Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-vkhs7 Total loading time: 1.407 Render date: 2023-02-07T06:34:51.350Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Chapter 6 - Biosynthesis and growth

Published online by Cambridge University Press:  04 May 2019

Byung Hong Kim
Affiliation:
Korea Institute of Science and Technology, Seoul
Geoffrey Michael Gadd
Affiliation:
University of Dundee
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Bothe, H., Schmitz, O., Yates, M. G. & Newton, W. E. (2010). Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiology and Molecular Biology Reviews 74, 529551.
Boyd, E. S, Costas, A. M. G., Hamilton, T. L., Mus, F. & Peters, J. W. (2015). Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. Journal of Bacteriology 197, 16901699.
Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327330.
Hu, Y. & Ribbe, M. W. (2016). Biosynthesis of the metalloclusters of nitrogenases. Annual Review of Biochemistry 85, 455483.
McRose, D. L., Zhang, X., Kraepiel, A. M. L. & Morel, F. M. M. (2017). Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Frontiers in Microbiology 8, 267.
Omairi-Nasser, A., Mariscal, V., Austin, J. R. & Haselkorn, R. (2015). Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Proceedings of the National Academy of Sciences of the USA 112, E4458E4464.
Prell, J. & Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161168.
Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. (2012). Electron transfer in nitrogenase catalysis. Current Opinion in Chemical Biology 16, 1925.
Ward, B. B. & Jensen, M. M. (2014). The microbial nitrogen cycle. Frontiers in Microbiology 5, 00553.
Zhang, C. C., Laurent, S., Sakr, S., Peng, L. & Bedu, S. (2006). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Molecular Microbiology 59, 367375.

Secondary Sources

Acera, F., Carmona, M. I., Castillo, F., Quesada, A. & Blasco, R. (2017). A cyanide-induced 3-cyanoalanine nitrilase in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes strain CECT 5344. Applied and Environmental Microbiology 83, e0008917.
Bender, R. A. (2010). A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. Journal of Bacteriology 192, 48014811.
Lewis, T. A., Glassing, A., Harper, J. & Franklin, M. J. (2013). Role for ferredoxin: NAD(P)H oxidoreductase (FprA) in sulfate assimilation and siderophore biosynthesis in pseudomonads. Journal of Bacteriology 195, 38763887.
Liu, Y., Beer, L. L. & Whitman, W. B. (2012). Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology 14, 26322644.
Lochowska, A., Iwanicka-Nowicka, R., Zielak, A., Modelewska, A., Thomas, M. S. & Hryniewicz, M. M. (2011). Regulation of sulfur assimilation pathways in Burkholderia cenocepacia through control of genes by the SsuR transcription factor. Journal of Bacteriology 193, 18431853.
Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology 57, 155176.
Tripp, H. J., Kitner, J. B., Schwalbach, M. S., Dacey, J. W. H., Wilhelm, L. J. & Giovannoni, S. J. (2008). SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741744.
van Heeswijk, W. C., Westerhoff, H. V. & Boogerd, F. C. (2013). Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiology and Molecular Biology Reviews 77, 628695.
Ye, R. W. & Thomas, S. M. (2001). Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology 4, 307312.
Fazius, F., Zaehle, C. & Brock, M. (2013). Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production. Applied Microbiology and Biotechnology 97, 37633772.
Ferla, M. P. & Patrick, W. M. (2014). Bacterial methionine biosynthesis. Microbiology 160, 15711584.
Hove-Jensen, B., Andersen, K. R., Kilstrup, M., Martinussen, J., Switzer, R. L. & Willemoës, M. (2017). Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiology and Molecular Biology Reviews 81, e0004016.
Itoh, Y., Bröcker, M. J., Sekine, S.-i., Hammond, G., Suetsugu, S., Söll, D. & Yokoyama, S. (2013). Decameric SelA•tRNASec ring structure reveals mechanism of bacterial selenocysteine formation. Science 340, 7578.
Krzycki, J. A. (2013). The path of lysine to pyrrolysine. Current Opinion in Chemical Biology 17, 619625.
Kulis-Horn, R. K., Persicke, M. & Kalinowski, J. (2014). Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microbial Biotechnology 7, 525.
Mir, R., Jallu, S. & Singh, T. P. (2015). The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes. Critical Reviews in Microbiology 41, 172189.
Radkov, A. & Moe, L. (2014). Bacterial synthesis of d-amino acids. Applied Microbiology and Biotechnology 98, 53635374.
Risso, C., Van Dien, S. J., Orloff, A., Lovley, D. R. & Coppi, M. V. (2008). Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. Journal of Bacteriology 190, 22662274.
White, R. H. (2004). l-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43, 76187627.
Buckel, W. & Golding, B. T. (2006). Radical enzymes in anaerobes. Annual Review of Microbiology 60, 2749.
