemistry and Molecular Biology 37, 287337.CrossRefGoogle ScholarPubMed
Eggeling, L. & Sahm, H. (2003). New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Archives of Microbiology 180, 155160.Google ScholarPubMed
Harold, F. M. (2005). Molecules into cells: specifying spatial architecture. Microbiology and Molecular Biology Reviews 69, 544564.CrossRefGoogle ScholarPubMed
Hedfalk, K., Tornroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P. & Neutze, R. (2006). Aquaporin gating. Current Opinion in Structural Biology 16, 447456.CrossRefGoogle ScholarPubMed
Lolkema, J. S., Poolman, B. & Konings, W. N. (1998). Bacterial solute uptake and efflux systems. Current Opinion in Microbiology 1, 248253.CrossRefGoogle ScholarPubMed
Pudlik, A. M. & Lolkema, J. S. (2011). Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403. Journal of Bacteriology 193, 706714.CrossRefGoogle ScholarPubMed

Secondary Sources

Krulwich, T. A., Hicks, D. B. & Ito, M. (2009). Cation/proton antiporter complements of bacteria: why so large and diverse? Molecular Microbiology 74, 257260.CrossRefGoogle ScholarPubMed
Mesbah, N. M., Cook, G. M. & Wiegel, J. (2009). The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Molecular Microbiology 74, 270281.CrossRefGoogle ScholarPubMed
Psakis, G., Saidijam, M., Shibayama, K., Polaczek, J., Bettaney, K. E., Baldwin, J. M., Baldwin, S. A., Hope, R., Essen, L.-O., Essenberg, R. C. & Henderson, P. J. F. (2009). The sodium-dependent D-glucose transport protein of Helicobacter pylori. Molecular Microbiology 71: 391403.CrossRefGoogle ScholarPubMed
Sobczak, I. & Lolkema, J. S. (2005). The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism. Microbiology and Molecular Biology Reviews 69, 665695.CrossRefGoogle ScholarPubMed
Albers, S. V., Koning, S. M., Konings, W. N. & Driessen, A. J. (2004). Insights into ABC transport in archaea. Journal of Bioenergetics and Biomembranes 36, 515.CrossRefGoogle ScholarPubMed
Cabezon, E. & de la Cruz, F. (2006). TrwB: an F1-ATPase-like molecular motor involved in DNA transport during bacterial conjugation. Research in Microbiology 157, 299305.CrossRefGoogle Scholar
Cheng, J., Poduska, B., Morton, R. A. & Finan, T. M. (2011). An ABC-type cobalt transport system is essential for growth of Sinorhizobium melilotiat trace metal concentrations. Journal of Bacteriology 193, 44054416.CrossRefGoogle ScholarPubMed
Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiology and Molecular Biology Reviews 72, 317364.CrossRefGoogle ScholarPubMed
Erkens, G. B., Majsnerowska, M., ter Beek, J. & Slotboom, D. J. (2012). Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes. Biochemistry 51, 43904396.CrossRefGoogle ScholarPubMed
Pohl, A., Devaux, P. F. & Herrmann, A. (2005). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochimica et Biophysica Acta 1733, 2952.CrossRefGoogle ScholarPubMed
Fischer, M., Zhang, Q. Y., Hubbard, R. E. & Thomas, G. H. (2010). Caught in a TRAP: substrate-binding proteins in secondary transport. Trends in Microbiology 18, 471478.CrossRefGoogle Scholar
Mulligan, C., Fischer, M. & Thomas, G. H. (2011). Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiology Reviews 35: 6886.CrossRefGoogle ScholarPubMed
Winnen, B., Hvorup, R. N. & Saier, M. H. Jr. (2003). The tripartite tricarboxylate transporter (TTT) family. Research in Microbiology 154, 457465.CrossRefGoogle ScholarPubMed
Barabote, R. D. & Saier, M. H. Jr. (2005). Comparative genomic analyses of the bacterial phosphotransferase system. Microbiology and Molecular Biology Reviews 69, 608634.CrossRefGoogle ScholarPubMed
Deutscher, J., Aké, F. M. D., Derkaoui, M., Zébré, A. C., Cao, T. N., Bouraoui, H., Kentache, T., Mokhtari, A., Milohanic, E. & Joyet, P. (2014). The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein–protein interactions. Microbiology and Molecular Biology Reviews 78, 231256.CrossRefGoogle ScholarPubMed
Goodwin, R. A. & Gage, D. J. (2014). Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EINtr integrates carbon and nitrogen signaling in Sinorhizobium meliloti. Journal of Bacteriology 196, 1901 –1907.CrossRefGoogle Scholar
Pflüger-Grau, K. & Görke, B. (2010). Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends in Microbiology 18, 205214.CrossRefGoogle ScholarPubMed
Braun, V. & Braun, M. (2002). Active transport of iron and siderophore antibiotics. Current Opinion in Microbiology 5, 194201.CrossRefGoogle ScholarPubMed
Llamas, M. A. & Bitter, W. (2006). Iron gate: the translocation system. Journal of Bacteriology 188, 31723174.CrossRefGoogle ScholarPubMed
Schalk, I. J., Hannauer, M. & Braud, A. (2011). New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology 13, 28442854.CrossRefGoogle ScholarPubMed
Wandersman, C. & Delepelaire, P. (2004). Bacterial iron sources: from siderophores to hemophores. Annual Review of Microbiology 58, 611647.CrossRefGoogle ScholarPubMed
Balhesteros, H., Shipelskiy, Y., Long, N. J., Majumdar, A., Katz, B. B., Santos, N. M., Leaden, L., Newton, S. M., Marques, M. V. & Klebba, P. E. (2017). TonB-dependent heme/hemoglobin utilization by Caulobacter crescentus HutA. Journal of Bacteriology 199, e00723–16.CrossRefGoogle ScholarPubMed
Celia, H., Noinaj, N., Zakharov, S. D., Bordignon, E., Botos, I., Santamaria, M., Barnard, T. J., Cramer, W. A., Lloubes, R. & Buchanan, S. K. (2016). Structural insight into the role of the Ton complex in energy transduction. Nature 538, 6065.CrossRefGoogle ScholarPubMed
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. (2010). TonB-dependent transporters: regulation, structure, and function. Annual Review of Microbiology 64, 4360.CrossRefGoogle ScholarPubMed
Postle, K. & Kadner, R. J. (2003). Touch and go: tying TonB to transport. Molecular Microbiology 49, 869882.CrossRefGoogle ScholarPubMed
Du, D., van Veen, H. W. & Luisi, B. F. (2015). Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends in Microbiology 23, 311319.CrossRefGoogle ScholarPubMed
Hinchliffe, P., Symmons, M. F., Hughes, C. & Koronakis, V. (2013). Structure and operation of bacterial tripartite pumps. Annual Review of Microbiology 67, 221242.CrossRefGoogle ScholarPubMed
Paulsen, I. T. (2003). Multidrug efflux pumps and resistance: regulation and evolution. Current Opinion in Microbiology 6, 446451.CrossRefGoogle ScholarPubMed
Dalbey, R. E., Wang, P. & van Dijl, J. M. (2012). Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiology and Molecular Biology Reviews 76, 311330.CrossRefGoogle ScholarPubMed
Holland, I. B. (2004). Translocation of bacterial proteins – an overview. Biochimica et Biophysica Acta 1694, 516.CrossRefGoogle ScholarPubMed
Pohlschroeder, M., Hartmann, E., Hand, N. J., Dilks, K. & Haddad, A. (2005). Diversity and evolution of protein translocation. Annual Review of Microbiology 59, 91111.CrossRefGoogle Scholar
Pugsley, A. P., Francetic, O., Driessen, A. J. & de Lorenzo, V. (2004). Getting out: protein traffic in prokaryotes. Molecular Microbiology 52, 311.CrossRefGoogle ScholarPubMed
Desvaux, M., Parham, N. J., Scott-Tucker, A. & Henderson, I. R. (2004). The general secretory pathway: a general misnomer? Trends in Microbiology 12, 306309.CrossRefGoogle ScholarPubMed
Tjalsma, H., Antelmann, H., Jongbloed, J. D. H., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J. -Y. F., Westers, H., Zanen, G., Quax, W. J., Kuipers, O. P., Bron, S., Hecker, M. & van Dijl, J. M. (2004). Proteomics of protein secretion by Bacillus subtilis: separating the ‘secrets’ of the secretome. Microbiology and Molecular Biology Reviews 68, 207233.CrossRefGoogle ScholarPubMed
Tsirigotaki, A., De Geyter, J., Sostaric, N., Economou, A. & Karamanou, S. (2017). Protein export through the bacterial Sec pathway. Nature Reviews Microbiology 15(1), 2136.CrossRefGoogle ScholarPubMed
van der Sluis, E. O. & Driessen, A. J. M. (2006). Stepwise evolution of the Sec machinery in Proteobacteria. Trends in Microbiology 14, 105108.CrossRefGoogle ScholarPubMed
Berks, B. C. (2015). The twin-arginine protein translocation pathway. Annual Review of Biochemistry 84, 843864.CrossRefGoogle ScholarPubMed
Palmer, T. & Berks, B. C. (2012). The twin-arginine translocation (Tat) protein export pathway. Nature Reviews Microbiology 10, 483496.CrossRefGoogle ScholarPubMed
Robinson, C. & Bolhuis, A. (2004). Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochimica et Biophysica Acta 1694, 135147.CrossRefGoogle ScholarPubMed
Gebhard, S. (2012). ABC transporters of antimicrobial peptides in Firmicutes bacteria – phylogeny, function and regulation. Molecular Microbiology 86, 12951317.CrossRefGoogle ScholarPubMed
Buist, G., Ridder, A. N. J. A., Kok, J. & Kuipers, O. P. (2006). Different subcellular locations of secretome components of Gram-positive bacteria. Microbiology 152, 28672874.CrossRefGoogle ScholarPubMed
Forster, B. M. & Marquis, H. (2012). Protein transport across the cell wall of monoderm Gram-positive bacteria. Molecular Microbiology 84, 405413.CrossRefGoogle ScholarPubMed
Scheurwater, E. M. & Burrows, L. L. (2011). Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiology Letters 318, 19.CrossRefGoogle ScholarPubMed
Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P. & Chapman, M. R. (2012). Diversity, biogenesis and function of microbial amyloids. Trends in Microbiology 20, 6673.CrossRefGoogle ScholarPubMed
Büttner, D. (2012). Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiology and Molecular Biology Reviews 76, 262310.CrossRefGoogle ScholarPubMed
Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual Review of Microbiology 59, 451485.CrossRefGoogle ScholarPubMed
Costa, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M. & Waksman, G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews Microbiology 13, 343359.CrossRefGoogle ScholarPubMed
Dalbey, R. E. & Kuhn, A. (2012). Protein traffic in Gram-negative bacteria – how exported and secreted proteins find their way. FEMS Microbiology Reviews 36, 10231045.CrossRefGoogle ScholarPubMed
Evans, L. D. B., Hughes, C. & Fraser, G. M. (2014). Building a flagellum outside the bacterial cell. Trends in Microbiology 22, 566572.CrossRefGoogle ScholarPubMed
Ghosh, P. (2004). Process of protein transport by the type III secretion system. Microbiology and Molecular Biology Reviews 68, 771795.CrossRefGoogle ScholarPubMed
Hachani, A., Wood, T. E. & Filloux, A. (2016). Type VI secretion and anti-host effectors. Current Opinion in Microbiology 29: 8193.CrossRefGoogle ScholarPubMed
Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala’Aldeen, D. (2004). Type V protein secretion pathway: the autotransporter story. Microbiology and Molecular Biology Reviews 68, 692744.CrossRefGoogle ScholarPubMed
Kanonenberg, K., Schwarz, C. K. W. & Schmitt, L. (2013). Type I secretion systems – a story of appendices. Research in Microbiology 164, 596604.CrossRefGoogle ScholarPubMed
Kim, D. S. H., Chao, Y. & Saier, M. H. Jr. (2006). Protein-translocating trimeric autotransporters of Gram-negative bacteria. Journal of Bacteriology 188, 56555667.CrossRefGoogle ScholarPubMed
Lara-Tejero, M., Kato, J., Wagner, S., Liu, X. & Galán, J. E. (2011). A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331, 11881191.CrossRefGoogle ScholarPubMed
Lasica, A. M., Ksiazek, M., Madej, M. & Potempa, J. (2017). The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Frontiers in Cellular & Infection Microbiology 7: 215.CrossRefGoogle ScholarPubMed
Stoop, E. J. M., Bitter, W. & van der Sar, A. M. (2012). Tubercle bacilli rely on a type VII army for pathogenicity. Trends in Microbiology 20, 477484.CrossRefGoogle ScholarPubMed
Cuthbertson, L., Kos, V. & Whitfield, C. (2010). ABC Transporters involved in export of cell surface glycoconjugates. Microbiology and Molecular Biology Reviews 74, 341362.CrossRefGoogle ScholarPubMed
Cuthbertson, L., Mainprize, I. L., Naismith, J. H. & Whitfield, C. (2009). Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiology and Molecular Biology Reviews 73, 155177.CrossRefGoogle Scholar
Okuda, S., Freinkman, E. & Kahne, D. (2012). Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338, 12141217.CrossRefGoogle ScholarPubMed
Putker, F., Bos, M. P. & Tommassen, J. (2015). Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiology Reviews 39, 9851002.CrossRefGoogle ScholarPubMed
Qiao, S., Luo, Q., Zhao, Y., Zhang, X. C. & Huang, Y. (2014). Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511, 108111.CrossRefGoogle ScholarPubMed
Whitney, J. C. & Howell, P. L. (2013). Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends in Microbiology 21, 6372.CrossRefGoogle ScholarPubMed
Albers, S. V., Szabo, Z. & Driessen, A. J. M. (2006). Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nature Reviews Microbiology 4, 537547.CrossRefGoogle ScholarPubMed
Gehring, A. M., Walker, J. E. & Santangelo, T. J. (2016). Transcription regulation in archaea. Journal of Bacteriology 198, 19061917.CrossRefGoogle ScholarPubMed
Gimenez, M. I., Dilks, K. & Pohlschroder, M. (2007). Haloferax volcanii twin-arginine translocation substates include secreted soluble, C-terminally anchored and lipoproteins. Molecular Microbiology 66, 15971606.CrossRefGoogle ScholarPubMed
Karr, E. A. (2014). Transcription regulation in the third domain. Advances in Applied Microbiology 89, 101133.CrossRefGoogle ScholarPubMed
Kwan, D. C., Thomas, J. R. & Bolhuis, A. (2008). Bioenergetic requirements of a Tat-dependent substrate in the halophilic archaeon Haloarcula hispanica. FEBS Journal 275(24), 61596167.CrossRefGoogle ScholarPubMed
Pohlschroder, M., Gimenez, M. I. & Jarrell, K. F. (2005). Protein transport in Archaea: Sec and twin arginine translocation pathways. Current Opinion in Microbiology 8, 713719.CrossRefGoogle ScholarPubMed
Saleh, M., Song, C., Nasserulla, S. & Leduc, L. G. (2010). Indicators from archaeal secretomes. Microbiological Research 165, 110.CrossRefGoogle ScholarPubMed
Abdul Ajees, A., Yang, J. & Rosen, B. (2011). The ArsD As(III) metallochaperone. BioMetals 24, 391399.CrossRefGoogle Scholar
Bleriot, C., Effantin, G., Lagarde, F., Mandrand-Berthelot, M.-A. & Rodrigue, A. (2011). RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. Journal of Bacteriology 193, 37853793.CrossRefGoogle ScholarPubMed
Braymer, J. J. & Giedroc, D. P. (2014). Recent developments in copper and zinc homeostasis in bacterial pathogens. Current Opinion in Chemical Biology 19, 5966.CrossRefGoogle ScholarPubMed
Chacon, K. N., Mealman, T. D., McEvoy, M. M. & Blackburn, N. J. (2014). Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proceedings of the National Academy of Sciences of the USA 111, 1537315378.CrossRefGoogle ScholarPubMed
Chandrangsu, P., Rensing, C. & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology 15, 338350.CrossRefGoogle ScholarPubMed
Furukawa, K., Ramesh, A., Zhou, Z., Weinberg, Z., Vallery, T., Winkler, W. C. & Breaker, R. R. (2015). Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Molecular Cell 57, 10881098.CrossRefGoogle Scholar
Osman, D., Patterson, C. J., Bailey, K., Fisher, K., Robinson, N. J., Rigby, S. E. J. & Cavet, J. S. (2013). The copper supply pathway to a Salmonella Cu, Zn-superoxide dismutase (SodCII) involves P1B-type ATPase copper efflux and periplasmic CueP. Molecular Microbiology 87, 466477.CrossRefGoogle Scholar
1
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×