Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-sz752 Total loading time: 1.514 Render date: 2023-02-07T06:50:31.239Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Chapter 7 - Heterotrophic metabolism on substrates other than glucose

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Artzi, L., Bayer, E. A. & Morais, S. (2017). Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology 15, 8395.
Ballschmiter, M., Armbrecht, M., Ivanova, K., Antranikian, G. & Liebl, W. (2005). AmyA, an α-amylase with β-cyclodextrin-forming activity, and AmyB from the thermoalkaliphilic organism Anaerobranca gottschalkii: two α-amylases adapted to their different cellular localizations. Applied and Environmental Microbiology 71, 37093715.
Beeson, W. T., Vu, V. V., Span, E. A., Phillips, C. M. & Marletta, M. A. (2015). Cellulose degradation by polysaccharide monooxygenases. Annual Review of Biochemistry 84, 923946.
Bertoldo, C. & Antranikian, G. (2002). Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Current Opinion in Chemical Biology 6, 151160.
Chimileski, S., Dolas, K., Naor, A., Gophna, U. & Papke, R. T. (2014). Extracellular DNA metabolism in Haloferax volcanii. Frontiers in Microbiology 5, 57.
Choi, K.-H. & Cha, J. (2015). Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639. Extremophiles 19, 909920.
Collins, T., Gerday, C. & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29, 323.
Frederiksen, R. F., Paspaliari, D. K., Larsen, T., Storgaard, B. G., Larsen, M. H., Ingmer, H., Palcic, M. M. & Leisner, J. J. (2013). Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159, 833847.
Gao, J., Bauer, M. W., Shockley, K. R., Pysz, M. A. & Kelly, R. M. (2003). Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Applied and Environmental Microbiology 69, 31193128.
Jayani, R. S., Saxena, S. & Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry 40, 29312944.
Jiao, Y.-L., Wang, S.-J., Lv, M.-S., Fang, Y.-W. and Liu, S. (2013). An evolutionary analysis of the GH57 amylopullulanases based on the DOMON glucodextranase-like domains. Journal of Basic Microbiology 53, 231239.
Khalikova, E., Susi, P. & Korpela, T. (2005). Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiology and Molecular Biology Reviews 69, 306325.
LaRowe, D. E. & Van Cappellen, P. (2011). Degradation of natural organic matter: a thermodynamic analysis. Geochimica et Cosmochimica Acta 75, 20302042.
Pinchuk, G. E., Ammons, C., Culley, D. E., Li, S. M., McLean, J. S., Romine, M. F., Nealson, K. H., Fredrickson, J. K. & Beliaev, A. S. (2008). Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Applied and Environmental Microbiology 74, 11981208.
Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M. & Penttilä, M. (2002). Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. European Journal of Biochemistry 269, 42024211.
Siroosi, M., Amoozegar, M., Khajeh, K., Fazeli, M. & Habibi Rezaei, M. (2014). Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 18, 2533.
Staufenberger, T., Imhoff, J. F. & Labes, A. (2012). First crenarchaeal chitinase found in Sulfolobus tokodaii. Microbiological Research 167, 262269.

Secondary Sources

Ampomah, O. Y., Avetisyan, A., Hansen, E., Svenson, J., Huser, T., Jensen, J. B. & Bhuvaneswari, T. V. (2013). The thuEFGKAB operon of rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. Journal of Bacteriology 195, 37973807.
Bräsen, C., Esser, D., Rauch, B. & Siebers, B. (2014). Carbohydrate metabolism in archaea: current insights into unusual enzymes and pathways and their regulation. Microbiology & Molecular Biology Reviews 78, 89175.
Csiszovszki, Z., Krishna, S., Orosz, L., Adhya, S. & Semsey, S. (2011). Structure and function of the D-galactose network in enterobacteria. mBio 2, e0005311.
Felux, A.-K., Spiteller, D., Klebensberger, J. & Schleheck, D. (2015). Entner–Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proceedings of the National Academy of Sciences of the USA 112, E4298E4305.
