Skip to main content Accessibility help
Hostname: page-component-5d6d958fb5-lm9t2 Total loading time: 1.565 Render date: 2022-11-29T09:02:50.206Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 7 - Heterotrophic metabolism on substrates other than glucose

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
University of Dundee
Get access
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Primary Sources

Artzi, L., Bayer, E. A. & Morais, S. (2017). Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology 15, 8395.CrossRefGoogle ScholarPubMed
Ballschmiter, M., Armbrecht, M., Ivanova, K., Antranikian, G. & Liebl, W. (2005). AmyA, an α-amylase with β-cyclodextrin-forming activity, and AmyB from the thermoalkaliphilic organism Anaerobranca gottschalkii: two α-amylases adapted to their different cellular localizations. Applied and Environmental Microbiology 71, 37093715.CrossRefGoogle ScholarPubMed
Beeson, W. T., Vu, V. V., Span, E. A., Phillips, C. M. & Marletta, M. A. (2015). Cellulose degradation by polysaccharide monooxygenases. Annual Review of Biochemistry 84, 923946.CrossRefGoogle ScholarPubMed
Bertoldo, C. & Antranikian, G. (2002). Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Current Opinion in Chemical Biology 6, 151160.CrossRefGoogle ScholarPubMed
Chimileski, S., Dolas, K., Naor, A., Gophna, U. & Papke, R. T. (2014). Extracellular DNA metabolism in Haloferax volcanii. Frontiers in Microbiology 5, 57.CrossRefGoogle ScholarPubMed
Choi, K.-H. & Cha, J. (2015). Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639. Extremophiles 19, 909920.CrossRefGoogle ScholarPubMed
Collins, T., Gerday, C. & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29, 323.CrossRefGoogle ScholarPubMed
Frederiksen, R. F., Paspaliari, D. K., Larsen, T., Storgaard, B. G., Larsen, M. H., Ingmer, H., Palcic, M. M. & Leisner, J. J. (2013). Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159, 833847.CrossRefGoogle ScholarPubMed
Gao, J., Bauer, M. W., Shockley, K. R., Pysz, M. A. & Kelly, R. M. (2003). Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Applied and Environmental Microbiology 69, 31193128.CrossRefGoogle ScholarPubMed
Jayani, R. S., Saxena, S. & Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry 40, 29312944.CrossRefGoogle Scholar
Jiao, Y.-L., Wang, S.-J., Lv, M.-S., Fang, Y.-W. and Liu, S. (2013). An evolutionary analysis of the GH57 amylopullulanases based on the DOMON glucodextranase-like domains. Journal of Basic Microbiology 53, 231239.CrossRefGoogle ScholarPubMed
Khalikova, E., Susi, P. & Korpela, T. (2005). Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiology and Molecular Biology Reviews 69, 306325.CrossRefGoogle ScholarPubMed
LaRowe, D. E. & Van Cappellen, P. (2011). Degradation of natural organic matter: a thermodynamic analysis. Geochimica et Cosmochimica Acta 75, 20302042.CrossRefGoogle Scholar
Pinchuk, G. E., Ammons, C., Culley, D. E., Li, S. M., McLean, J. S., Romine, M. F., Nealson, K. H., Fredrickson, J. K. & Beliaev, A. S. (2008). Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Applied and Environmental Microbiology 74, 11981208.CrossRefGoogle ScholarPubMed
Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M. & Penttilä, M. (2002). Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. European Journal of Biochemistry 269, 42024211.CrossRefGoogle ScholarPubMed
Siroosi, M., Amoozegar, M., Khajeh, K., Fazeli, M. & Habibi Rezaei, M. (2014). Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 18, 2533.CrossRefGoogle ScholarPubMed
Staufenberger, T., Imhoff, J. F. & Labes, A. (2012). First crenarchaeal chitinase found in Sulfolobus tokodaii. Microbiological Research 167, 262269.CrossRefGoogle ScholarPubMed

Secondary Sources

Ampomah, O. Y., Avetisyan, A., Hansen, E., Svenson, J., Huser, T., Jensen, J. B. & Bhuvaneswari, T. V. (2013). The thuEFGKAB operon of rhizobia and Agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives. Journal of Bacteriology 195, 37973807.CrossRefGoogle ScholarPubMed
Bräsen, C., Esser, D., Rauch, B. & Siebers, B. (2014). Carbohydrate metabolism in archaea: current insights into unusual enzymes and pathways and their regulation. Microbiology & Molecular Biology Reviews 78, 89175.CrossRefGoogle ScholarPubMed
Csiszovszki, Z., Krishna, S., Orosz, L., Adhya, S. & Semsey, S. (2011). Structure and function of the D-galactose network in enterobacteria. mBio 2, e0005311.CrossRefGoogle ScholarPubMed
Felux, A.-K., Spiteller, D., Klebensberger, J. & Schleheck, D. (2015). Entner–Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proceedings of the National Academy of Sciences of the USA 112, E4298E4305.CrossRefGoogle ScholarPubMed
Johnsen, U., Sutter, J.-M., Zaiß, H. & Schönheit, P. (2013). L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase. Extremophiles 17, 897909.CrossRefGoogle ScholarPubMed
Nolle, N., Felsl, A., Heermann, R. & Fuchs, T. M. (2017). Genetic characterization of the galactitol utilization pathway of Salmonella enterica serovar Typhimurium. Journal of Bacteriology 199, e0059516.CrossRefGoogle ScholarPubMed
Orita, I., Sato, T., Yurimoto, H., Kato, N., Atomi, H., Imanaka, T. & Sakai, Y. (2006). The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Journal of Bacteriology 188, 46984704.CrossRefGoogle ScholarPubMed
Qian, Z., Wang, Q., Tong, W., Zhou, C., Wang, Q. & Liu, S. (2010). Regulation of galactose metabolism through the HisK:GalR two-component system in Thermoanaerobacter tengcongensis. Journal of Bacteriology 192, 43114316.CrossRefGoogle ScholarPubMed
Sund, C. J., Liu, S., Germane, K. L., Servinsky, M. D., Gerlach, E. S. & Hurley, M. M. (2015). Phosphoketolase flux in Clostridium acetobutylicum during growth on l-arabinose. Microbiology 161, 430440.CrossRefGoogle ScholarPubMed
Suvorova, I. A., Tutukina, M. N., Ravcheev, D. A., Rodionov, D. A., Ozoline, O. N. & Gelfand, M. S. (2011). Comparative genomic analysis of the hexuronate metabolism genes and their regulation in Gammaproteobacteria. Journal of Bacteriology 193, 39563963.CrossRefGoogle ScholarPubMed
Zeng, L. & Burne, R. A. (2015). NagR differentially regulates the expression of the glms and nagAB genes required for amino sugar metabolism by Streptococcus mutans. Journal of Bacteriology 197, 35333544.CrossRefGoogle ScholarPubMed
Bramer, C. O. & Steinbuchel, A. (2001). The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiology 147, 22032214.CrossRefGoogle ScholarPubMed
Claes, W. A., Puhler, A. & Kalinowski, J. (2002). Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. Journal of Bacteriology 184, 27282739.CrossRefGoogle ScholarPubMed
Ensign, S. A. (2006). Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation. Molecular Microbiology 61, 274276.CrossRefGoogle ScholarPubMed
Kretzschmar, U., Ruckert, A., Jeoung, J. H. & Gorisch, H. (2002). Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa. Microbiology 148, 38393847.CrossRefGoogle ScholarPubMed
Meyer, F. M. & Stülke, J. (2013). Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes. FEMS Microbiology Letters 339, 1722.CrossRefGoogle ScholarPubMed
Palacios, S. & Escalante-Semerena, J. C. (2004). 2-methylcitrate-dependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. Microbiology 150, 38773887.CrossRefGoogle ScholarPubMed