Martin, J. E. & Imlay, J. A. (2011). The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Molecular Microbiology 80, 319334.
West, T. P. (2014). Pyrimidine nucleotide synthesis in Pseudomonas nitroreducens and the regulatory role of pyrimidines. Microbiological Research 169, 954958.
Behrouzian, B. & Buist, P. H. (2002). Fatty acid desaturation: variations on an oxidative theme. Current Opinion in Chemical Biology 6, 577582.
Broussard, T. C., Price, A. E., Laborde, S. M. & Waldrop, G. L. (2013). Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase. Biochemistry 52, 33463357.
Chang, W.-c., Song, H., Liu, H.-w. & Liu, P. (2013). Current developments in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology 17, 571579.
Köcher, S., Breitenbach, J., Müller, V. & Sandmann, G. (2009). Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Archives of Microbiology 191, 95104.
Pini, C., Godoy, P., Bernal, P., Ramos, J.-L. & Segura, A. (2011). Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440. FEMS Microbiology Letters 32 1, 107114.
Schujman, G. E. & de Mendoza, D. (2008). Regulation of type II fatty acid synthase in Gram-positive bacteria. Current Opinion in Microbiology 11, 148152.
Schweizer, H. & Choi, K.-H. (2011). Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production. Archives of Microbiology 193, 227234.
Villanueva, L., Damste, J. S. S. & Schouten, S. (2014). A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nature Reviews Microbiology 12, 438448.
Zhang, Y. M. & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology 6, 222233.
Dailey, H. A., Dailey, T. A., Gerdes, S., Jahn, D., Jahn, M., O’Brian, M. R. & Warren, M. J. (2017). Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiology and Molecular Biology Reviews 81, e00048–16.
Fontecave, M., Atta, M. & Mulliez, E. (2004). S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29, 243249.
Kranz, R. G., Richard-Fogal, C., Taylor, J.-S. & Frawley, E. R. (2009). Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiology and Molecular Biology Reviews 73, 510528.
Roessner, C. A. & Scott, A. I. (2006). Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). Journal of Bacteriology 188, 73317334.
Sanders, C., Turkarslan, S., Lee, D.-W. & Daldal, F. (2010). Cytochrome c biogenesis: the Ccm system. Trends in Microbiology 18, 266274.
D’Elia, M. A., Henderson, J. A., Beveridge, T. J., Heinrichs, D. E. & Brown, E. D. (2009). The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. Journal of Bacteriology 191: 40304034.
Garufi, G., Hendrickx, A. P., Beeri, K., Kern, J. W., Sharma, A., Richter, S. G., Schneewind, O. & Missiakas, D. (2012). Synthesis of lipoteichoic acids in Bacillus anthracis. Journal of Bacteriology 194: 43124321.
Guan, Z., Naparstek, S., Kaminski, L., Konrad, Z. & Eichler, J. (2010). Distinct glycan-charged phosphodolichol carriers are required for the assembly of the pentasaccharide N-linked to the Haloferax volcanii S-layer glycoprotein. Molecular Microbiology 78, 12941303.
Pasquina, L. W., Santa Maria, J. P. & Walker, S. (2013). Teichoic acid biosynthesis as an antibiotic target. Current Opinion in Microbiology 16: 531537.
Perez, C., Gerber, S., Boilevin, J., Bucher, M., Darbre, T., Aebi, M., Reymond, J.-L. & Locher, K. P. (2015). Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433438.
Sham, L.-T., Butler, E. K., Lebar, M. D., Kahne, D., Bernhardt, T. G. & Ruiz, N. (2014). MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220222.
Albers, S.-V. & Meyer, B. H. (2011). The archaeal cell envelope. Nature Reviews Microbiology 9, 414426.
Cava, F., Kuru, E., Brun, Y. V. & de Pedro, M. A. (2013). Modes of cell wall growth differentiation in rod-shaped bacteria. Current Opinion in Microbiology 16, 731737.
Duong, A., Capstick, D. S., Di Berardo, C., Findlay, K. C., Hesketh, A., Hong, H.-J. & Elliot, M. A. (2012). Aerial development in Streptomyces coelicolor requires sortase activity. Molecular Microbiology 83, 9921005.
Egan, A. J. F., Cleverley, R. M., Peters, K., Lewis, R. J. & Vollmer, W. (2017). Regulation of bacterial cell wall growth. FEBS Journal 284, 851867.
Fagan, R. P. & Fairweather, N. F. (2014). Biogenesis and functions of bacterial S-layers. Nature Reviews Microbiology 12, 211222.
Frirdich, E. & Gaynor, E. C. (2013). Peptidoglycan hydrolases, bacterial shape, and pathogenesis. Current Opinion in Microbiology 16, 767778.
Hanson, B. R. & Neely, M. N. (2012). Coordinate regulation of Gram-positive cell surface components. Current Opinion in Microbiology 15, 204210.
Lee, T. K. & Huang, K. C. (2013). The role of hydrolases in bacterial cell-wall growth. Current Opinion in Microbiology 16, 760766.
Sobhanifar, S., King, D. T. & Strynadka, N. C. J. (2013). Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Current Opinion in Structural Biology 23, 695703.
Spirig, T., Weiner, E. M. & Clubb, R. T. (2011). Sortase enzymes in Gram-positive bacteria. Molecular Microbiology 82, 10441059.
Wang, Y.-T., Missiakas, D. & Schneewind, O. (2014). GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis. Journal of Bacteriology 196, 29692978.
Wirth, R., Bellack, A., Bertl, M., Bilek, Y., Heimerl, T., Herzog, B., Leisner, M., Probst, A., Rachel, R., Sarbu, C., Schopf, S. & Wanner, G. (2011). The mode of cell wall growth in selected archaea is similar to the general mode of cell wall growth in bacteria as revealed by fluorescent dye analysis. Applied and Environmental Microbiology 77, 15561562.
Wu, C., Huang, I. H., Chang, C., Reardon-Robinson, M. E., Das, A. & Ton-That, H. (2014). Lethality of sortase depletion in Actinomyces oris caused by excessive membrane accumulation of a surface glycoprotein. Molecular Microbiology 94, 12271241.
Cuthbertson, L., Mainprize, I. L., Naismith, J. H. & Whitfield, C. (2009). Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiology and Molecular Biology Reviews 73, 155177.
Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N. G., Stansfeld, P. J., He, C., Zhang, Y., Wang, W. & Dong, C. (2014). Structural basis for outer membrane lipopolysaccharide insertion. Nature 511, 5256.
Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. (2009). Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Reviews Microbiology 7, 206214.
Rigel, N. W. & Silhavy, T. J. (2012). Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Current Opinion in Microbiology 15, 189193.
Ruiz, N., Kahne, D. & Silhavy, T. J. (2009). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nature Reviews Microbiology 7, 677683.
Tommassen, J. (2010). Assembly of outer-membrane proteins in bacteria and mitochondria. Microbiology 156, 25872596.
Beattie, T. R. & Reyes-Lamothe, R. (2015). A replisome’s journey through the bacterial chromosome. Frontiers in Microbiology 6, 562.
Denamur, E. & Matic, I. (2006). Evolution of mutation rates in bacteria. Molecular Microbiology 60, 820827.
Gao, F. (2015). Bacteria may have multiple replication origins. Frontiers in Microbiology 6, 324.
Hayes, F. & Barilla, D. (2006). The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Reviews Microbiology 4, 133143.
Kelman, L. M. & Kelman, Z. (2004). Multiple origins of replication in archaea. Trends in Microbiology 12, 399401.
Kelman, L. M. & Kelman, Z. (2014). Archaeal DNA replication. Annual Review of Genetics 48, 7197.
Kuzminov, A. (2013). The chromosome cycle of prokaryotes. Molecular Microbiology 90, 214227.
McHenry, C. S. (2011). DNA replicases from a bacterial perspective. Annual Review of Biochemistry 80, 403436.
Michel, B. & Sandler, S. J. (2017). Replication restart in bacteria. Journal of Bacteriology 199, e0010217.
Reyes-Lamothe, , Nicolas, R.E., & Sherratt, D. J. (2012). Chromosome replication and segregation in bacteria. Annual Review of Genetics 46, 121143.
Robinson, A. O. & van Oijen, A. M. (2013). Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nature Reviews Microbiology 11, 303315.
Wolański, M., Jakimowicz, D. & Zakrzewska-Czerwińska, J. (2014). Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. Journal of Bacteriology 196, 29012911.
Borukhov, S. & Severinov, K. (2002). Role of the RNA polymerase sigma subunit in transcription initiation. Research in Microbiology 153, 557562.
Grohmann, D. & Werner, F. (2011). Recent advances in the understanding of archaeal transcription. Current Opinion in Microbiology 14, 328334.
Lee, D. J., Minchin, S. D. & Busby, S. J. W. (2012). Activating transcription in bacteria. Annual Review of Microbiology 66, 125152.
Lewis, P. J., Doherty, G. P. & Clarke, J. (2008). Transcription factor dynamics. Microbiology 154, 18371844.
Nickels, B. E. & Dove, S. L. (2011). NanoRNAs: a class of small RNAs that can prime transcription initiation in bacteria. Journal of Molecular Biology 412, 772781.
Ray-Soni, A., Bellecourt, M. J. & Landick, R. (2016). Mechanisms of bacterial transcription termination: all good things must end. Annual Review of Biochemistry 85, 319347.
Sankar, T. S., Wastuwidyaningtyas, B. D., Dong, Y., Lewis, S. A. & Wang, J. D. (2016). The nature of mutations induced by replication–transcription collisions. Nature 535, 178181.
Stuart, K. & Panigrahi, A. K. (2002). RNA editing: complexity and complications. Molecular Microbiology 45, 591596.
Cobucci-Ponzano, B., Rossi, M. & Moracci, M. (2012). Translational recoding in archaea. Extremophiles 16, 793803.
Ivanova, N. N., Schwientek, P., Tripp, H. J., Rinke, C., Pati, A., Huntemann, M., Visel, A., Woyke, T., Kyrpides, N. C. & Rubin, E. M. (2014). Stop codon reassignments in the wild. Science 344, 909913.
Jarrell, K. F., Ding, Y., Meyer, B. H., Albers, S.-V., Kaminski, L. & Eichler, J. (2014). N-linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiology and Molecular Biology Reviews 78, 304341.
Keiler, K. C. (2015). Mechanisms of ribosome rescue in bacteria. Nature Reviews Microbiology 13, 285297.
Lin, Z. & Rye, H. S. (2006). GroEL-mediated protein folding: making the impossible, possible. Critical Reviews in Biochemistry and Molecular Biology 41, 211239.
Ling, J., O’ Donoghue, P. & Soll, D. (2015). Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nature Reviews Microbiology 13, 707721.
McGary, K. & Nudler, E. (2013). RNA polymerase and the ribosome: the close relationship. Current Opinion in Microbiology 16, 112117.
Petry, S., Weixlbaumer, A. & Ramakrishnan, V. (2008). The termination of translation. Current Opinion in Structural Biology 18, 7077.
Schmeing, T. M. & Ramakrishnan, V. (2009). What recent ribosome structures have revealed about the mechanism of translation. Nature 461, 12341242.
Shieh, Y.-W., Minguez, P., Bork, P., Auburger, J. J., Guilbride, D. L., Kramer, G. & Bukau, B. (2015). Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350, 678680.
Kuzminov, A. (2013). The chromosome cycle of prokaryotes. Molecular Microbiology 90, 214227.
Li, H. & Sourjik, V. (2011). Assembly and stability of flagellar motor in Escherichia coli. Molecular Microbiology 80, 886899.
Marraffini, L. A., DeDent, A. C. & Schneewind, O. (2006). Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiology and Molecular Biology Reviews 70, 192221.
Ruiz, N., Kahne, D. & Silhavy, T. J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology 4, 5766.
Shajani, Z., Sykes, M. T. & Williamson, J. R. (2011). Assembly of bacterial ribosomes. Annual Review of Biochemistry 80, 501526.
Whitfield, C. (2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annual Review of Biochemistry 75, 3968.
Angert, E. R. (2005). Alternatives to binary fission in bacteria. Nature Reviews Microbiology 3, 214224.
Bisson-Filho, A. W., Hsu, Y.-P., Squyres, G. R., Kuru, E., Wu, F., Jukes, C., Sun, Y., Dekker, C., Holden, S., VanNieuwenhze, M. S., Brun, Y. V. & Garner, E. C. (2017). Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739743.
Busiek, K. K. & Margolin, W. (2015). Bacterial actin and tubulin homologs in cell growth and division. Current Biology 25, R243R254.
den Blaauwen, T. (2013). Prokaryotic cell division: flexible and diverse. Current Opinion in Microbiology 16, 738744.
Desmond-Le Quemener, E. & Bouchez, T. (2014). A thermodynamic theory of microbial growth. ISME Journal 8, 17471751.
Duda, V. I., Suzina, N. E., Polivtseva, V. N., Gafarov, A. B., Shorokhova, A. P. & Machulin, A. V. (2014). Transversion of cell polarity from bi- to multipolarity is the mechanism determining multiple spore formation in Anaerobacter polyendosporus PS-1T. Microbiology–Moscow 83, 608615.
Duggin, I. G., Aylett, C. H. S., Walsh, J. C., Michie, K. A., Wang, Q., Turnbull, L., Dawson, E. M., Harry, E. J., Whitchurch, C. B., Amos, L. A. & Lowe, J. (2015). CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362365.
Erickson, H. P., Anderson, D. E. & Osawa, M. (2010). FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiology and Molecular Biology Reviews 74, 504528.
Härtel, T. & Schwille, P. (2014). ESCRT-III mediated cell division in Sulfolobus acidocaldarius – a reconstitution perspective. Frontiers in Microbiology 5, 257.
Lindas, A.-C. & Bernander, R. (2013). The cell cycle of archaea. Nature Reviews Microbiology 11, 627638.
Pinho, M. G., Kjos, M. & Veening, J.-W. (2013). How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nature Reviews Microbiology 11, 601614.
Samson, R. Y. & Bell, S. D. (2011). Cell cycles and cell division in the archaea. Current Opinion in Microbiology 14, 350356.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×