Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-jkwcl Total loading time: 1.666 Render date: 2022-11-29T07:23:19.877Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 4 - Glycolysis

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Albi, T. & Serrano, A. (2015). Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic cyanobacteria with potential to phosphorylate hexoses from polyphosphates. Applied Microbiology and Biotechnology 99, 38873900.CrossRefGoogle ScholarPubMed
Bielen, A. A. M., Willquist, K., Engman, J., Oost, J. v. d., Niel, E. W. J. v. & Kengen, S. W. M. (2010). Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus. FEMS Microbiology Letters 307, 4854.CrossRefGoogle ScholarPubMed
Zhou, J., Olson, D. G., Argyros, D. A., Deng, Y., van Gulik, W. M., van Dijken, J. P. & Lynd, L. R. (2013). Atypical glycolysis in Clostridium thermocellum. Applied and Environmental Microbiology 79, 30003008.CrossRefGoogle ScholarPubMed

Secondary Sources

Ko, J., Kim, I., Yoo, S., Min, B., Kim, K. & Park, C. (2005). Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. Journal of Bacteriology 187, 57825789.CrossRefGoogle ScholarPubMed
Liyanage, H., Kashket, S., Young, M. & Kashket, E. R. (2001). Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Applied and Environmental Microbiology 67, 20042010.CrossRefGoogle ScholarPubMed
Ozyamak, E., Black, S. S., Walker, C. A., MacLean, M. J., Bartlett, W., Miller, S. & Booth, I. R. (2010). The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Molecular Microbiology 78, 15771590.CrossRefGoogle ScholarPubMed
Subedi, K. P., Choi, D., Kim, I., Min, B. & Park, C. (2011). Hsp31 of Escherichia coli K-12 is glyoxalase III. Molecular Microbiology 81, 926936.CrossRefGoogle ScholarPubMed
Bräsen, C., Esser, D., Rauch, B. & Siebers, B. (2014). Carbohydrate metabolism in archaea: current insights into unusual enzymes and pathways and their regulation. Microbiology and Molecular Biology Reviews 78, 89175.CrossRefGoogle ScholarPubMed
Brunner, N. A., Siebers, B. & Hensel, R. (2001). Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden–Meyerhof–Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5, 101109.CrossRefGoogle ScholarPubMed
Labes, A. & Schonheit, P. (2003). ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Archives of Microbiology 180, 6975.CrossRefGoogle ScholarPubMed
Matsubara, K., Yokooji, Y., Atomi, H. & Imanaka, T. (2011). Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Molecular Microbiology 81, 13001312.CrossRefGoogle ScholarPubMed
Tjaden, B., Plagens, A., Dorr, C., Siebers, B. & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology 60, 287298.CrossRefGoogle ScholarPubMed
Verhees, C. H., Tuininga, J. E., Kengen, S. W. M., Stams, A. J. M., vanderOost, J. & de Vos, W. M. (2001). ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea. Journal of Bacteriology 183, 71457153.CrossRefGoogle ScholarPubMed
Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G. & Aymerich, S. (2000). Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. Journal of Biological Chemistry 275, 1403114037.CrossRefGoogle Scholar
Pernestig, A. K., Georgellis, D., Romeo, T., Suzuki, K., Tomenius, H., Normark, S. & Melefors, O. (2003). The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. Journal of Bacteriology 185, 843853.CrossRefGoogle ScholarPubMed
Say, R. F. & Fuchs, G. (2010). Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464, 10771081.CrossRefGoogle ScholarPubMed
Tjaden, B., Plagens, A., Dorr, C., Siebers, B. & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology 60, 287298.CrossRefGoogle ScholarPubMed
Verhees, C. H., Akerboom, J., Schiltz, E., de Vos, W. M. & van der Oost, J. (2002). Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus. Journal of Bacteriology 184, 34013405.CrossRefGoogle ScholarPubMed
Wolfe, A. J. (2005). The acetate switch. Microbiology and Molecular Biology Reviews 69, 1250.CrossRefGoogle ScholarPubMed