Sahin, N. (2003). Oxalotrophic bacteria. Research in Microbiology 154, 399407.CrossRefGoogle ScholarPubMed
Savvi, S., Warner, D. F., Kana, B. D., McKinney, J. D., Mizrahi, V. & Dawes, S. S. (2008). Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. Journal of Bacteriology 190, 38863895.CrossRefGoogle ScholarPubMed
Schneider, K., Skovran, E. & Vorholt, J. A. (2012). Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. Journal of Bacteriology 194, 31443155.CrossRefGoogle ScholarPubMed
Suvorova, I. A., Ravcheev, D. A. & Gelfand, M. S. (2012). Regulation and evolution of malonate and propionate catabolism in Proteobacteria. Journal of Bacteriology 194, 32343240.CrossRefGoogle ScholarPubMed
Van Bogaert, I. N. A., Groeneboer, S., Saerens, K. & Soetaert, W. (2011). The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS Journal 278, 206221.CrossRefGoogle ScholarPubMed
Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews 69, 1250.CrossRefGoogle ScholarPubMed
Bizzini, A., Zhao, C., Budin-Verneuil, A., Sauvageot, N., Giard, J.-C., Auffray, Y. & Hartke, A. (2010). Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. Journal of Bacteriology 192, 779785.CrossRefGoogle Scholar
de Faveri, D., Torre, P., Molinari, F. & Converti, A. (2003). Carbon material balances and bioenergetics of 2,3-butanediol bio-oxidation by Acetobacter hansenii. Enzyme and Microbial Technology 33, 708719.CrossRefGoogle Scholar
Havemann, G. D. & Bobik, T. A. (2003). Protein content of polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar typhimurium LT2. Journal of Bacteriology 185, 50865095.CrossRefGoogle ScholarPubMed
Hirota-Mamoto, R., Nagai, R., Tachibana, S., Yasuda, M., Tani, A., Kimbara, K. & Kawai, F. (2006). Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152, 19411949.CrossRefGoogle ScholarPubMed
Lehman, B. P., Chowdhury, C. & Bobik, T. A. (2017). The N terminus of the PduB protein binds the protein shell of the Pdu microcompartment to its enzymatic core. Journal of Bacteriology 199(8), e00785–16.CrossRefGoogle Scholar
Mern, D. S., Ha, S.-W., Khodaverdi, V., Gliese, N. & Gorisch., H. (2010). A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators. Microbiology 156, 15051516.CrossRefGoogle ScholarPubMed
Mückschel, B., Simon, O., Klebensberger, J., Graf, N., Rosche, B., Altenbuchner, J., Pfannstiel, J., Huber, A. & Hauer, B. (2012). Ethylene glycol metabolism by Pseudomonas putida. Applied and Environmental Microbiology 78, 85318539.CrossRefGoogle ScholarPubMed
Rosier, C., Leys, N., Henoumont, C., Mergeay, M. & Wattiez, R. (2012). Purification and characterization of the acetone carboxylase of Cupriavidus metallidurans strain CH34. Applied and Environmental Microbiology 78, 45164518.CrossRefGoogle ScholarPubMed
Sherwood, K. E., Cano, D. J. & Maupin-Furlow, J. A. (2009). Glycerol-mediated repression of glucose metabolism and glycerol kinase as the sole route of glycerol catabolism in the haloarchaeon Haloferax volcanii. Journal of Bacteriology 191, 43074315.CrossRefGoogle ScholarPubMed
Bender, R. A. (2012). Regulation of the histidine utilization (Hut) system in bacteria. Microbiology and Molecular Biology Reviews 76, 565584.CrossRefGoogle ScholarPubMed
Colabroy, K. L. & Begley, T. P. (2005). Tryptophan catabolism: identification and characterization of a new degradative pathway. Journal of Bacteriology 187, 78667869.CrossRefGoogle ScholarPubMed
Gerth, M. L., Ferla, M. P. & Rainey, P. B. (2012). The origin and ecological significance of multiple branches for histidine utilization in Pseudomonas aeruginosa PAO1. Environmental Microbiology 14, 19291940.CrossRefGoogle ScholarPubMed
Hoschle, B., Gnau, V. & Jendrossek, D. (2005). Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Microbiology 151, 36493656.CrossRefGoogle Scholar
Kim, K.-S., Pelton, J. G., Inwood, W. B., Andersen, U., Kustu, S. & Wemmer, D. E. (2010). The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. Journal of Bacteriology 192, 40894102.CrossRefGoogle ScholarPubMed
Millett, E. S., Efimov, I., Basran, J., Handa, S., Mowat, C. G. & Raven, E. L. (2012). Heme-containing dioxygenases involved in tryptophan oxidation. Current Opinion in Chemical Biology 16, 6066.CrossRefGoogle ScholarPubMed
Moses, S., Sinner, T., Zaprasis, A., Stöveken, N., Hoffmann, T., Belitsky, B. R., Sonenshein, A. L. & Bremer, E. (2012). Proline utilization by Bacillus subtilis: uptake and catabolism. Journal of Bacteriology 194, 745758.CrossRefGoogle ScholarPubMed
Basu, A., Apte, S. K. & Phale, P. S. (2006). Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Applied and Environmental Microbiology 72, 22262230.CrossRefGoogle ScholarPubMed
Doyle, E., Muckian, L., Hickey, A. M. & Clipson, N. (2008). Microbial PAH degradation. Advances in Applied Microbiology 65, 2766.CrossRefGoogle ScholarPubMed
Funhoff, E. G., Bauer, U., Garcia-Rubio, I., Witholt, B. & van Beilen, J. B. (2006). CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. Journal of Bacteriology 188, 52205227.CrossRefGoogle ScholarPubMed
George, K. W. & Hay, A. G. (2011). Bacterial strategies for growth on aromatic compounds. Advances in Applied Microbiology 74, 133.CrossRefGoogle ScholarPubMed
Khajamohiddin, S., Repalle, E. R., Pinjari, A. B., Merrick, M. & Siddavattam, D. (2008). Biodegradation of aromatic compounds: an overview of meta-fission product hydrolases. Critical Reviews in Microbiology 34, 13–31.CrossRef
Krishnakumar, A. M., Sliwa, D., Endrizzi, J. A., Boyd, E. S., Ensign, S. A. & Peters, J. W. (2008). Getting a handle on the role of coenzyme M in alkene metabolism. Microbiology and Molecular Biology Reviews 72, 445456.CrossRefGoogle ScholarPubMed
Mallick, S., Chakraborty, J. & Dutta, T. K. (2010). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Critical Reviews in Microbiology 37, 6490.CrossRefGoogle ScholarPubMed
Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology 11, 24772490.CrossRefGoogle ScholarPubMed
Teufel, R., Mascaraque, V., Ismail, W., Voss, M., Perera, J., Eisenreich, W., Haehnel, W. & Fuchs, G. (2010). Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proceedings of the National Academy of Sciences of the USA 107, 1439014395.CrossRefGoogle ScholarPubMed
van Hamme, J. D., Singh, A. & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews 67, 503549.CrossRefGoogle ScholarPubMed
Vangnai, A. S., Sayavedra-Soto, L. A. & Arp, D. J. (2002). Roles for the two 1-butanol dehydrogenases of Pseudomonas butanovora in butane and 1-butanol metabolism. Journal of Bacteriology 184, 43434350.CrossRefGoogle ScholarPubMed
Fenner, K., Canonica, S., Wackett, L. P. & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341: 752758.CrossRefGoogle ScholarPubMed
Gewert, B., Plassmann, M. M. & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes and Impacts 17, 15131521.Google Scholar
Kivisaar, M. (2009). Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Molecular Microbiology 74, 777781.CrossRefGoogle ScholarPubMed
Mattes, T. E., Alexander, A. K. & Coleman, N. V. (2010). Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiology Reviews 34, 445475.CrossRefGoogle ScholarPubMed
McGrath, J. W., Chin, J. P. & Quinn, J. P. (2013). Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nature Reviews Microbiology 11, 412419.CrossRefGoogle ScholarPubMed
Reisch, C. R., Stoudemayer, M. J., Varaljay, V. A., Amster, I. J., Moran, M. A. & Whitman, W. B. (2011). Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature 473, 208211.CrossRefGoogle ScholarPubMed
Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances 26, 246265.Google Scholar
Singh, B., Kaur, J. & Singh, K. (2012). Microbial remediation of explosive waste. Critical Reviews in Microbiology 38, 152167.CrossRefGoogle ScholarPubMed
Sivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology 22, 422426.CrossRefGoogle ScholarPubMed
Wei, R., Oeser, T. & Zimmermann, W. (2014). Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. Advances in Applied Microbiology 89, 267305.CrossRefGoogle ScholarPubMed
Balasubramanian, R., Smith, S. M., Rawat, S., Yatsunyk, L. A., Stemmler, T. L. & Rosenzweig, A. C. (2010). Oxidation of methane by a biological dicopper centre. Nature 465, 115119.CrossRefGoogle ScholarPubMed
Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. (2009). The expanding world of methylotrophic metabolism. Annual Review of Microbiology 63, 477499.CrossRefGoogle ScholarPubMed
Crombie, A. T. & Murrell, J. C. (2014). Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature 509, 148151.CrossRefGoogle Scholar
Dedysh, S. N., Smirnova, K. V., Khmelenina, V. N., Suzina, N. E., Liesack, W. & Trotsenko, Y. A. (2005). Methylotrophic autotrophy in Beijerinckia mobilis. Journal of Bacteriology 187, 38843888.CrossRefGoogle ScholarPubMed
Firsova, J., Doronina, N., Lang, E., Spröer, C., Vuilleumier, S. H. & Trotsenko, Y. (2009). Ancylobacter dichloromethanicus sp. nov. – a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Systematic and Applied Microbiology 32, 227232.CrossRefGoogle Scholar
Hu, B. & Lidstrom, M. (2012). CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the ethylmalonyl coenzyme A pathway in Methylobacterium extorquens AM1. Journal of Bacteriology 194, 28022808.CrossRefGoogle ScholarPubMed
Martinez-Gomez, N. C., Nguyen, S. & Lidstrom, M. E. (2013). Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1. Journal of Bacteriology 195, 23592367.CrossRefGoogle ScholarPubMed
Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M. & Op den Camp, H. J. M. (2014). Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology 16, 255264.CrossRefGoogle ScholarPubMed
Semrau, J. D., DiSpirito, A. A. & Murrell, J. C. (2008). Life in the extreme: thermoacidophilic methanotrophy. Trends in Microbiology 16, 190193.CrossRefGoogle ScholarPubMed
Theisen, A. R., Ali, M. H., Radajewski, S., Dumont, M. G., Dunfield, P. F., McDonald, I. R., Dedysh, S. N., Miguez, C. B. & Murrell, J. C. (2005). Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Molecular Microbiology 58, 682692.CrossRefGoogle ScholarPubMed
Wood, A. P., Aurikko, J. P. & Kelly, D. P. (2004). A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiology Reviews 28, 335352.CrossRefGoogle ScholarPubMed
Adachi, O., Moonmangmee, D., Toyama, H., Yamada, M., Shinagawa, E. & Matsushita, K. (2003). New developments in oxidative fermentation. Applied Microbiology and Biotechnology 60, 643653.CrossRefGoogle ScholarPubMed
Holscher, T. & Gorisch, H. (2006). Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology 188, 76687676.CrossRefGoogle ScholarPubMed
Richhardt, J., Luchterhand, B., Bringer, S., Büchs, J. & Bott, M. (2013). Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. Journal of Bacteriology 195, 42104220.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats