Skip to main content Accessibility help
Hostname: page-component-768dbb666b-6zkrn Total loading time: 1.322 Render date: 2023-02-07T06:29:30.777Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Chapter 2 - Composition and structure of prokaryotic cells

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
University of Dundee
Get access
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Primary Sources

Beinert, H. (2000). A tribute to sulfur. European Journal of Biochemistry 267, 56575664.
Dosanjh, N. S. & Michel, S. L. J. (2006). Microbial nickel metalloregulation: NikRs for nickel ions. Current Opinion in Chemical Biology 10, 123130.
Hille, R. (2002). Molybdenum and tungsten in biology. Trends in Biochemical Sciences 27, 360367.
Jakubovics, N. S. & Jenkinson, H. F. (2001). Out of the Iron Age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 17091718.
Kobayashi, M. & Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry 261, 19.
Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C. & Morel, F. M. M. (2005). A cadmium enzyme from a marine diatom. Nature 435, 42.
Pol, A., Barends, T. R. M., Dietl, A., Khadem, A. F., Eygensteyn, J., Jetten, M. S. M. & Op den Camp, H. J. M. (2014). Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology 16, 255264.
Stadtman, T. C. (2002). Discoveries of vitamin B12 and selenium enzymes. Annual Review of Biochemistry 71, 116.
Wolfe-Simon, F., Blum, J. S., Kulp, T. R., Gordon, G. W., Hoeft, S. E., Pett-Ridge, J., Stolz, J. F., Webb, S. M., Weber, P. K., Davies, P. C. W., Anbar, A. D. & Oremland, R. S. (2011). A bacterium that can grow by using arsenic instead of phosphorus. Science 332, 11631166.