Johnsen, U., Sutter, J.-M., Zaiß, H. & Schönheit, P. (2013). L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase. Extremophiles 17, 897909.
Nolle, N., Felsl, A., Heermann, R. & Fuchs, T. M. (2017). Genetic characterization of the galactitol utilization pathway of Salmonella enterica serovar Typhimurium. Journal of Bacteriology 199, e0059516.
Orita, I., Sato, T., Yurimoto, H., Kato, N., Atomi, H., Imanaka, T. & Sakai, Y. (2006). The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Journal of Bacteriology 188, 46984704.
Qian, Z., Wang, Q., Tong, W., Zhou, C., Wang, Q. & Liu, S. (2010). Regulation of galactose metabolism through the HisK:GalR two-component system in Thermoanaerobacter tengcongensis. Journal of Bacteriology 192, 43114316.
Sund, C. J., Liu, S., Germane, K. L., Servinsky, M. D., Gerlach, E. S. & Hurley, M. M. (2015). Phosphoketolase flux in Clostridium acetobutylicum during growth on l-arabinose. Microbiology 161, 430440.
Suvorova, I. A., Tutukina, M. N., Ravcheev, D. A., Rodionov, D. A., Ozoline, O. N. & Gelfand, M. S. (2011). Comparative genomic analysis of the hexuronate metabolism genes and their regulation in Gammaproteobacteria. Journal of Bacteriology 193, 39563963.
Zeng, L. & Burne, R. A. (2015). NagR differentially regulates the expression of the glms and nagAB genes required for amino sugar metabolism by Streptococcus mutans. Journal of Bacteriology 197, 35333544.
Bramer, C. O. & Steinbuchel, A. (2001). The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiology 147, 22032214.
Claes, W. A., Puhler, A. & Kalinowski, J. (2002). Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. Journal of Bacteriology 184, 27282739.
Ensign, S. A. (2006). Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation. Molecular Microbiology 61, 274276.
Kretzschmar, U., Ruckert, A., Jeoung, J. H. & Gorisch, H. (2002). Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa. Microbiology 148, 38393847.
Meyer, F. M. & Stülke, J. (2013). Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes. FEMS Microbiology Letters 339, 1722.
Palacios, S. & Escalante-Semerena, J. C. (2004). 2-methylcitrate-dependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. Microbiology 150, 38773887.
Sahin, N. (2003). Oxalotrophic bacteria. Research in Microbiology 154, 399407.
Savvi, S., Warner, D. F., Kana, B. D., McKinney, J. D., Mizrahi, V. & Dawes, S. S. (2008). Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. Journal of Bacteriology 190, 38863895.
Schneider, K., Skovran, E. & Vorholt, J. A. (2012). Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. Journal of Bacteriology 194, 31443155.
Suvorova, I. A., Ravcheev, D. A. & Gelfand, M. S. (2012). Regulation and evolution of malonate and propionate catabolism in Proteobacteria. Journal of Bacteriology 194, 32343240.
Van Bogaert, I. N. A., Groeneboer, S., Saerens, K. & Soetaert, W. (2011). The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS Journal 278, 206221.
Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews 69, 1250.
Bizzini, A., Zhao, C., Budin-Verneuil, A., Sauvageot, N., Giard, J.-C., Auffray, Y. & Hartke, A. (2010). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. Journal of Bacteriology 192, 779785.
de Faveri, D., Torre, P., Molinari, F. & Converti, A. (2003). Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hansenii. Enzyme and Microbial Technology 33, 708719.
Havemann, G. D. & Bobik, T. A. (2003). Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. Journal of Bacteriology 185, 50865095.
Hirota-Mamoto, R., Nagai, R., Tachibana, S., Yasuda, M., Tani, A., Kimbara, K. & Kawai, F. (2006). Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152, 19411949.
Lehman, B. P., Chowdhury, C. & Bobik, T. A. (2017). The N terminus of the PduB protein binds the protein shell of the Pdu microcompartment to its enzymatic core. Journal of Bacteriology 199(8), e00785–16.
Mern, D. S., Ha, S.-W., Khodaverdi, V., Gliese, N. & Gorisch., H. (2010). A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators. Microbiology 156, 15051516.
Mückschel, B., Simon, O., Klebensberger, J., Graf, N., Rosche, B., Altenbuchner, J., Pfannstiel, J., Huber, A. & Hauer, B. (2012). Ethylene glycol metabolism by Pseudomonas putida. Applied and Environmental Microbiology 78, 85318539.
Rosier, C., Leys, N., Henoumont, C., Mergeay, M. & Wattiez, R. (2012). Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34. Applied and Environmental Microbiology 78, 45164518.
Sherwood, K. E., Cano, D. J. & Maupin-Furlow, J. A. (2009). Glycerol-mediated repression of glucose metabolism and glycerol kinase as the sole route of glycerol catabolism in the haloarchaeon Haloferax volcanii. Journal of Bacteriology 191, 43074315.
Bender, R. A. (2012). Regulation of the histidine utilization (Hut) system in bacteria. Microbiology and Molecular Biology Reviews 76, 565584.
Colabroy, K. L. & Begley, T. P. (2005). Tryptophan catabolism: identification and characterization of a new degradative pathway. Journal of Bacteriology 187, 78667869.
Gerth, M. L., Ferla, M. P. & Rainey, P. B. (2012). The origin and ecological significance of multiple branches for histidine utilization in Pseudomonas aeruginosa PAO1. Environmental Microbiology 14, 19291940.
Hoschle, B., Gnau, V. & Jendrossek, D. (2005). Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Microbiology 151, 36493656.
Kim, K.-S., Pelton, J. G., Inwood, W. B., Andersen, U., Kustu, S. & Wemmer, D. E. (2010). The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. Journal of Bacteriology 192, 40894102.
Millett, E. S., Efimov, I., Basran, J., Handa, S., Mowat, C. G. & Raven, E. L. (2012). Heme-containing dioxygenases involved in tryptophan oxidation. Current Opinion in Chemical Biology 16, 6066.
Moses, S., Sinner, T., Zaprasis, A., Stöveken, N., Hoffmann, T., Belitsky, B. R., Sonenshein, A. L. & Bremer, E. (2012). Proline utilization by Bacillus subtilis: uptake and catabolism. Journal of Bacteriology 194, 745758.
Basu, A., Apte, S. K. & Phale, P. S. (2006). Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Applied and Environmental Microbiology 72, 22262230.
Doyle, E., Muckian, L., Hickey, A. M. & Clipson, N. (2008). Microbial PAH degradation. Advances in Applied Microbiology 65, 2766.
Funhoff, E. G., Bauer, U., Garcia-Rubio, I., Witholt, B. & van Beilen, J. B. (2006). CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. Journal of Bacteriology 188, 52205227.
George, K. W. & Hay, A. G. (2011). Bacterial strategies for growth on aromatic compounds. Advances in Applied Microbiology 74, 133.
Khajamohiddin, S., Repalle, E. R., Pinjari, A. B., Merrick, M. & Siddavattam, D. (2008). Biodegradation of aromatic compounds: an overview of meta-fission product hydrolases. Critical Reviews in Microbiology 34, 13–31.
Krishnakumar, A. M., Sliwa, D., Endrizzi, J. A., Boyd, E. S., Ensign, S. A. & Peters, J. W. (2008). Getting a handle on the role of coenzyme M in alkene metabolism. Microbiology and Molecular Biology Reviews 72, 445456.
Mallick, S., Chakraborty, J. & Dutta, T. K. (2010). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Critical Reviews in Microbiology 37, 6490.
Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology 11, 24772490.
Teufel, R., Mascaraque, V., Ismail, W., Voss, M., Perera, J., Eisenreich, W., Haehnel, W. & Fuchs, G. (2010). Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences of the USA 107, 1439014395.
van Hamme, J. D., Singh, A. & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews 67, 503549.
Vangnai, A. S., Sayavedra-Soto, L. A. & Arp, D. J. (2002). Roles for the two 1-butanol dehydrogenases of Pseudomonas butanovora in butane and 1-butanol metabolism. Journal of Bacteriology 184, 43434350.
Fenner, K., Canonica, S., Wackett, L. P. & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341: 752758.
Gewert, B., Plassmann, M. M. & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes and Impacts 17, 15131521.
Kivisaar, M. (2009). Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Molecular Microbiology 74, 777781.
Mattes, T. E., Alexander, A. K. & Coleman, N. V. (2010). Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiology Reviews 34, 445475.
McGrath, J. W., Chin, J. P. & Quinn, J. P. (2013). Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nature Reviews Microbiology 11, 412419.
Reisch, C. R., Stoudemayer, M. J., Varaljay, V. A., Amster, I. J., Moran, M. A. & Whitman, W. B. (2011). Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 473, 208211.
Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances 26, 246265.
Singh, B., Kaur, J. & Singh, K. (2012). Microbial remediation of explosive waste. Critical Reviews in Microbiology 38, 152167.
Sivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology 22, 422426.
Wei, R., Oeser, T. & Zimmermann, W. (2014). Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. Advances in Applied Microbiology 89, 267305.
Balasubramanian, R., Smith, S. M., Rawat, S., Yatsunyk, L. A., Stemmler, T. L. & Rosenzweig, A. C. (2010). Oxidation of methane by a biological dicopper centre. Nature 465, 115119.
Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. (2009). The expanding world of methylotrophic metabolism. Annual Review of Microbiology 63, 477499.
Crombie, A. T. & Murrell, J. C. (2014). Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 509, 148151.
Dedysh, S. N., Smirnova, K. V., Khmelenina, V. N., Suzina, N. E., Liesack, W. & Trotsenko, Y. A. (2005). Methylotrophic autotrophy in Beijerinckia mobilis. Journal of Bacteriology 187, 38843888.
Firsova, J., Doronina, N., Lang, E., Spröer, C., Vuilleumier, S. H. & Trotsenko, Y. (2009). Ancylobacter dichloromethanicus sp. nov. – a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Systematic and Applied Microbiology 32, 227232.
Hu, B. & Lidstrom, M. (2012). CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the ethylmalonyl coenzyme A pathway in Methylobacterium extorquens AM1. Journal of Bacteriology 194, 28022808.
Martinez-Gomez, N. C., Nguyen, S. & Lidstrom, M. E. (2013). Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1. Journal of Bacteriology 195, 23592367.
Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M. & Op den Camp, H. J. M. (2014). Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology 16, 255264.
Semrau, J. D., DiSpirito, A. A. & Murrell, J. C. (2008). Life in the extreme: thermoacidophilic methanotrophy. Trends in Microbiology 16, 190193.
Theisen, A. R., Ali, M. H., Radajewski, S., Dumont, M. G., Dunfield, P. F., McDonald, I. R., Dedysh, S. N., Miguez, C. B. & Murrell, J. C. (2005). Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Molecular Microbiology 58, 682692.
Wood, A. P., Aurikko, J. P. & Kelly, D. P. (2004). A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiology Reviews 28, 335352.
Adachi, O., Moonmangmee, D., Toyama, H., Yamada, M., Shinagawa, E. & Matsushita, K. (2003). New developments in oxidative fermentation. Applied Microbiology and Biotechnology 60, 643653.
Holscher, T. & Gorisch, H. (2006). Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology 188, 76687676.
Richhardt, J., Luchterhand, B., Bringer, S., Büchs, J. & Bott, M. (2013). Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. Journal of Bacteriology 195, 42104220.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×