Brouns, S. J. J., Walther, J., Snijders, A. P. L., van de Werken, H. J. G., Willemen, H. L. D. M., Worm, P., de Vos, M. G. J., Andersson, A., Lundgren, M., Mazon, H. F. M., van den Heuvel, R. H. H., Nilsson, P., Salmon, L., de Vos, W. M., Wright, P. C., Bernander, R. & van der Oost, J. (2006). Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment. Journal of Biological Chemistry 281, 2737827388.CrossRefGoogle ScholarPubMed
Grochowski, L. L., Xu, H. & White, R. H. (2005). Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. Journal of Bacteriology 187, 73827389.CrossRefGoogle ScholarPubMed
Orita, I., Sato, T., Yurimoto, H., Kato, N., Atomi, H., Imanaka, T. & Sakai, Y. (2006). The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Journal of Bacteriology 188, 46984704.CrossRefGoogle ScholarPubMed
White, R. H. (2004). l-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43, 76187627.CrossRefGoogle Scholar
Chavarría, M., Nikel, P. I., Pérez-Pantoja, D. & de Lorenzo, V. (2013). The Entner–Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environmental Microbiology 15, 17721785.CrossRefGoogle ScholarPubMed
Conway, T. (1992). The Entner–Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiology Reviews 103, 128.CrossRefGoogle Scholar
Felux, A.-K., Spiteller, D., Klebensberger, J. & Schleheck, D. (2015). Entner–Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proceedings of the National Academy of Sciences of the USA 112, 42984305.CrossRefGoogle ScholarPubMed
Gunnarsson, N., Mortensen, U. H., Sosio, M. & Nielsen, J. (2004). Identification of the Entner–Doudoroff pathway in an antibiotic-producing actinomycete species. Molecular Microbiology 52, 895902.CrossRefGoogle Scholar
Patra, T., Koley, H., Ramamurthy, T., Ghose, A. C. & Nandy, R. K. (2012). The Entner–Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. Journal of Bacteriology 194, 33773385.CrossRefGoogle ScholarPubMed
Reher, M., Fuhrer, T., Bott, M. & Schonheit, P. (2010). The nonphosphorylative Entner–Doudoroff pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconate-specific aldolase. Journal of Bacteriology 192, 964974.CrossRefGoogle ScholarPubMed
Zaparty, M., Tjaden, B., Hensel, R. & Siebers, B. (2008). The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Archives of Microbiology 190, 231245.CrossRefGoogle ScholarPubMed
Glenn, K. & Smith, K. S. (2015). Allosteric regulation of Lactobacillus plantarum xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp). Journal of Bacteriology 197, 11571163.CrossRefGoogle Scholar
Sund, C. J., Liu, S., Germane, K. L., Servinsky, M. D., Gerlach, E. S. & Hurley, M. M. (2015). Phosphoketolase flux in Clostridium acetobutylicum during growth on l-arabinose. Microbiology 161, 430440.CrossRefGoogle ScholarPubMed
Yevenes, A. & Frey, P. A. (2008). Cloning, expression, purification, cofactor requirements, and steady state kinetics of phosphoketolase-2 from Lactobacillus plantarum. Bioorganic Chemistry 36, 121127.CrossRefGoogle ScholarPubMed
Antoniewicz, M. (2015). Methods and advances in metabolic flux analysis: a mini-review. Journal of Industrial Microbiology and Biotechnology 42, 317325.CrossRefGoogle ScholarPubMed
Klamt, S. & Stelling, J. (2003). Two approaches for metabolic pathway analysis? Trends in Biotechnology 21, 6469.CrossRefGoogle ScholarPubMed
Siebers, B. & Schonheit, P. (2005). Unusual pathways and enzymes of central carbohydrate metabolism in archaea. Current Opinion in Microbiology 8, 695705.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Glycolysis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Glycolysis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Glycolysis
  • Byung Hong Kim, Korea Institute of Science and Technology, Seoul, Geoffrey Michael Gadd, University of Dundee
  • Book: Prokaryotic Metabolism and Physiology
  • Online publication: 04 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781316761625.004
Available formats
×