Secondary Sources

Albers, S.-V. & Jarrell, K. F. (2015). The archaellum: how archaea swim. Frontiers in Microbiology 6, 23.
Beatson, S. A., Minamino, T. & Pallen, M. J. (2006). Variation in bacterial flagellins: from sequence to structure. Trends in Microbiology 14, 151155.
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Logan, B., Nealson, K. H. & Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the USA 103, 1135811363.
Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. (2015). Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the USA 112, 75637568.
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N. and Nielsen, L. P. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218221.
Scott, J. R. & Zahner, D. (2006). Pili with strong attachments: Gram-positive bacteria do it differently. Molecular Microbiology 62, 320330.
Ahn, J. S., Chandramohan, L., Liou, L. E. & Bayles, K. W. (2006). Characterization of CidR-mediated regulation in Bacillus anthracis reveals a previously undetected role of S-layer proteins as murein hydrolases. Molecular Microbiology 62, 11581169.
Albers, S.-V. & Meyer, B. H. (2011). The archaeal cell envelope. Nature Reviews Microbiology 9, 414426.
Bush, C. A., Yang, J., Yu, B. & Cisar, J. O. (2014). Chemical structures of Streptococcus pneumoniae capsular polysaccharide type 39 (CPS39), CPS47F, and CPS34 characterized by nuclear magnetic resonance spectroscopy and their relation to CPS10A. Journal of Bacteriology 196, 32713278.
Johnson, B., Selle, K., O’Flaherty, S., Goh, Y. J. & Klaenhammer, T. (2013). Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology 159, 22692282.
Park, S., Kelley, K. A., Vinogradov, E., Solinga, R., Weidenmaier, C., Misawa, Y. & Lee, J. C. (2010). Characterization of the structure and biological functions of a capsular polysaccharide produced by Staphylococcus saprophyticus. Journal of Bacteriology 192, 46184626.
Pohlschroder, M. & Albers, S.-V. (2016). Archaeal cell envelope and surface structures. Frontiers in Microbiology 6, 1515.
Rothfuss, H., Lara, J. C., Schmid, A. K. & Lidstrom, M. E. (2006). Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 152, 27792787.
Biller, S. J., Schubotz, F., Roggensack, S. E., Thompson, A. W., Summons, R. E. & Chisholm, S. W. (2014). Bacterial vesicles in marine ecosystems. Science 343, 183186.
Bishop, R. E. (2014). Emerging roles for anionic non-bilayer phospholipids in fortifying the outer membrane permeability barrier. Journal of Bacteriology 196, 32093213.
Burghardt, T., Nather, D. J., Junglas, B., Huber, H. & Rachel, R. (2007). The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex. Molecular Microbiology 63, 166176.
Koebnik, R., Locher, K. P. & Van Gelder, P. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular Microbiology 37, 239253.
Küper, U., Meyer, C., Müller, V., Rachel, R. & Huber, H. (2010). Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proceedings of the National Academy of Sciences of the USA 107, 31523156.
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews 67, 593656.
Schulz, G. E. (2002). The structure of bacterial outer membrane proteins. Biochimica et Biophysica Acta 1565, 308317.
Brown, S., Santa Maria, J. P. & Walker, S. (2013). Wall teichoic acids of Gram-positive bacteria. Annual Review of Microbiology 67, 313336.
Cabeen, M. T. & Jacobs-Wagner, C. (2005). Bacterial cell shape. Nature Reviews Microbiology 3, 601610.
Henrichfreise, B., Schiefer, A., Schneider, T., Nzukou, E., Poellinger, C., Hoffmann, T.-J., Johnston, K. L., Moelleken, K., Wiedemann, I., Pfarr, K., Hoerauf, A. & Sahl, H. G. (2009). Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Molecular Microbiology 73, 913923.
Patin, D., Bostock, J., Chopra, I., Mengin-Lecreulx, D. & Blanot, D. (2012). Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem. Archives of Microbiology 194, 505512.
Schneewind, O. & Missiakas, D. (2014). Lipoteichoic acids, phosphate-containing polymers in the envelope of Gram-positive bacteria. Journal of Bacteriology 196, 11331142.
Turner, R. D., Vollmer, W. & Foster, S. J. (2014). Different walls for rods and balls: the diversity of peptidoglycan. Molecular Microbiology 91, 862874.
Wanner, S., Schade, J., Keinhörster, D., Weller, N., George, S. E., Kull, L., Bauer, J., Grau, T., Winstel, V., Stoy, H., Kretschmer, D., Kolata, J., Wolz, C., Bröker, B. M. & Weidenmaier, C. (2017). Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nature Microbiology 2, 16257.
Bohin, J. P. (2000). Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiology Letters 186, 1119.
Flores, E., Herrero, A., Wolk, C. P. & Maldener, I. (2006). Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends in Microbiology 14, 439443.
Matias, V. R. F. and Beveridge, T. J. (2008). Lipoteichoic acid is a major component of the Bacillus subtilis periplasm. Journal of Bacteriology 190, 74147418.
Bernstein, H. D. (2000). The biogenesis and assembly of bacterial membrane proteins. Current Opinion in Microbiology 3, 203209.
Boyd, E., Hamilton, T., Wang, J., He, L. & Zhang, C. (2013). The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Microbiology 4:00063.
Cavicchioli, R. (2011). Archaea – timeline of the third domain. Nature Reviews Microbiology 9, 5161.
Cronan, J. E. (2006). A bacterium that has three pathways to regulate membrane lipid fluidity. Molecular Microbiology 60, 256259.
Engelman, D. M. (2005). Membranes are more mosaic than fluid. Nature 438, 578580.
Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E. & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology 15, 423431.
Kung, C. & Blount, P. (2004). Channels in microbes: so many holes to fill. Molecular Microbiology 53, 373380.
Mansilla, M. C., Cybulski, L. E., Albanesi, D. & de Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology 186, 66816688.
Schmerk, C. L., Bernards, M. A. & Valvano, M. A. (2011). Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. Journal of Bacteriology 193, 67126723.
Borrero-de Acuña, J. M., Rohde, M., Wissing, J., Jänsch, L., Schobert, M., Molinari, G., Timmis, K. N., Jahn, M. & Jahn, D. (2016). Protein network of the Pseudomonas aeruginosa denitrification apparatus. Journal of Bacteriology 198, 14011413.
Bowman, G. R., Lyuksyutova, A. I. & Shapiro, L. (2011). Bacterial polarity. Current Opinion in Cell Biology 23, 7177.
Cabeen, M. T. & Jacobs-Wagner, C. (2010). The bacterial cytoskeleton. Annual Review of Genetics 44, 365392.
Mathews, C. K. (1993). The cell – bag of enzymes or network of channels? Journal of Bacteriology 175, 63776381.
Matturro, B., Cruz Viggi, C., Aulenta, F. & Rossetti, S. (2017). Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Frontiers in Microbiology 8, 952.
Noirot, P. & Noirot-Gros, M. F. (2004). Protein interaction networks in bacteria. Current Opinion in Microbiology 7, 505512.
Sleator, R. D. & Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26, 4971.
Spitzer, J. J. & Poolman, B. (2005). Electrochemical structure of the crowded cytoplasm. Trends in Biochemical Sciences 30, 536541.
Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. (2014). Diverse bacterial microcompartment organelles. Microbiology and Molecular Biology Reviews 78, 438468.
Cornejo, E., Abreu, N. & Komeili, A. (2014). Compartmentalization and organelle formation in bacteria. Current Opinion in Cell Biology 26, 132138.
Kerfeld, C. A. and Erbilgin, O. (2015). Bacterial microcompartments and the modular construction of microbial metabolism. Trends in Microbiology 23, 2234.
Kerfeld, C. A., Sawaya, M. R., Tanaka, S., Nguyen, C. V., Phillips, M., Beeby, M. & Yeates, T. O. (2005). Protein structures forming the shell of primitive bacterial organelles. Science 309, 936938.
Lewis, P. J. (2004). Bacterial subcellular architecture: recent advances and future prospects. Molecular Microbiology 54, 11351150.
Martin, T. (2011). Good things come in small packages: subcellular organization and development in bacteria. Current Opinion in Microbiology 14, 687690.
Niftrik, L. (2013). Cell biology of unique anammox bacteria that contain an energy conserving prokaryotic organelle. Antonie van Leeuwenhoek 104, 489497.
SaierJr, M. H. & Bogdanov, M. V. (2013). Membranous organelles in bacteria. Journal of Molecular Microbiology and Biotechnology 23, 512.

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats