Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T23:40:40.626Z Has data issue: false hasContentIssue false

Section II - Signs and symptoms

Published online by Cambridge University Press:  05 August 2016

James W. Heitz
Affiliation:
Thomas Jefferson University Hospital
Get access
Type
Chapter
Information
Post-Anesthesia Care
Symptoms, Diagnosis and Management
, pp. 19 - 308
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

World Health Organization. A global brief on hypertension: silent killer, global public health crisis. WHO/DCO/WHD/2013.2 http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/. Accessed Dec 26, 2014.Google Scholar
Go, A.S., Mozaffarian, D., Roger, V.L. et al. on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics – 2014 update. A report from the American Heart Association. Circulation 2013; 129:e28e292.Google ScholarPubMed
McCormack, T., Arden, C., Begg, A. et al. Optimising hypertension treatment: NICE/BHS guideline implementation and audit for best practice. Br J Cardiol 2013; 20(Suppl 1): S1S16.Google Scholar
Gal, T.J., Cooperman, L.H.. Hypertension in the immediate postoperative period. Br J Anaesth 1975; 47:7074.CrossRefGoogle ScholarPubMed
Hass, C.E., LeBlanc, J.M.. Acute postoperative hypertension: a review of therapeutic options. Am J Health-Sys Pharm 2004; 61:16611675.Google Scholar
James, P.A., Oparil, S., Carter, B.L. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint national committee. JAMA 2014; 311:507520.Google Scholar
Levy, J.H.. The ideal agent for perioperative hypertension and potential cytoprotective effects. Acta Anaesthesiol Scand 1993; 37:2025.CrossRefGoogle Scholar
Onusko, E.. Diagnosing secondary hypertension. Am Fam Physician 2003; 67:6774.Google ScholarPubMed
Huskisson, E.C.. Catecholamine excretion and pain. Br J Clin Pharmacol 1974; 1:8082.CrossRefGoogle ScholarPubMed
De Courcy, J.G.. Artefactual “hypotension” from shivering. Anaesthesia 1989; 44:787788.Google Scholar
Fagius, J., Karhuvaara, S.. Sympathetic activity and blood pressure increases with bladder distension in humans. Hypertension 1989; 14:511517.CrossRefGoogle ScholarPubMed
Hart, S.R., Bordes, B., Hart, J., Corsino, D., Harmon, D.. Unintended perioperative hypothermia. Ochsner J 2011; 11:259270.Google Scholar
Ramesh, A.S., Cartabuke, R., Essig, G., Tobias, J.D.. Oxymetazoline-induced postoperative hypotension. Pediatr Anesth Crit Care J 2013; 1:7277.Google Scholar
Feldman-Billard, S., Massin, P., Meas, T., Guillausseau, P.-J., Héron, E.. Hypoglycemia-induced blood pressure elevation in patients with diabetes. Arch Intern Med 2010; 170:829831.CrossRefGoogle ScholarPubMed
Skeate, R.C., Eastlund, T.. Distinguishing between transfusion related acute lung injury and transfusion associated circulatory overload. Curr Opin Hematol 2007; 14:682687.CrossRefGoogle ScholarPubMed
Wallach, R., Karp, R.B., Reves, J.G. et al. Pathogenesis of paroxysmal hypertension developing during and after coronary artery bypass surgery: a study of hemodynamics and humoral factors. Am J Cardiol 1980; 46:559560.CrossRefGoogle ScholarPubMed
Breslow, M., Jordan, D.A., Christopherson, R. et al. Epidural morphine decreases postoperative hypertension by attenuating sympathetic nervous system hyperactivity. JAMA 1989; 261;35773581.CrossRefGoogle ScholarPubMed
Weinstein, G.S., Zabetakis, P.M., Clavel, A. et al. The renin-angiotensin system is not responsible for hypertension following coronary bypass grafting. Ann Thorac Surg 1987; 43:7477.CrossRefGoogle ScholarPubMed
Roberts, A.J., Niarchos, A.P., Subramanian, V.A. et al. Systemic hypertension association with coronary bypass surgery. J Thorac Cardiovasc Surg 1977; 74:846859.CrossRefGoogle Scholar
Kataja, J.H., Kaukinen, S., Viianamaki, O.V. et al. Hemodynamic and hormonal changes in patients pretreated with captopril for surgery of the abdominal aorta. J Cardiothorac Anesth 1989; 3:425432.CrossRefGoogle ScholarPubMed
Olsen, K.S., Pedersen, C.B., Madsen, J.B. et al. Vasoactive modulators during and after craniotomy: relation to postoperative hypertension. J Neurosurg Anesthesiol 2002; 14:171199.Google Scholar
Pyrs-Roberts, C.. Anaesthesia and hypertension. Br J Anaesth 1984; 50:711724.CrossRefGoogle Scholar
Sprague, H.B.. The heart in surgery. An analysis of the results of surgery on cardiac patients during the past ten years at the Massachusetts General Hospital. Surg Gynecol Obstet 1929; 49:5458.Google Scholar
Howell, S.J., Sear, Y.M., Yeates, D. et al. Risk factors for cardiovascular death after elective surgery under general anesthesia. Br J Anaesth 1998; 80:1419.CrossRefGoogle Scholar
Hollenberg, M., Mangano, D.T., Browner, W.S. et al. Predictors of postoperative myocardial ischemia in patients undergoing noncardiac surgery. The Study of Perioperative Ischemia Research Group. JAMA 1992; 268:205209.CrossRefGoogle Scholar
Goldman, L., Caldera, D.L.. Risks of general anesthesia and elective operation in the hypertensive patient. Anesthesiology 1979; 50:285292.CrossRefGoogle ScholarPubMed
Forrest, J.B, Rehder, K., Cahalan, M.K., Goldsmith, C.H.. Multicenter study of general anesthesia. III: Predictors of severe perioperative adverse outcomes. Anesthesiology 1992; 76:315.CrossRefGoogle ScholarPubMed
Davenport, D.L., Ferraris, V.A., Hosokawa, P. et al. Multivariable predictors of postoperative cardiac adverse events after general and vascular surgery: results from the Patient Safety in Surgery study. J Am Coll Surg 2007; 204:11991210.CrossRefGoogle ScholarPubMed
Rose, D.K., Cohen, M.M., DeBoer, D.P.. Cardiovascular events in the postanesthesia care unit: contribution of risk factors. Anesthesiology 1996; 84:772781.CrossRefGoogle ScholarPubMed
Lowenthal, D.T., Saris, S., Paran, E. et al. Efficacy of clonidine as transdermal therapeutic system: the international clinical trial experience. Am Heart J 1986; 112:893900.CrossRefGoogle ScholarPubMed

References

Barbour, C.M., Little, D.M.. Postoperative hypotension. JAMA 1957; 163:15291532.Google Scholar
Brandt, S., Regueira, T., Bracht, H., et al. Effect of fluid resuscitation on mortality and organ function in experimental sepsis models. Crit Care 2009; 13:R186. doi:10.1186/cc8179.CrossRefGoogle ScholarPubMed
Michard, F.. Changes in arterial pressure during mechanical ventilation. Anesthesiology 2005; 103:419428.Google Scholar
De Backer, D., Heenen, S., Piagnerelli, M., Koch, M., Vincent, J.L.. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005; 31:517523.Google Scholar
Cannesson, M., Desebbe, O., Rosamel, P., et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 2008; 101:200206.CrossRefGoogle ScholarPubMed
Heenen, S., De Backer, D., Vincent, J.-L.. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 2006; 10:R102. doi:10.1186/cc4970.CrossRefGoogle ScholarPubMed
Magner, S.A., Georgiadis, D.G., Cheong, T.. Respiratory variations in right atrial pressure predict response to fluid challenge. J Crit Care 1992; 7:7685.Google Scholar
Magder, S., Lagonidis, D., Erice, F.. The use of respiratory variations in right atrial pressure to predict the cardiac output response to PEEP. J Crit Care 2002; 18:108114.Google Scholar
Dahl, M.K., Vistisen, S.T., Koefoed-Nielsen, J., Larsson, A.. Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study. Crit Care 2009; 13:R39. doi: 10.1186/cc7760.CrossRefGoogle ScholarPubMed
Hong, D.M., Lee, J.M., Seo, J.H., et al. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs forced inspiratory breathing. Anaesthesia 2014; 69:717722.Google Scholar
Blehar, D.J., Resop, D., Chin, B., Dayno, M., Gaspari, R.. Inferior vena cava displacement during respirophasic ultrasound imaging. Crit Ultrasound J 2012; 4:18. doi:10.1186/2036-7902-4-18.CrossRefGoogle ScholarPubMed
Song, Y., Kwak, Y.L., Song, J.W., Kim, Y.J., Shim, J.K.. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth 2014;113:6166.CrossRefGoogle ScholarPubMed
Hornby, K., Hornby, L., Shemie, S.D.. A systematic review of autoresuscitation after cardiac arrest. Crit Care Med 2010; 38:12461253.CrossRefGoogle ScholarPubMed
Aviado, D.M., Aviado, D.G.. The Bezold–Jarisch reflex: a historical perspective of cardiopulmonary reflexes. Ann NY Acad Sci 2001; 940:4858.Google Scholar
Verbene, A.J.M., Saita, M., Sartor, D.M.. Chemical stimulation of vagal afferent neurons and sympathetic vasomotor tone. Brain Res Rev 2003; 41:288305.Google Scholar
Demetriades, D., Chan, L.S., Bhasin, P., et al. Relative bradycardia in patients with traumatic hypotension. J Trauma 1998; 45: 534539.CrossRefGoogle ScholarPubMed
Wisbach, G., Tobias, S., Woodman, R., Spalding, A., Lockette, W.. Preserving cardiac output with beta-adrenergic receptor blockade and inhibiting the Bezold–Jarisch reflex during resuscitation from hemorrhage. J Trauma 2007; 63:2632.Google ScholarPubMed
Serebrovskaya, T.V.. Comparison of respiratory and circulatory human responses to progressive hypoxia and hypercapnia. Respiration 1992; 59:3441.CrossRefGoogle ScholarPubMed
Adams, J.E., Sicard, G.A., Allen, B.T., et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med 1994; 330:670674.CrossRefGoogle ScholarPubMed
Smith, R.C., Leung, J.M., Mangano, D.T.. Postoperative myocardial ischemia in patients undergoing coronary artery bypass graft surgery. S.P.I. Research Group. Anesthesiology 1991; 74:464473.CrossRefGoogle ScholarPubMed
Mangano, D.T.. Perioperative cardiac morbidity. Anesthesiology 1990; 72:153184.CrossRefGoogle ScholarPubMed
Cohn, P.F.. Silent myocardial ischemia. Ann Intern Med 1988; 109:312317.CrossRefGoogle ScholarPubMed
Kannel, W.B., Abbott, R.D.. Incidence and prognosis of unrecognized myocardial infarction: an update on the Framingham Study. N Engl J Med 1984; 311:11441147.CrossRefGoogle ScholarPubMed
Knight, A.A., Hollenberg, M., London, M.J., et al. Perioperative myocardial ischemia: importance of the preoperative ischemic pattern. Anesthesiology 1988; 68:681688.CrossRefGoogle ScholarPubMed
Mangano, D.T., Browner, W.S., Hollenberg, M., et al. and the Study of Perioperative Ischemia Research Group. Association of perioperative myocardial ischemia with cardiac morbidity and mortality in men undergoing noncardiac surgery. N Engl J Med 1990; 323:17811788.Google Scholar
Bone, R.C., Balk, R.A., Cerra, F.B., et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101:16441655.Google Scholar
Fasting, S., Gisvold, S.E.. Serious intraoperative problems – a five year review of 83,844 anesthetics. Can J Anaesth 2002; 49:545553.Google Scholar
Gurrieri, C., Weingarten, T.N., Martin, D.P., et al. Allergic reactions during anesthesia at a large United States referral center. Anesth Analg 2011; 113:12021212.CrossRefGoogle Scholar
Hepner, D.L., Castells, M.C.. Anaphylaxis during the perioperative period. Anesth Analg 2003; 97;13811395.Google Scholar
Reddy, J.I., Cooke, P.J., van Schalkwyk, J.M., et al. Anaphylaxis is more common with rocuronium and succinylcholine than with atracurium. Anesthesiology 2015; 122:3945.CrossRefGoogle ScholarPubMed
The 2011 National Blood Collection and Utilization Survey Report. Report of the US Department of Health and Human Services. Available at http://www.hhs.gov/ash/bloodsafety/2011-nbcus.pdf. Accessed November 30, 2014.Google Scholar
Doria, C., Elia, E., Kang, Y., et al. Acute hypotensive transfusion reaction during liver transplantation in a patient on angiotensin converting enzyme inhibitors from low aminopeptidase P activity. Liver Transpl 2008; 14:684687.Google Scholar
Rollins, M.D., Molofsky, A.B., Nambia, A., et al. Two septic transfusion reactions presenting as TRALI from a split plateletpheresis unit. Crit Care Med 2012; 40:24882491.CrossRefGoogle ScholarPubMed
Kehlet, H., Binder, C.. Adrenocortical function and clinical course during and after surgery in unsupplemented glucocorticoid-treated patients. Br J Anaesth 1973; 45:10431048.CrossRefGoogle ScholarPubMed
Knudsen, L., Christiansen, L.A, Lorentzen, J.E.. Hypotension during and after operation in glucocorticoid-treated patients. Br J Anaesth 1981; 51:295301.CrossRefGoogle Scholar
de Jong, F.H., Mallios, C., Jansen, C., Scheck, P.A., Lamberts, S.W.. Etomidate suppresses adrenocortical function by inhibition of 11 beta-hydroxylation. J Clin Endocrinol Metab 1984; 59:11431147.CrossRefGoogle Scholar
Majesko, A., Darby, J.M.. Etomidate and adrenal insufficiency: the controversy continues. Crit Care 2010; 14:338. doi:10.1186/cc9338.CrossRefGoogle ScholarPubMed

References

Irefin, S.A.. Anesthesia for correction of cardiac arrhythmias in Miller's Anesthesia, 7th edition (ed. Miller, R.D.) Philadelphia: Churchill Livingstone, 2010, Chapter 61, pp. 19771986.CrossRefGoogle Scholar
Gajulapalli, R.D., Rader, F.. Postoperative Arrhythmias, Case Western Reserve University; http://www.intechopen.com/.Google Scholar
Wolters, U., Wolf, T., Stutzer, H., Schrode, T.. ASA classification and perioperative variables as predictors of postoperative outcome. Br J Anaesth 1996; 77:217222.CrossRefGoogle ScholarPubMed
Angelini, L., Feldman, M.I., Lufschonowski, R., Leachman, R.D.. Cardiac arrhythmias during and after heart surgery: diagnosis and management. Prog Cardiovasc Dis 1974; 16:469495.CrossRefGoogle ScholarPubMed
Samuel, M.A.. The brain–heart connection. Circulation 2007; 116:7784.Google Scholar
Edwards, R., Winnie, A.P., Ramamurthy, S.. Acute hypocapneic hypokalemia: an iatrogenic anesthetic complication. Anesth Analg 1977; 56:786792.CrossRefGoogle ScholarPubMed
Reiz, S., Nath, S.. Cardiotoxicity of local anesthetic agents. Br J Anaesth 1986; 58:736746.CrossRefGoogle Scholar
Weinberg, G.. Lipid infusion resuscitation for local anesthetic toxicity: proof of clinical efficacy. Anesthesiology 2006; 105:78.Google Scholar
Alexander, J.P.. Dysrhythmia and oral surgery. Br J Anaesth 1971; 43:773778.CrossRefGoogle ScholarPubMed
Hollenberg, S.M., Dellinger, R.P.. Noncardiac surgery: postoperative arrhythmias; Crit Care Med 2000; 28(10 Suppl):N145N150.CrossRefGoogle ScholarPubMed
Dublin, D.. Rapid Interpretation of EKGs, 6th edition. New York: Cover Publishing Company, 2000.Google Scholar
Saran, T., Perkins, G.D., Javed, M.A., et al. Does the prophylactic administration of magnesium sulphate to patients undergoing thoracotomy prevent postoperative supraventricular arrhythmias? A randomized controlled trial. Br J Anaesth 2011; 106:785791.CrossRefGoogle ScholarPubMed
McCord, J., Borzak, S.. Multifocal atrial tachycardia. Chest 1998; 113:203209.CrossRefGoogle ScholarPubMed
Levine, J.H., Michael, J.R., Guarneri, T.. Treatment of multifocal atrial tachycardia with verapamil. N Engl J Med 1985; 312:2125.Google Scholar
Kastor, J.A.. Arrhythmias. Philadelphia: WB Saunders, 1994.Google Scholar
Mathew, J.P., Fontes, M.L., Tudor, I.C., et al.; Investigators of the Ischemia Research and Education Foundation. Multicenter study of perioperative ischemia research group: a multicenter risk index for atrial fibrillation after cardiac surgery. JAMA 2004; 291:17201729.CrossRefGoogle Scholar
Sloan, S.B., Weitz, H.H.. Postoperative arrhythmias and conduction disorders. Med Clin North Am 2001; 85:11711189.Google Scholar
Goldman, L.. Supraventricular tachyarrhythmias in hospitalized adults after surgery. Clinical correlates in patients over 40 years of age after major noncardiac surgery. Chest 1978; 73:450454.Google Scholar
McKeown, P.P.. American College of Chest Physicians guidelines for the management of postoperative atrial fibrillation after cardiac surgery. Chest 2005; 128(Suppl):6S8S.Google Scholar
Eagle, K.A., Guyton, R.A., Davidoff, R., et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). J Am Coll Cardiol 2004; 44:e213e310.Google Scholar
Field, J.M. Advanced Cardiovascular Life Support Provider Manual Part 4 p. 42.Google Scholar
DiMarco, J.P.. Work-up and management of sudden cardiac death survivors. Cardiol Clin 1993; 11:1119.CrossRefGoogle ScholarPubMed
Napolitano, C., Priori, S.G., Schwartz, P.J.. Torsade de pointes: mechanisms and management. Drugs 1994; 47:5165.Google Scholar
Tzivoni, D., Banai, S., Schuger, C., et al. Magnesium therapy for torsades de pointes. Circulation 1988; 77:392397.CrossRefGoogle Scholar

References

Adams, J.E., Sicard, G.A., Allen, B.T., et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med 1994; 330:670674.Google Scholar
Smith, R.C., Leung, J.M., Mangano, D.T.. Postoperative myocardial ischemia in patients undergoing coronary artery bypass graft surgery. S.P.I. Research Group. Anesthesiology 1991; 74:464473.CrossRefGoogle ScholarPubMed
Hines, R., Barash, P.G., Watrous, G., et al. Complications occurring in the postanesthesia care unit: a survey. Anesth Analg 1992; 74:503509.Google Scholar
Badner, N.H., Knill, R.L., Brown, J.E., et al. Myocardial infarction after noncardiac surgery. Anesthesiology 1998; 88:572578.CrossRefGoogle ScholarPubMed
Apfelbaum, J.L., Silverstein, JH, Chung, FF, et al.; American Society of Anesthesiologists Task Force on Postanesthetic Care. Practice guidelines for postanesthetic care: an updated report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology 2013; 118:291307.Google Scholar
Adams, J.E., Bodor, G.S., Davila-Roman, V.G., et al. Cardiac troponin I: a marker with high specificity for cardiac injury. Circulation 1993; 88:101106.CrossRefGoogle ScholarPubMed
Martinez, E., Kim, L., Rosenfeld, B., et al. Early detection and real-time intervention of postoperative myocardial ischemia: the STOPMI study. Abstract presented at: Association of University Anesthesiologists; May 16–18, 2008; Durham, NC.Google Scholar
ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988; 332:349360.CrossRefGoogle Scholar
Berger, P.B., Bellot, V.R., Bell, M.R., et al. An immediate invasive strategy for the treatment of acute myocardial infarction early after noncardiac surgery. Am J Cardiol 2001; 87:11001102.Google Scholar
Tapson, V.F.. Acute pulmonary embolism. N Engl J Med 2008; 358:10371052.CrossRefGoogle ScholarPubMed
Stein, P.D., Beemath, A., Matta, F., et al. Clinical characteristics of patients with acute pulmonary embolism: data from PIOPED II. Am J Med 2007; 120:871879.Google Scholar
van Belle, A., Buller, H.R., Huisman, M.V., et al. Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D-dimer testing and computed tomography. JAMA 2006; 295:172179.Google Scholar
Mercat, A., Diehl, J.L., Meyer, G., et al. Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med 1999; 27:540544.Google Scholar
Carr, J.J., Reed, J.C., Choplin, R.H., et al. Plain and computed radiography for detecting experimentally induced pneumothorax in cadavers: implications for detection in patients. Radiology 1992; 183:193199.CrossRefGoogle ScholarPubMed
Wilkerson, R.G., Stone, M.B.. Sensitivity of bedside ultrasound and supine anteroposterior chest radiographs for the identification of pneumothorax after blunt trauma. Acad Emerg Med 2010; 17:1117.Google Scholar
Fredman, B., Jedeikin, R., Olsfanger, D., et al. Residual pneumoperitoneum: a cause of postoperative pain after laparoscopic cholecystectomy. Anesth Analg 1994; 79:152154.CrossRefGoogle ScholarPubMed
Wills, V.L., Hunt, D.R.. Pain after laparoscopic cholecystectomy. Br J Surg 2000; 87:273284.CrossRefGoogle ScholarPubMed
Pluijms, W.A., Steegers, M.A.H., Verhagen, A.F.T.M., et al. Chronic post-thoracotomy pain: a retrospective study. Acta Anaesthesiol Scand 2006; 50:804808.Google Scholar
Kavanagh, B.P., Katz, J., Sandler, A.N., et al. Pain control after thoracic surgery: a review of current techniques. Anesthesiology 1994; 81:737759.Google Scholar
Karmakar, M.K., Ho, A.M.. Acute pain management of patients with multiple fractured ribs. J Trauma 2003; 54:615625.Google Scholar

References

Mehta, N.J., Khan, I.A.. Cardiology’s 10 greatest discoveries of the 20th century. Tex Heart Inst J 2002; 29:164171.Google Scholar
Hillel, Z., Landesberg, G.. Electrocardiography. In Miller, R., editor. Miller’s Anesthesia. 7th edition, vol. 1. Philadelphia, PA: Churchill Livingstone; 2010 pp. 13571386.Google Scholar
Apfelbaum, J.L., Silverstein, J.H, Chun, F.F., et al. Practice guidelines for postanesthetic care: an updated report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology 2013; 118:291307.Google ScholarPubMed
Hines, R., Barash, P., Watrous, G., O’Connor, T.. Complications occurring in the postanesthesia care unit: a survey. Anesth Analg 1992; 74:503509.CrossRefGoogle ScholarPubMed
Ponhold, H., Vicenzi, M.N.. Incidence of bradycardia during recovery from spinal anaesthesia: influence of patient position. Br J Anaesth 1998; 81:723726.Google Scholar
Neumar, R.W., Otto, C.W., Link, M.S., et al. Adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010; 122:S729S767.Google Scholar
Stoelting, R.K., Hillier, S.C.. Pharmacology & Physiology in Anesthetic Practice. 4th edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.Google Scholar
Thygesen, K., Alpert, J.S., Jaffe, A.S., et al. Third universal definition of myocardial infarction. Circulation 2012; 126:20202035.CrossRefGoogle ScholarPubMed
Casas, R.E., Marriot, H.J., Glancy, D.L.. Value of leads V7–V9 in diagnosing posterior wall acute myocardial infarction and other causes of tall R waves in V1–V2. Am J Cardiol 1997; 80:508509.CrossRefGoogle Scholar
Writing Committee Members, Antman, E.M., Anbe, D.T., Armstrong, P.W., et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction. Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). Circulation 2004; 110:588636.Google Scholar
Goldstein, D.S.. The electrocardiogram in stroke: relationship to pathophysiological type and comparison with prior tracings. Stroke 1979; 10:253259.Google Scholar
Nagele, P., Pal, S., Brown, F., et al. Postoperative QT interval prolongation in patients undergoing noncardiac surgery under general anesthesia. Anesthesiology 2012; 117:321328.Google Scholar
Moss, A.J.. Measurement of the QT interval and the risk associated with QTc interval prolongation: a review. Am J Cardiol 1993; 72: 23B25B.CrossRefGoogle Scholar

References

Xu-Cai, Y.O., Brotman, D.J., Phillips, C.O., et al. Outcomes of patients with stable heart failure undergoing elective noncardiac surgery. Mayo Clin Proc 2008; 83: 280288.CrossRefGoogle ScholarPubMed
Hammill, B.G., Curtis, L.H., Bennett-Guerrero, E., et al. Impact of heart failure on patients undergoing major noncardiac surgery. Anesthesiology 2008; 108: 559567.CrossRefGoogle ScholarPubMed
Goldman, L., Caldera, D.L., Nussbaum, S.R., et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 1977; 297: 845850.Google Scholar
Charlson, M.E., MacKenzie, C.R., Gold, J.P., et al. Risk for postoperative congestive heart failure. Surg Gynecol Obstet 1991; 172: 95104.Google ScholarPubMed
Mangano, D.T., Browner, W.S., Hollenberg, M., et al. Association of perioperative myocardial ischemia with cardiac morbidity and mortality in men undergoing noncardiac surgery. The Study of Perioperative Ischemia Research Group. N Engl J Med 1990; 323: 17811788.CrossRefGoogle Scholar
Dosh, S.A.. Diagnosis of heart failure in adults. Am Fam Physician 2004; 70: 21452152.Google Scholar
Nohria, A., Lewis, E., Stevenson, L.. Medical management of advanced heart failure. JAMA 2002; 287: 628640.Google Scholar
Arieff, A.I.. Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest 1999; 115: 13711377.Google Scholar
Timby, J., Reed, C., Zeilender, S., Glauser, F.L.. “Mechanical” causes of pulmonary edema. Chest 1990; 98: 973979.CrossRefGoogle ScholarPubMed
Ashton, C.M., Petersen, N.J., Wray, N.P., et al. The incidence of perioperative myocardial infarction in men undergoing noncardiac surgery. Ann Intern Med 1993; 118: 504510.Google Scholar
Badner, N.H., Knill, R.L., Brown, J.E., et al. Myocardial infarction after noncardiac surgery. Anesthesiology 1998; 88: 572578.CrossRefGoogle ScholarPubMed
Devereaux, P.J., Goldman, L., Cook, D.J., et al. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ 2005; 173: 627634.CrossRefGoogle ScholarPubMed
Lee, T.H., Marcantonio, E.R., Mangione, C.M., et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999; 100: 10431049.CrossRefGoogle ScholarPubMed
Alpert, J.S., Thygesen, K., Antman, E., Bassand, J.P.. Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959969.Google Scholar
Costa, M.A., Carere, R.G., Lichtenstein, S.V., et al. Incidence, predictors, and significance of abnormal cardiac enzyme rise in patients treated with bypass surgery in the arterial revascularization therapies study (ARTS). Circulation 2001; 104: 26892693.Google Scholar
Adams, J.E., Sicard, G.A., Allen, B.T., et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med 1994; 330: 670674.Google Scholar
Marik, P.E., Cavallazzi, R., Vasu, T.. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009; 37: 26422647.CrossRefGoogle ScholarPubMed
Landry, D.W., Levin, H.R., Gallant, E.M., et al. Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med 1997; 25: 12791282.Google Scholar
Yiu, P., Robin, J., Pattison, C.W.. Reversal of refractory hypotension with single-dose methylene blue after coronary artery bypass surgery. J Thorac Cardiovasc Surg 1999; 118: 195196.Google Scholar
Kontoyannis, D.A., Nanas, J.N., Toumanidis, S.T., Stamatelopoulos, S.F.. Severe cardiogenic shock, after cardioversion, reversed by the intraaortic balloon pump. Intensive Care Med 2000; 26: 649.CrossRefGoogle ScholarPubMed

References

Xue, F.S., Huang, Y.G., Tong, S.Y., et al. A comparative study of early postoperative hypoxemia in infants, children, and adults undergoing elective plastic surgery. Anesth Analg 1996; 83:709715.Google Scholar
Canet, J., Ricos, M., Vidal, F.. Early postoperative arterial oxygen desaturation determining factors and response to oxygen therapy. Anesth Analg 1989; 69:207212.Google Scholar
Xue, F.S., Li, B.W., Zhang, G.S., et al. The influence of surgical sites on early postoperative hypoxemia in adults undergoing elective surgery. Anesth Analg 1999; 88:213219.CrossRefGoogle ScholarPubMed
Kim, M.K., Kim, J.Y., Koo, B.N., Cho, K.Y., Shin, Y-S. The incidence of low saturation by pulse oximetry in the postanesthesia care unit. Korean J Anesthesiol 2005; 4930:360364.CrossRefGoogle Scholar
Møller, J.T., Wittrup, M., Johansen, S.H.. Hypoxemia in the postanesthesia care unit: an observer study. Anesthesiology 1990 73;890895.CrossRefGoogle ScholarPubMed
Møller, J.T., Johannessen, N.W., Espersen, K.. Randomization evaluation of pulse oximetry in 20,802 patients: II. Anesthesiology 1993; 78:445453.Google Scholar
Epstein, R.H., Dexter, F., Lopex, M.G., Ehrenfeld, J.M.. Anesthesiologist staffing considerations consequent to the temporal distribution of hypoxemic episodes in the postanesthesia care unit. Anesth Analg 2014; 119:13221333.CrossRefGoogle Scholar
Jaber, S., Delay, J.M., Chanques, G., et al. Outcomes of patients with acute respiratory failure after abdominal surgery treated with noninvasive positive pressure ventilation. Chest 2005; 128:26882695.CrossRefGoogle ScholarPubMed
Yip, P.C., Hannam, J.A., Cameron, A.J., Campbell, D.. Incidence of residual neuromuscular blockade in a post-anaesthetic care unit. Anaesth Intensive Care 2010; 38:9195.Google Scholar
Murphy, G.S., Szokol, J.W., Marymont, J., et al. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008; 107:130137.Google Scholar
Duggan, M., Kavanagh, B.P.. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology 2005; 102:838854.CrossRefGoogle ScholarPubMed
Magnusson, L., Spahn, D.R.. New concepts of atelectasis during general anaesthesia. Br J Anaesth 2003; 91:6172.CrossRefGoogle ScholarPubMed
Joyce, C.J., Baker, A.B., Kennedy, R.R.. Gas uptake from an unventilated area of lung: computer model of absorption atelectasis. J Appl Physiol 1993; 74:11071116.Google Scholar
Thomas, J.A., McIntosh, J.M.. Are incentive spirometry, intermittent positive pressure breathing, and deep breathing exercises effective in the prevention of postoperative pulmonary complications after upper abdominal surgery? A systematic overview and meta-analysis. Phys Ther 1994; 74:310.CrossRefGoogle ScholarPubMed
Goldhaber, S.Z., Elliott, C.G.. Acute pulmonary embolism. Part II: Risk stratification, treatment, and prevention. Circulation 2003; 108:28342838.Google Scholar
Whitten, C.W., Greilich, P.E., Ivy, R., Burkhardt, D., Allison, P.M.. D-dimer formation during cardiac and noncardiac thoracic surgery. Anesth Analg 1999; 88:12261231.Google ScholarPubMed
Gulba, D.C., Schmid, C., Borst, H.G., et al. Medical compared with surgical treatment for massive pulmonary embolism. Lancet 1994; 343:576577.CrossRefGoogle ScholarPubMed
Mirski, M.A., Lele, A.V., Fitzsimmons, L., Toung, T.J.. Diagnosis and treatment of vascular air embolism. Anesthesiology 2007; 106:164177.CrossRefGoogle ScholarPubMed
Glove, P., Worthley, L.I.G.. Fat embolism. Crit Care Resusc 1999; 1:276284.Google Scholar
Noppen, M., De Keukeleire, T.. Pneumothorax. Respiration 2008; 76:121127; 2009; 103(Suppl. 1):i57–i65.Google Scholar
Vlaar, A.P.J., Juffermans, N.P.. Transfusion-related acute lung injury: a clinical review. Lancet 2013; 382:984994.Google Scholar
Holak, E., Mei, D.A., Dunning, M.B., et al. Carbon monoxide production from sevoflurane breakdown: modeling of exposures under clinical conditions. Anesth Analg 2003; 96:757764.CrossRefGoogle ScholarPubMed
Godart, F., Porte, H.L., Rey, C., Lablanche, J-M., Wurtz, A.. Postpneumonectomy interatrial right-to-left shunt: successful percutaneous treatment. Ann Thorac Surg 1997; 64:834836.CrossRefGoogle ScholarPubMed
Gillies, B.S., Posner, K., Freund, R., Cheney, F.. Failure rate of pulse oximetry in the postanesthesia care unit. J Clin Monit 1999; 9:326329.CrossRefGoogle Scholar

References

Sasaki, C.T., Isaacson, G.. Functional anatomy of the larynx. Otolaryngol Clin North Am 1988; 21:595612.Google Scholar
Olsson, G.L., Hallen, B.. Laryngospasm during anesthesia. A computer aided incidence study in 136,929 patients. Acta Anaesthesiol Scand 1984; 28:567575.Google Scholar
Fewins, J., Simpson, C., Miller, F.. Complications of thyroid and parathyroid surgery. Otolaryngol Clin North Am 2003; 36:189206.Google Scholar
Solanki, S.L., Jain, A., Makkar, J.K., Nikhar, S.A.. Severe stridor and marked respiratory difficulty after right-sided supraclavicular brachial plexus block. J Anesth 2011; 25:305307.CrossRefGoogle ScholarPubMed
Rollins, M., McKay, W.R., McKay, R.E.. Airway difficulty after a brachial plexus subclavian perivascular block. Anesth Analg 2003; 96:11911192.Google Scholar
Plit, M.L., Chhajed, P.N., Macdonald, P., et al. Bilateral vocal cord palsy following interscalene brachial plexus nerve block. Anaesth Intensive Care 2002; 30:499501.CrossRefGoogle ScholarPubMed
Wang, T., Roman, S., Sosa, J.. Postoperative calcium supplementation in patients undergoing thyroidectomy. Curr Opin Oncol 2012; 24:2228.CrossRefGoogle ScholarPubMed
Witteveen, J.E., van Thiel, S., Romijn, J.A., Hamdy, N.A.. Hungry bone syndrome: still a challenge in the post-operative management of primary hyperparathyroidism: a systematic review of the literature. Eur J Endocrinol 2013; 168:R45R53.CrossRefGoogle Scholar
Higa, K., Kazuhiko, H., Kazunori, N., et al. Retropharyngeal hematoma after stellate ganglion block: analysis of 27 patients reported in the literature. Anesthesiology 2006; 105:12381245.CrossRefGoogle ScholarPubMed
Shakespeare, W.A., Lanier, W.L., Perkins, W.J., Pasternak, J.J.. Airway management in patients who develop neck hematomas after carotid endarterectomy. Anesth Analg 2010; 110:588593.CrossRefGoogle ScholarPubMed
Tanaka, A., Isono, S., Ishikawa, T., Sato, J., Nishino, T.. Laryngeal resistance before and after minor surgery: endotracheal tube versus laryngeal mask airway. Anesthesiology 2003; 99:252258.CrossRefGoogle ScholarPubMed
Ho, L.I., Harn, H.J., Lien, T.C., Hu, P.Y., Wang, J.H.. Postextubation laryngeal edema in adults. Risk factor evaluation and prevention by hydrocortisone. Intensive Care Med 1999; 22:933936.Google Scholar
Roberts, R.J., Welch, S.M., Devlin, J.W.. Corticosteroids for prevention of postextubation laryngeal edema in adults. Ann Pharmacother 2008; 42:686691.CrossRefGoogle ScholarPubMed
Ibrahim, W.H., Gheriani, H.A., Almohamed, A.A., Raza, T.. Paradoxical vocal cord motion disorder: past, present and future. Postgrad Med J 2007; 83:164172.Google Scholar
Larsen, B., Caruso, L.J., Villariet, D.B.. Paradoxical vocal cord motion: an often misdiagnosed cause of postoperative stridor. J Clin Anesth 2004; 16:230234.CrossRefGoogle ScholarPubMed
Hepner, D.L., Castells, M.C.. Anaphylaxis during the perioperative period. Anesth Analg 2003; 97:13811395.Google Scholar
Kocyigit, O.I., Celebi, S., Gonen, H., et al. Laryngeal candidiasis: an uncommon cause of postoperative stridor. Internet J Anesthesiol 2009; 21. https://ispub.com/IJA/21/2/12068#.Google Scholar
Talwar, V., Raheja, S.G., Pawar, M.. Post intubation stridor in a child with unsuspected congenital subglottic stenosis – a case report. Indian J Anaesth 2002; 46:6163.Google Scholar
Wood, R. The diagnostic effectiveness of the flexible bronchoscope in children. Pediatr Pulmonol 1985; 1:188192.Google Scholar
Baldwin, M.K., Benumof, J.I.. Paradoxical vocal cord movement: a unique case of occurrence and treatment. Anesthesiology 2007; 107:359.CrossRefGoogle ScholarPubMed
Neutstein, S.M., Taitt-Wynter, L.M., Rosenblatt, M.A.. Treating stridor with opioids: a challenging case of paradoxical vocal cord movement. J Clin Anesth 2010; 22:130131.CrossRefGoogle Scholar

References

Fowler, M.A., Spiess, B.D., Post anesthesia recovery. In Barash, P.G., Cullen, B.F., Stoelting, R.K., eds. Clinical Anesthesia 6th edition. Lippincott Williams & Wilkins; 2009:14211443.Google Scholar
Cote, C., Lerman, J., Todres, I.. Practice of Anesthesia in Infants and Children 4th edition. Saunders/Elsevier; 2009.Google Scholar
Kurth, C.D., Spitzer, A.R., Broennle, A.M., Downes, J.J.. Postoperative apnea in preterm infants. Anesthesiology 1987; 66:483488.Google Scholar
Gross, J.B., Bachenberg, K.L., Benumof, J.L., et al. Practice guidelines for the perioperative management of patients with obstructive sleep apnea: a report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea. Anesthesiology 2014; 120:268286.Google Scholar
Ghouri, A.F., Ramirez, M.A., White, P.F.. Effect of flumazenil on recovery after midazolam and propofol sedation. Anesthesiology 1994; 81:333339.CrossRefGoogle ScholarPubMed
Licker, M., Schweizer, A., Ellenberger, C., et al. Perioperative medical management of patients with COPD. Int J Chron Obstruct Pulmon Dis 2007; 2:493515.Google ScholarPubMed

References

Karner, C., Cates, C.J.. The effect of adding inhaled corticosteroids to tiotropium and long-acting beta(2)-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011; 9:CD009039.Google Scholar
Mos, I.C., Klok, F.A., Kroft, L.J., de Roos, A., Huisman, M.V.. Imaging tests in the diagnosis of pulmonary embolism. Semin Respir Crit Care Med 2012; 33:138143.Google Scholar
Celli, B.R., MacNee, W. for the ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004; 23:932946.Google Scholar
Kikura, M., Sato, S.. Incidence and risk factors of postoperative vocal cord paralysis in 987 patients after cardiovascular surgery. Ann Thorac Surg 2007; 83:21472152.Google Scholar
Fowler, M., Spiess, B.D.. Post anesthesia recovery. In Barash, P.G., Cullen, B.F., Stoelting, R.K., eds. Clinical Anesthesia 6th edition. Philadelphia: Lippincott Williams & Wilkins; 2009:14211443.Google Scholar
Berg, H., Rode, J., Viby-Mogensen, J., et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomized, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41:10951103.CrossRefGoogle ScholarPubMed
Rose, D.K., Cohen, M.M., Wigglesworth, D.F., Deboer, D.P.. Critical respiratory events in the postanesthesia care unit. Patient, surgical, and anesthetic factors. Anesthesiology 1994; 81:410418.Google Scholar
DePaso, W.J.. Aspiration pneumonia. Clin Chest Med 1991; 12:269284.CrossRefGoogle ScholarPubMed

References

Domino, K.B., Posner, K.L., Caplan, R.A., Cheney, F.W.. Airway injury during anesthesia. Anesthesiology 1999; 91: 17031711.Google Scholar
Hagberg, C., Georgi, R., Krier, C.. Complications of managing the airway. Best Pract Res Clin Anaesthesiol 2005; 19: 641659.CrossRefGoogle ScholarPubMed
Brimacombe, J., Clarke, G., Keller, C.. Lingual nerve injury associated with the ProSeal laryngeal mask airway: a case report and review of the literature. Br J Anaesth 2005; 95: 420423.CrossRefGoogle ScholarPubMed
Mencke, T., Echtemach, M., Kleinschmidt, S., et al. Laryngeal morbidity and quality of tracheal intubation. Anesthesiology 2003; 98: 10491056.Google Scholar
Kawauchi, Y., Nakazawa, K., Ishibashi, S., et al. Unilateral recurrent laryngeal nerve neuropraxia following placement of a ProSeal laryngeal mask airway in a patient with CREST syndrome. Acta Anaesthesiol Scand 2005; 49: 576578.CrossRefGoogle Scholar
Loh, K.S., Irish, J.C.. Traumatic complications of intubation and other airway management procedures. Anesthesiol Clin North Am 2002; 20: 953969.CrossRefGoogle ScholarPubMed
Frink, E.J., Pattison, B.D.. Posterior arytenoid dislocation following uneventful endotracheal intubation and anesthesia. Anesthesiology 1989; 70: 358360.Google Scholar
Vincent, R.D., Wimberly, M.P., Brockwell, R.C., Magnuson, J.S.. Soft palate perforation during orotracheal intubation facilitated by the GlideScope videolaryngoscope. J Clin Anesth 2007; 19: 619621.CrossRefGoogle ScholarPubMed
Warner, M.E., Benefeld, S.M., Warner, M.A., et al. Perianesthetic dental injuries. Anesthesiology 1999; 90: 13021305.CrossRefGoogle ScholarPubMed
McHardy, F.E., Chung, F.. Postoperative sore throat: cause, prevention and treatment. Anaesthesia 1999; 54: 444453.Google Scholar
Alexander, C.A., Leach, A.B.. Incidence of sore throats with the laryngeal mask. Anaesthesia 1989; 44: 791.Google Scholar
Stride, P.C.. Postoperative sore throat: topical hydrocortisone. Anaesthesia 1990; 45, 968971.CrossRefGoogle ScholarPubMed
Turnbull, R.S.. Benzydamine hydrochloride (Tantum) in the management of oral inflammatory conditions. J Can Dental Assoc 1995; 61: 127134.Google Scholar
Bufkin, B.L., Miller, J.I. Jr, Mansour, K.A.. Esophageal perforation: emphasis on management. Ann Thorac Surg 1996; 61:14471452.Google Scholar
Chen, E.H., Logman, Z.M., Glass, P.S., Bilfinger, T.V.. A case of tracheal injury after emergent endotracheal intubation: a review of the literature and causalities. Anesth Analg 2001; 93: 12701271.Google Scholar
Lobato, E.B., Risley, W.P., Stoltzfus, D.P.. Intraoperative management of distal tracheal rupture with selective bronchial intubation. J Clin Anesth 1997; 9: 155158.CrossRefGoogle ScholarPubMed
Chen, J.D., Shanmuganathan, K., Mirvis, S.E., Killeen, K.L., Dutton, R.P.. Using CT to diagnose tracheal rupture. Am J Roentgenol 2001; 176: 12731280.CrossRefGoogle ScholarPubMed
Minambres, E., Buron, J., Ballesteros, M.A., et al. Tracheal rupture after endotracheal intubation: a literature systematic review. Eur J Cardiothorac Surg 2009; 35: 10561062.CrossRefGoogle ScholarPubMed

References

Kasper, D., Fauci, A., Longo, D., et al., eds.Harrison’s Principles of Internal Medicine.16th edition. 2005. New York: McGraw-Hill Medical Publishing Division.Google Scholar
Pile, J.C.. Evaluating postoperative fever: a focused approach. Cleve Clin J Med 2006; 73:S62S66.CrossRefGoogle Scholar
Mavros, M.N., Velmahos, G.C., Falagas, M.W.. Atelectasis as a cause of postoperative fever: where is the clinical evidence? Chest 2011; 140:418424.CrossRefGoogle ScholarPubMed
Frank, S.M., Kluger, M.J., Kunkel, S.L.. Elevated thermostatic setpoint in postoperative patients. Anesthesiology 2000; 93:14261431.Google Scholar
Negishi, C., Lenhardt, R.. Fever during anaesthesia. Best Pract Res Clin Anaesthesiol 2003; 17:499517.Google Scholar
Kendrick, J.E., Numnum, T.M., Estes, J.M., et al. Conservative management of postoperative fever in gynecologic patients undergoing major abdominal or vaginal operations. J Am Coll Surg 2008; 207:393397.CrossRefGoogle ScholarPubMed
Lesperance, R., Lehman, R., Lesperance, K., Cronk, D., Martin, M.. Early postoperative fever and the “routine” fever work-up: results of a prospective study. J Surg Res 2011; 171:245250.CrossRefGoogle ScholarPubMed
Theurer, C.P., Bongard, F.S., Klein, S.R.. Are blood cultures effective in the evaluation of fever in perioperative patients? Am J Surg 1991; 162:615619.Google Scholar
Kiragu, A.W., Zier, J., Cornfield, D.N.. Utility of blood cultures in postoperative pediatric intensive care unit patients. Pediatr Crit Care Med 2009;10:364368.Google Scholar
Mendelson, C.L.. The aspiration of stomach contents into the lungs during obstetric anesthesia. Am J Obstet Gynecol 1946; 52:191200.CrossRefGoogle ScholarPubMed
Warner, M.A., Warner, M.E., Weber, J.G.. Clinical significance of pulmonary aspiration during the perioperative period. Anesthesiology 1993: 78:5662.Google Scholar
Marik, P.E.. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001; 344:665671.CrossRefGoogle ScholarPubMed
Marik, P.E.. Pulmonary aspiration syndromes. Curr Opin Pulm Med 2011; 17:148154.CrossRefGoogle ScholarPubMed
Afelbaum, J.L., Caplan, R.A., Connis, R.T. et al. for the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures. An updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology 2011; 49:495511.Google Scholar
Smith, K.J., Dobranowski, J.Y., Gordon, D., Alezandre, C., Peter, T.L.. Cricoid pressure displaces the esophagus: an observational study using magnetic resonance imaging. Anesthesiology 2003; 99:6064.Google Scholar
Torline, R.L.. Extreme hyperpyrexia associated with central anticholinergic syndrome. Anesthesiology 1992; 76:470471.Google Scholar
Tabor, P.A.. Drug-induced fever. Drug Intell Clin Pharm 1986; 20:413420.Google ScholarPubMed
Crandall, C.G., Vonopatanasin, W., Victor, R.G.. Mechanism of cocaine-induced hyperthermia in humans. Ann Intern Med 2002; 36:785791.Google Scholar
Kalant, H.. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. CMAJ 2001; 165:917928.Google Scholar
Bey, T., Patel, A.. Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Cal J Emerg Med 2007; 8:914.Google ScholarPubMed
Bodenham, A.R., Mallick, A.. New dimensions in toxicology: hyperthermic syndrome following amphetamine derivatives. Intensive Care Med 1996; 22:622624.Google Scholar
Otero-Antón, E., González-Quintela, A., Saborido, J. et al. Fever during alcohol withdrawal syndrome. Eur J Int Med 1999; 10:112116.Google Scholar
Hodges, B., Mazur, J.E.. Intravenous ethanol for the treatment of alcohol withdrawal syndrome in critically ill patients. Pharmacotherapy 2004; 24:15781585.CrossRefGoogle ScholarPubMed
Monnier, N., Krivosic-Horber, R., Payen, J.F. et al. Presence of two different genetic traits in malignant hyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anesthesiology 2002; 97:10671074.Google Scholar
Litman, R.S., Flood, C.D., Kaplan, R.F., Kim, Y.L., Tobin, J.R.. Malignant hyperthermia: an analysis of cases from the North American Malignant Hyperthermia Registry. Anesthesiology 2008; 109:825829.Google Scholar
Adnet, P., Lestavel, P., Krisvosic-Horber, R.. Neuroleptic malignant syndrome. Br J Anaesth 2000; 85:129135.CrossRefGoogle ScholarPubMed
Patel, P., Bristow, G.. Postoperative neuroleptic malignant syndrome. A case report. Can J Anaesth 1987; 34:515518.Google Scholar
Young, C.C., Kaufmann, B.S.. Neuroleptic malignant syndrome postoperative onset due to levodopa withdrawal. J Clin Anesth 1995; 7:652656.CrossRefGoogle ScholarPubMed
So, P.C.. Neuroleptic malignant syndrome induced by droperidol. Hong Kong Med J 2001; 7:101103.Google Scholar
Tsuchiya, N., Morimura, E., Hanafusa, T., Shinomura, T.. Postoperative neuroleptic malignant syndrome that occurred repeatedly in a patient with cerebral palsy. Paediatr Anaesth 2007; 17:281284.CrossRefGoogle Scholar
Ambulkar, R.P., Patil, V.P., Moiyadi, A.V.. Neuroleptic malignant syndrome: a diagnostic challenge. J Anaesthesiol Clin Pharmacol 2012; 28:517519.Google Scholar
Kishimoto, S., Nakamura, K., Arai, T., Yukimasa, O., Fukami, N.. Postoperative neuroleptic malignant syndrome-like symptoms improved with intravenous diazepam: a case report. J Anesth 2013; 27:768770.Google Scholar
Jones, D., Story, D.A.. Serotonin syndrome and the anaesthetist. Anaesth Intensive Care 2005; 33:181187.Google Scholar
Dunkley, E.J.C., Isbister, G.K., Sibbritt, D., Dawson, A.H., Whyte, I.M.. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM 2003; 96:635642.CrossRefGoogle ScholarPubMed
Izdes, S., Altintas, N.D., Soykut, C.. Serotonin syndrome caused by administration of methylene blue to a patient receiving selective serotonin reuptake inhibitors. Anesth Analg 2014; 2:111112.Google Scholar
Rang, S.T., Field, J., Irving, C.. Serotonin toxicity caused by an interaction between fentanyl and paroxetine. Can J Anaesth 2008; 55: 521525.CrossRefGoogle ScholarPubMed
Rastogi, R., Swarm, R.A., Patel, T.A.. Case scenario: opioid association with serotonin syndrome: implication to the practitioners. Anesthesiology 2011; 115: 12911298.CrossRefGoogle Scholar
Stanford, S.C., Stanford, B.J., Gillman, P.K.. Risk of severe serotonin toxicity following co-administration of methylene blue and serotonin reuptake inhibitors: an update on a case report of postoperative delirium. J Psychopharmacol 2010; 24: 14331438.CrossRefGoogle Scholar
Dagtekin, O., Marcus, H., Müller, C., Böttiger, B.W., Spöhr, F.. Lipid therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam. Minerva Anestesiol 2011; 77:9395.Google Scholar
Ponnusamy, K.E., Kim, T.J., Khanuja, H.S.. Perioperative blood transfusions in othopaedic surgery. J Bone Joint Surg Am 2014; 96:18361844.Google Scholar
Johnstone, R.E.. Malignant heating pad. Anesthesiology 1974; 41:307.CrossRefGoogle ScholarPubMed
Gordon, D.L., Atamian, S.D., Brooks, M.H.. Fever in pheochromocytoma. Arch Intern Med 1992; 152:12691272.CrossRefGoogle ScholarPubMed
Browers, F.M., Eisenhofer, G., Lenders, J.W., Pacak, K.. Emergencies caused by pheochromocytoma, neuroblastoma, or ganglioneuroma. Endocrinol Metab Clin North Am 2006; 35:699724.CrossRefGoogle Scholar
Wilkinson, J.N.. Thyroid storm in a polytrauma patient. Anaesthesia 2008; 63:10011005.Google Scholar
Kehlet, H., Binder, C.. Adrenocortical function and clinical course during and after surgery in unsupplemented glucocorticoid-treated patients. Br J Anaesth 1973; 45:10431048.CrossRefGoogle ScholarPubMed
Knudsen, L., Christiansen, L.A., Lorentzen, J.E.. Hypotension during and after operation in glucocorticoid-treated patients. Br J Anaesth 1981; 51:295301.Google Scholar
Marik, P.E., Varon, J.. Requirement of perioperative stress doses of corticosteroids: a systematic review of the literature. Arch Surg 2008; 143:12221226.CrossRefGoogle ScholarPubMed
Jurado, R.L., Franco-Paredes, C.. Aspiration pneumonia: a misnomer. Clin Infect Dis 2001; 33:16121613.CrossRefGoogle ScholarPubMed
Batement, B.T., Schmidt, U., Berman, M.F., Bittner, E.A.. Temporal trends in the epidemiology of severe postoperative sepsis after elective surgery: a large, nationwide sample. Anesthesiology 2010; 112:917925.Google Scholar
Berry, F., Blankenbaker, W., Ball, C.. A comparison of bacteremia occurring with nasotracheal and orotracheal intubation. Anesth Analg 1973; 6:873876.Google Scholar
Dinner, M., Tjeuw, M., Artusio, J.F.. Bacteremia as a complication of nasotracheal intubation. Anesth Analg 1987; 66:460462.Google Scholar
Wagner, R., Toback, J.M.. Toxic shock syndrome following septoplasty using plastic septal splints. Laryngoscope 1986; 96:609610.CrossRefGoogle ScholarPubMed
Younis, R.T., Gross, C.W., Lazar, R.H.. Toxic shock syndrome following function endonasal sinus surgery: a case report. Head Neck 1991; 13:247248.Google Scholar

References

Sessler, D.I.. Mild perioperative hypothermia. N Engl J Med 1997; 336:17301737.Google Scholar
Matsukawa, T., Sessler, D.I., Sessler, A.M., et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology 1995; 82:662673.Google Scholar
Diaz, M., Becker, D.E.. Thermoregulation: physiological and clinical consideration during sedation and general anesthesia. Anesth Prog 2010; 57: 2532.Google Scholar
Eberhart, L.H., Doderlein, F., Eisenhardt, G., et al. Independent risk factors for postoperative shivering. Anesth Analg 2005; 101:18491857.Google Scholar
De Witte, J., Sessler, D.I.. Perioperative shivering: physiology and pharmacology. Anesthesiology 2002; 96:467484.CrossRefGoogle ScholarPubMed
Frank, S.M., Fleisher, L.A., Breslow, M.J., et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA 1997; 277:11271134.Google Scholar
Sessler, D.I.. Complication and treatment of mild hypothermia. Anesthesiology 2001; 95:531543.CrossRefGoogle ScholarPubMed
Frank, F.M., Beattie, C., Christopherson, R., et al.; The Perioperative Ischemia Randomized Anesthesia Trial Study Group. Unintentional hypothermia is associated with postoperative myocardial ischemia. Anesthesiology 1993; 78:468476.CrossRefGoogle Scholar
Lenhardt, R., Marker, E., Goll, V., et al. Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology 1997; 87:13181323.CrossRefGoogle ScholarPubMed
Valeri, C.R., Feingold, H., Cassidy, G., et al. Hypothermia-induced reversible platelet dysfunction. Ann Surg 1987; 205:175181.Google Scholar
Staab, D.B., Sorensen, V.J., Fath, J.J., et al. Coagulation defects resulting from ambient temperature-induced hypothermia. J Trauma 1994; 36:634648.CrossRefGoogle ScholarPubMed
Rajagopalan, S., Mascha, E., Na, J., Sessler, D.I.. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 2008; 108:7177.Google Scholar
Wenisch, C., Narzt, E., Sessler, D.I., et al. Mild intraoperative hypothermia reduces production of reactive oxygen intermediates by polymorphonuclear leukocytes. Anesth Analg 1996; 82:810812.Google ScholarPubMed
Hynson, J.M., Sessler, D.I., Moayeri, A., McGuire, J., Schroeder, M.. The effects of pre-induction warming on temperature and blood pressure during propofol/nitrous oxide anesthesia. Anesthesiology 1993; 79:219228.Google Scholar
Hynson, J., Sessler, D.I.. Intraoperative warming therapies: a comparison of three devices. J Clin Anesth 1992; 4:194199.Google Scholar
Kelsaka, E., Baris, S., Karakaya, D., Sarihasan, B.. Comparison of ondansetron and meperidine for prevention of shivering in patients undergoing spinal anesthesia. Reg Anesth Pain Med 2006; 30:4045.Google Scholar

References

Ichai, C., Preiser, J. for the Societe Fd, Societe de Reanimation de langue Francaise (SRLF) and the Experts group. International recommendations for glucose control in adult non diabetic critically ill patients. Crit Care 2010; 14(5):R166. doi: 10.1186/cc9258.CrossRefGoogle ScholarPubMed
Egi, M., Bellomo, R., Stachowski, E., et al. Hypoglycemia and outcome in critically ill patients. Mayo Clin Proc 2010;85(3):217224.CrossRefGoogle ScholarPubMed
Boucai, L., Southern, W.N., Zonszein, J.. Hypoglycemia-associated mortality is not drug-associated but linked to comorbidities. Am J Med 2011; 124(11):10281035.Google Scholar
The NICE-SUGAR Study Investigators. Hypoglycemia and risk of death in critically ill patients. N Engl J Med 2012; 367(12):11081118.Google Scholar
Desouza, C.V., Bolli, G.B., Fonseca, V.. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care 2010; 33(6):13891394.Google Scholar
Frier, B.M., Schernthane, G., Heller, S.R.. Hypoglycemia and cardiovascular risks. Diabetes Care 2011; 34(Suppl 2):S132S137.Google Scholar
Lteif, A.N., Schwenk, W.F.. Hypoglycemia in infants and children. Endocrinol Metab Clin North Am 1999; 28(3):619646.Google Scholar
Chaussain, J., Georges, P., Calzada, L., Job, J.. Glycemic response to 24-hour fast in normal children: III. Influence of age. J Pediatr 1977; 91(5):711714.Google Scholar
Joshi, G.P., Chung, F., Vann, M.A., et al. Society for Ambulatory Anesthesia consensus statement on perioperative blood glucose management in diabetic patients undergoing ambulatory surgery. Anesth Analg 2010; 111(6):13781387.Google Scholar
Bernard, P.A., Makin, C.E., Werner, H.A.. Hypoglycemia associated with dexmedetomidine overdose in a child? J Clin Anesth 2009; 21(1):5053.Google Scholar
Banerjee, A., Rhoden, W.E.. Etomidate-induced hypoglycaemia. Postgrad Med J 1996; 72(850):510.Google Scholar
Salem, C.B., Fathallah, N., Hmouda, H., Bouraoui, K.. Drug-induced hypoglycaemia: an update. Drug Saf 2011; 34(1):2145.Google Scholar
Vue, M.H., Setter, S.M.. Drug-induced glucose alterations. Part 1: Drug-induced hypoglycemia. Diabetes Spectr 2011; 24(3):171177.Google Scholar
Kehlet, H., Binder, C.. Adrenocortical function and clinical course during and after surgery in unsupplemented glucocorticoid-treated patients. Br J Anaesth 1973; 45(10):10431048.CrossRefGoogle ScholarPubMed
Knudsen, L., Christiansen, L.A., Lorentzen, J.E.. Hypotension during and after operation in glucocorticoid-treated patients. Br J Anaesth 1981; 53 (3):295301.Google Scholar
Kastelan, D., Ravic, K.G., Cacic, M., et al. Severe postoperative hypoglycemia in a patient with pheochromocytoma and preclinical Cushing's syndrome. Med Sci Monit 2007; 13(3):CS34CS37.Google Scholar
Tack, J., Arts, J., Caenepeel, P., De Wulf, D., Bisschops, R.. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol 2009; 6(10):583590.Google Scholar
Tonyushkina, K., Nichols, J.H.. Glucose meters: a review of technical challenges to obtaining accurate results. J Diabetes Sci Technol 2009; 3(4):971980.Google Scholar
Schwenk, E.S., Mraovic, B., Maxwell, R.P., et al. Root causes of intraoperative hypoglycemia: a case series. J Clin Anesth 2012; 24(8):625630.CrossRefGoogle ScholarPubMed
Kroll, H.R., Maher, T.R.. Significant hypoglycemia secondary to icodextrin peritoneal dialysate in a diabetic patient. Anesth Analg 2007; 104(6):14721474.CrossRefGoogle ScholarPubMed
Nayak, P.P., Morris, K., Lang, H., et al. Lack of agreement between arterial and central venous blood glucose measurement in critically ill children. Intensive Care Med 2009; 35(4):762763.CrossRefGoogle ScholarPubMed
Desachy, A., Vuagnat, A.C., Ghazali, A.D., et al. Accuracy of bedside glucometry in critically ill patients: influence of clinical characteristics and perfusion index. Mayo Clin Proc 2008; 83(4):400405.CrossRefGoogle ScholarPubMed
Chakravarthy, S.B., Markewitz, B.A., Lehman, C., Orme, J.F.. Glucose determination from different vascular compartments by point-of-care testing in critically ill patients. Chest 2005; 128(Suppl):220S221S.Google Scholar
Lyon, M.E., DuBois, J.A., Fick, G.H., Lyon, A.W.. Estimates of total analytical error in consumer and hospital glucose meters contributed by hematocrit, maltose, and ascorbate. J Diabetes Sci Technol 2010; 4(6):14791494.Google Scholar
Hovorka, R., Shojaee-Moradie, F., Carroll, P.V., et al. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 2002; 282(5):E992E1007.Google Scholar
Sjöstrand, F., Edsberg, L., Hahn, R.G.. Volume kinetics of glucose solutions given by intravenous infusion. Br J Anaesth 2001; 87(6):834843.CrossRefGoogle ScholarPubMed
Ferrannini, E., Smith, J.D., Cobelli, C., et al. Effect of insulin on the distribution and disposition of glucose in man. J Clin Invest 1985; 76(1):357364.CrossRefGoogle ScholarPubMed
Balentine, J.R., Gaeta, T.J., Bagiella, E., Lee, T.. Effect of 50 milliliters of 50% dextrose in water administration on the blood sugar of euglycemic volunteers. Acad Emerg Med 1999; 5(7):691694.CrossRefGoogle Scholar

References

Wexler, D.J., Meigs, J.B., Cagliero, E., Nathan, D.M., Grant, R.W.. Prevalence of hyper- and hypoglycemia among inpatients with diabetes: a national survey of 44 U.S. hospitals. Diabetes Care 2007; 30:367369.Google Scholar
Umpierrez, G.E., Hellman, R., Korytkowski, M.T., et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2012; 97:1638.Google Scholar
Standards of Medical Care in Diabetes – 2013. Diabetes Care 2013; 36:S1.CrossRefGoogle Scholar
Egi, M., Bellomo, R., Stachowski, E., et al. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care Med 2008; 36:22492255.Google Scholar
Krinsley, J.S.. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med 2008; 36:30083013.Google Scholar
Murad, M.H., Coburn, J.A., Coto-Yglesias, F., et al. Glycemic control in non-critically ill hospitalized patients: a systematic review and meta-analysis. J Clin Endocrinol Metab 2012; 97:4958.CrossRefGoogle ScholarPubMed
Mraovic, B., Hipszer, B.R., Epstein, R.H., et al. Preadmission hyperglycemia is an independent risk factor for in-hospital symptomatic pulmonary embolism after major orthopedic surgery. J Arthroplasty 2010; 25:6470.CrossRefGoogle ScholarPubMed
Bochicchio, G.V., Sung, J., Manjari, J., et al. Persistent hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma 2005; 58:921924.Google Scholar
Vriesendorp, T.M., Morelis, Q.J., DeVries, J.H., Legemate, D.A., Hoekstra, J.B.L.. Early postoperative glucose levels are an independent risk factor for infection after peripheral vascular surgery. A retrospective study. Eur J Vasc Surg 2004; 28:520525.CrossRefGoogle ScholarPubMed
Finfer, S., Bellomi, R., Blair, D., et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 36:12831297.Google Scholar
Van den Berghe, E., Wouters, P., Weekers, F., et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345:13591367.Google Scholar
Van den Berghe, G., Wilmer, A., Hermans, G., et al. Intensive insulin therapy in the medical ICU, N Engl J Med 2006; 354: 449461.Google Scholar
Moghissi, E.S., Korytkowski, M.T., DiNardo, M., et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 2009; 32:11191131.CrossRefGoogle Scholar
Jacobi, J., Bircher, N., Krinsley, J., et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med 2012; 40:32513276.CrossRefGoogle ScholarPubMed
Joshi, G.P., Chung, F., Vann, M.A., et al. Society for Ambulatory Anesthesia consensus statement on perioperative blood glucose management in diabetic patients undergoing ambulatory surgery. Anesth Analg 2010; 111:13781387.Google Scholar
Hirsch, I., Paauw, D.S., Brunzell, J.. Inpatient management of adults with diabetes. Diabetes Care 1995; 18:870878.Google Scholar
Brian, P., Kavanagh, M.B., McCowen, K.C.. Glycemic control in the ICU. N Engl J Med 2010; 363:25402546.Google Scholar
Joseph, J.I.. Anesthesia and surgery in the diabetic patient. Textbook of Type 2 Diabetes, Chapter 31. Boca Raton: CRC Press 2008, pp. 475500.Google Scholar
Desachy, A., Vuagnat, A.C., Ghazali, A.D., et al. Accuracy of bedside glucometry in critically ill patients: influence of clinical characteristics and perfusion index. Mayo Clin Proc 2008; 83:400405.Google Scholar

References

Adrogue, H.J., Madias, N.E.. Primary care: hypernatremia. N Engl J Med 2000; 342:14931499.Google Scholar
Chung, H., Kluge, R., Schrier, R.W., Anderson, R.J.. Postoperative hyponatremia. A prospective study. Arch Intern Med 1986; 146: 333336.Google Scholar
Kashyap, A.S.. Hyperglycemia-induced hyponatremia: is it time to correct the correction factor? Arch Intern Med 1999; 159: 27452746.CrossRefGoogle ScholarPubMed
Gravenstein, D.. Transurethral resection of the prostate (TURP) syndrome: a review of the pathophysiology and management. Anesth Analg 1997; 84:438446.CrossRefGoogle ScholarPubMed
Brown, W.D.. Osmotic demyelination disorders: central pontine and extrapontine myelinolysis. Curr Opin Neurol 2000; 13:691697.CrossRefGoogle ScholarPubMed
Wahr, J.A., Parks, R., Boisvert, D. et al. Preoperative serum potassium levels and perioperative outcomes in cardiac surgery patients. JAMA 1999; 281:22032210.Google Scholar
Elisaf, M., Merkouropoulos, M., Tsianos, E.V. et al. Pathogenetic mechanisms of hypomagnesemia in alcoholic patients. J Trace Elem Med Biol 1995; 9:210214.Google Scholar
Brooks, M.J., Melnik, G.. The refeeding syndrome: an approach to understanding its complications and preventing its occurrence. Pharmacotherapy 1995; 15:713726.CrossRefGoogle ScholarPubMed

References

Kapur, P.. Editorial: The big “little problem.” Anesth Analg 1991; 73:243245.CrossRefGoogle ScholarPubMed
Kazemi-Kjellberg, F., Henzi, I., Tramèr, M.R.. Treatment of established postoperative nausea and vomiting: a quantitative systematic review. BMC Anesthesiol 2001; 1:2. doi:10.1186/1471-2253-1-2.Google Scholar
Apfel, C.C., Läärä, E., Koivuranta, M., Greim, C.A., Roewer, N.. A simplified risk score for predicting postoperative nausea and vomiting: conclusions from cross-validations between two centers. Anesthesiology 1999; 91:693700.CrossRefGoogle ScholarPubMed
Gan, T.J., Diemunsch, P., Habib, A.S., et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg 2014; 118:85113.CrossRefGoogle ScholarPubMed
Apfelbaum, J.L., Silverstein, J.H., Chung, F.F., et al. American Society of Anesthesiologists Task Force on Postanesthetic Care. Practice guidelines for postanesthetic care. Anesthesiology 2013; 118:291307.Google Scholar
White, P.F., O’Hara, J.F., Roberson, C.R., Wender, R.H., Candiotti, K.A. and the POST-OP Study Group. The impact of current antiemetic practices on patient outcomes: a prospective study on high-risk patients. Anesth Analg 2008; 107:452458.Google Scholar
Tramèr, M.R., Moore, R.A., Reynolds, D.J.M., McQuay, H.J.. A quantitative systematic review of ondansetron in treatment of established postoperative nausea and vomiting. Br Med J 1997; 514:10881092.CrossRefGoogle Scholar
Tramèr, M.R., Reynolds, D.J.M., Moore, R.A., McQuay, H.J.. Efficacy, dose‐response, and safety of ondansetron in prevention of postoperative nausea and vomiting: a quantitative systematic review of randomized placebo‐controlled trials. Anesthesiology 1997; 87:12771289.CrossRefGoogle ScholarPubMed
Kovac, A.L., O’Connor, T.A., Pearman, M.H., et al. Efficacy of repeat intravenous dosing of ondansetron in controlling postoperative nausea and vomiting: a randomized, double-blind, placebo-controlled multicenter trial. J Clin Anesth 1999; 11:153159.Google Scholar
Rowbotham, D.J.. Recent advances in the non-pharmacological management of postoperative nausea and vomiting. Br J Anaesth 2005; 95:7781.Google Scholar
Wang, S.M., Hofstadter, M.B., Kain, Z.N.. An alternative method to alleviate postoperative nausea and vomiting in children. J Clin Anesth 1999; 11:231234.CrossRefGoogle ScholarPubMed
Watch, M.F., White, P.F.. Postoperative nausea and vomiting: its etiology, treatment, and prevention. Anesthesiology 1992; 77:162184.CrossRefGoogle Scholar

References

Ward, L., Wright, E., McMahon, S.B.. A comparison of the effects of noxious and innocuous counterstimuli on experimentally induced itch and pain. Pain 1996; 64:129138.Google Scholar
Brull, S.J., Atanassoff, P.G., Silverman, D.G., Zhang, J., Lamotte, L.H.. Attenuation of experimental pruritus and mechanically evoked dysesthesiae in an area of cutaneous allodynia. Somatosens Mot Res 1999; 16:299303.CrossRefGoogle Scholar
Atanassoff, P.G., Brull, S.J., Zhang, J., et al. Enhancement of experimental pruritus and mechanically evoked dysesthesia with local anesthesia. Somatosens Mot Res 1999; 16:291298.CrossRefGoogle ScholarPubMed
Davidson, S., Zhang, X., Yoon, C.H., et al. The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J Neurosci 2007; 27:10007100014.CrossRefGoogle ScholarPubMed
Waxler, B., Dadabhoy, Z.P., Stojiljkovic, L., Rabito, S.F.. Primer of postoperative pruritus for anesthesiologists. Anesthesiology 2005; 103:168178.Google Scholar
Sun, Y.G., Chen, A.F.. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 2007; 448:700703.Google Scholar
Schmelz, M.. Itch: mediators and mechanisms. J Dermatol Sci 2002; 28:9196.Google Scholar
Kjellberg, F., Tramer, M.R.. Pharmacological control of opioid-induced pruritus: a quantitative systematic review of randomized trials. Eur J Anaesthesiol 2001; 18:346357.CrossRefGoogle ScholarPubMed
Krause, L., Shuster, S.. Mechanism of action of antipruritic drugs. Br Med J Clin Res Ed 1983; 287:11991200.Google Scholar
Ganesh, A., Maxwell, L.G.. Pathophysiology and management of opioid-induced pruritus. Drugs 2007; 67:23232333.Google Scholar
Horta, M.L., Horta, B.L.. Inhibition of epidural morphine-induced pruritus by intravenous droperidol. Reg Anesth 1993; 18:118120.Google ScholarPubMed
Horta, M. L., Ramos, L., da Rocha, Z.G., et al. Inhibition of epidural morphine-induced pruritus by intravenous droperidol: the effect of increasing the doses of morphine and of droperidol. Reg Anesth 1996: 21:312317.Google Scholar
Kumar, K., Singh, S.I.. Neuraxial opioid-induced pruritus: an update. J Anaesthesiol Clin Pharmacol 2013; 29:303307.Google Scholar
Borgeat, A., Wilder-Smith, O.H., Saiah, M., Rifat, K.. Subhypnotic doses of propofol relieve pruritus induced by epidural and intrathecal morphine. Anesthesiology 1992; 76:510512.CrossRefGoogle ScholarPubMed
Murphy, M., Carmichael, A.J., Lawler, P.G., White, M., Cox, N.H.. The incidence of hydroxyethyl starch-associated pruritus. Br J Dermatol 2001; 144:973976.Google Scholar
Bork, K.. Pruritus precipitated by hydroxyethyl starch: a review. Br J Dermatol 2005; 152:312.Google Scholar
Szeimies, R.M., Stolz, W., Wlotzke, U., Korting, H.C., Landthaler, M.. Successful treatment of hydroxyethyl starch-induced pruritus with topical capsaicin. Br J Dermatol 1994; 131:380382.CrossRefGoogle ScholarPubMed
Metze, D., Reimann, S., Beissert, S., Luger, T.. Efficacy and safety of naltrexone, an oral opiate receptor antagonist, in the treatment of pruritus in internal and dermatological diseases. J Am Acad Dermatol 1999; 41:533539.Google ScholarPubMed
Hepner, D.L., Castells, M.C.. Anaphylaxis during the perioperative period. Anesth Analg 2003; 97:13811395.Google Scholar
Reich, A., Stander, S., Szepietowski, J.C.. Drug-induced pruritus: a review. Acta Derm Venereol 2009; 89:236244.Google Scholar
Crowe, J., Christensen, E., Doniach, D., et al. Early features of primary biliary cirrhosis: an analysis of 85 patients. Am J Gastroenterol 1985; 80:466468.Google Scholar
Raderer, M., Muller, C., Sheithauer, W.. Ondansetron for pruritus due to cholestasis. N Engl J Med 1994; 330:1540.Google Scholar
Dillon, S., Tobias, J.D.. Ondansetron to treat pruritus due to cholestatic jaundice. Pediatr Pharmacol Ther 2013; 18:241246.Google Scholar
Szarvas, S., Harmon, D., Murphy, D.. Neuraxial opioid-induced pruritus: a review. J Clin Anesth 2003; 15:234239.Google Scholar
Weiss, G., Shemer, A., Trau, H.. The Koebner phenomenon: review of the literature. J Eur Acad Dermatol Venereol 2002; 16:241248.Google Scholar
Mahajan, R., Kumar, G.V.. Neuraxial opioids and Koebner phenomenon: implications for anesthesiologists. Anesthesiology 2003; 99:229230.Google Scholar

References

Marcus, A.. Residual paralysis: the problem that won’t go away. Anesthesiol News 2012; 38: 128.Google Scholar
Alkhazrajy, W., Khorasenee, A.D., Russell, W.J.. Muscle weakness after muscle relaxants: an audit of clinical practice. Anaesth Intensive Care 2004; 32: 256259.CrossRefGoogle ScholarPubMed
Naguib, M., Lein, C.A.. Pharmacology of muscle relaxants and their antagonists. In: Miller, R.D., ed. Miller’s Anesthesia 6th Edition. Philadelphia, PA: Elsevier Churchill Livingstone; 2005; 481572.Google Scholar
Soliday, F.L., Conley, Y.P., Henker, R.. Pseudocholinesterase deficiency: a comprehensive review of genetic, acquired, and drug influences. AANA J 2010; 78: 313320.Google ScholarPubMed
Quan, D., Ringel, S.P.. Neuromuscular diseases. In: Weiner, W.J., Goetz, C.G., Shin, R.K., Lewis, S.L., eds. Neurology for the Non-Neurologist 6th Edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2010; 344374.Google Scholar
Stevens, R.D.. Neuromuscular disorders and anesthesia. Curr Opin Anaesthesiol 2001; 14: 693698.Google Scholar
Toothaker, T.B., Rubin, M.. Paraneoplastic neurological syndromes: a review. Neurologist 2009; 15: 2133.CrossRefGoogle ScholarPubMed
O’Neill, G.N.. Inherited disorders of the neuromuscular junction. Int Anesthesiol Clin 2006; 44: 91106CrossRefGoogle ScholarPubMed
Mathieu, J., Allard, P., Gobeil, G. et al. Anesthetic and surgical complications in 219 cases of myotonic dystrophy. Neurology 1997; 49: 16461650.Google Scholar

References

Moos, D.D., Hansen, D.J.. Metoclopramide and extrapyramidal symptoms: a case report. J Perianesth Nurs 2008; 23: 292–9.CrossRefGoogle ScholarPubMed
Sanjoaquín, M.T., Martinez-Quiñones, J.V., Teixeira, C. et al. Spinal myoclonus following spinal anesthesia. Internet J Anesthesiol 2009; 19: 2.Google Scholar
Budde, A.O., Freestone-Bernd, M., Vaida, S.. Rhythmic movement disorder after general anesthesia. J Anaesthesiol Clin Pharmacol 2012; 28: 371–3.CrossRefGoogle ScholarPubMed
Dehring, D., Gupta, B., Peruzzi, W.T.. Postoperative opisthotonus and toricollis after fentanyl, enflurane, and nitrous oxide. Can J Anaesth 1991; 38: 919–25.Google Scholar
Doenicke, A.W., Roizen, M.F., Kugler, J. et al. Reducing myoclonus after etomidate. Anesthesiology 1999; 90: 113–19.CrossRefGoogle ScholarPubMed
Bowdle, T.A., Rooke, G.A.. Postoperative myoclonus and rigidity after anesthesia with opioids. Anesth Analg 1994; 78: 783–6.Google Scholar
Smith, P., White, S.. Anaesthesia and restless legs syndrome. Eur J Anaesthesiol 2009; 26: 8990.Google Scholar
RLS foundation. About RLS: What is RLS? 2007. http://www.rls.org/page.aspx?pid=477. (Accessed September 20, 2012.)Google Scholar
Crozier, T.A., Karimdadian, D., Happe, S.. Restless legs syndrome and spinal anesthesia. N Engl J Med 2008; 359: 2294–6.Google Scholar
Högl, B., Frauscher, B., Seppi, K. et al. Transient restless legs syndrome after spinal anesthesia: a prospective study. Neurology 2002; 59: 1705–7.CrossRefGoogle ScholarPubMed
Högl, B., Trenkwalder, C., Poewe, W.. More on the restless legs syndrome and spinal anesthesia. N Engl J Med 2009; 360: 1155–6.Google ScholarPubMed
de Jong, P.T., de Jong, J.M., Cohen, B., Jongkees, L.B.. Ataxia and nystagmus induced by injection of local anesthetics in the neck. Ann Neurol 1977; 1: 240–6.CrossRefGoogle ScholarPubMed
Lim, B.G., Lee, J.Y., Kim, H., Lee, D.K., Lee, M.K.. Nystagmus caused by epidural fentanyl. J Anesth 2012; 26: 94–6CrossRefGoogle ScholarPubMed
Bhattacharya, P.K., Bhattacharya, L., Jain, R.K., Agarwal, R.C.. Post anaesthesia shivering (PAS): a review. Indian J Anaesthesiol 2003; 47: 8893.Google Scholar
Crowley, L.J., Buggy, D.J.. Shivering and neuraxial anesthesia. Reg Anesth Pain Med 2008; 33: 241–52.CrossRefGoogle ScholarPubMed
Crossley, A.W.. Six months of shivering in a district general hospital. Anaesthesia 1992; 47: 845–8.Google Scholar
Eberhart, L.H.J., Doderlein, F., Eisenhardt, G. et al. Independent risk factors for postoperative shivering. Anesth Analg 2005; 101: 1849–57.Google ScholarPubMed
Postanesthesia care. Ch. 56 in: Morgan & Mikhail’s Clinical Anesthesiology 5th edition (ed Butterworth, JF, Mackey, DC, Wasnick, JD) New York: McGraw-Hill, 2006; 1264–5.Google Scholar

References

Schmalzried, T.P., Noordin, S., Amstutz, H.C.. Update on nerve palsy associated with total hip replacement. Clin Orthop Relat Res 1997; 344:188206.CrossRefGoogle Scholar
Laughlin, R.S., Dyck, P.J.B., Watson, J.C., et al. Ipsilateral inflammatory neuropathy after hip surgery. Mayo Clin Proc 2014; 89:454461.Google Scholar
Chan, J.K., Manetta, A.. Prevention of femoral nerve injuries in gynecologic surgery. Am J Obstet Gynecol 2002; 186:17.CrossRefGoogle ScholarPubMed
Kam, A.W., Lam, P.H., Murrell, G.A.C.. Brachial plexus injuries during shoulder athroplasty: what causes them and how to prevent them. Tech Should Surg 2014; 15:109114.CrossRefGoogle Scholar
Hogan, Q.H.. Pathophysiology of peripheral nerve injury during regional anesthesia. Reg Anesth Pain Med 2008; 33:435441.Google Scholar
Jeng, C.L., Torrillo, T.M., Rosenblatt, M.A.. Complications of peripheral nerve blocks. Br J Anaesth 2010; 105(Suppl 1):i97i107.CrossRefGoogle ScholarPubMed
Royer, J.M., Freysz, M., Regnard, P.J., Ahouanbevi, A., Wilkening, M.. Severe paralysis of the upper limb after axillary brachial plexus block. Ann Fr Anesth Reanim 1991; 10:168170.Google Scholar
Warner, M.A., Warner, M.E., Martin, J.T.. Ulnar neuropathy: incidence, outcome, and risk factors in sedated or anesthetized patients. Anesthesiology 1994; 81:13321340.CrossRefGoogle ScholarPubMed
Prielipp, R.C., Morell, R.C., Butterworth, J.. Ulnar nerve injury and perioperative arm positioning. Anesthesiol Clin North Am 2002; 20:589603.CrossRefGoogle ScholarPubMed
Warner, M.A., Martin, J.T., Schroeder, D.R., Offord, K.P., Chute, C.G.. Lower extremity motor neuropathy associated with surgery performed on patients in a lithotomy position. Anesthesiology 1994; 81:612.Google Scholar
Whitesides, T.E., Haney, T.C., Morimoto, K., Harada, H.. Tissue pressure measurements as a determinant for the need of fasciotomy. Clin Orthop Relat Res 1975; 113:4345.CrossRefGoogle Scholar
McQueen, M.M., Court-Brown, C.M.. Compartment monitoring in tibial fractures. The pressure threshold for decompression. J Bone Joint Surg Br 1996; 78:99104.CrossRefGoogle ScholarPubMed
Gourgiotis, S., Villas, C., Germanos, S., Foukas, A., Ridolfini, M.P.. Acute limb compartment syndrome: a review. J Surg Educ 2007; 64:178186.Google Scholar
Simms, M.S., Terry, J.R.. Well leg compartment syndrome after pelvic and perineal surgery in lithotomy position. Postgrad Med J 2005; 81:534536.Google Scholar
Prakash, C., Bonajmah, A.A., Ahmed, A.. A case of acute compartment syndrome following prolonged lithotomy positioning for urological syndrome. IJCRI 2011; 2:1922.CrossRefGoogle Scholar
Verdolin, M.H., Toth, A.S., Schroeder, R.. Bilateral lower extremity compartment syndromes following prolonged surgery in the low lithotomy position with serial compression stockings. Anesthesiology 2000; 92:11891191.CrossRefGoogle ScholarPubMed
Tuckey, J.. Bilateral compartment syndrome complicating prolonged lithotomy. Br J Anaesth 1996; 77:546549.Google Scholar
Enderby, G.E.H.. Postural ischaemia and blood pressure. Lancet 1954; 266:185187.CrossRefGoogle ScholarPubMed
Pfeffer, S.D., Halliwill, J.R., Warner, M.A.. Effects of lithotomy position and external compression on lower leg muscle compartment pressure. Anesthesiology 2001; 95:632636.CrossRefGoogle ScholarPubMed
Talbot, S.G., Rogers, G.F.. Pediatric compartment syndrome caused by intravenous infiltration. Ann Plast Surg 2011; 67:531533.CrossRefGoogle ScholarPubMed
Willsey, D., Peterfreund, R.. Compartment syndrome of the upper arm after pressurized infiltration of intravenous fluids. J Clin Anesth 1997; 9:428430.CrossRefGoogle Scholar
Edwards, J.J., Samuels, D., Fu, E.S.. Forearm compartment syndrome from intravenous mannitol extravasation during general anesthesia. Anesth Analg 2003; 96:245246.CrossRefGoogle ScholarPubMed
Grand, A., Yeager, B., Wollstein, R.. Compartment syndrome presenting as ischemia following extravasation of contrast material. Can J Plast Surg 2008; 16:173174.Google Scholar
Rimer, S., Wentry, J.A., Rodriguez, R.L.. Compartment syndrome in an infant following emergency intraosseous infusion. Clin Pediatr 1988; 27:259260.Google Scholar
Moscati, R., Moore, G.P.. Compartment syndrome with resultant amputation following intraosseous infusion. Am J Emerg Med 1990; 8:470471.Google Scholar
Galpin, R.D., Kronick, J.B., Willis, R.B., Frewen, T.C.. Bilateral lower extremity compartment syndromes secondary to intraosseous fluid resuscitation. J Pediatr Orthop 1991; 11:773776.Google Scholar
Vidal, R., Kissoon, N., Gayle, M.. Compartment syndrome following intraosseous infusion. Pediatrics 1993; 91:12011202.CrossRefGoogle ScholarPubMed
Gayle, M., Kissoon, N.. A case of compartment syndrome following intraosseous infusions. Pediatr Emerg Care 1994; 10:378.Google Scholar
Wright, R., Reynolds, S.L., Nachtsheim, B.. Compartment syndrome secondary to prolonged intraosseous infusion. Pediatr Emerg Care 1994; 10:157159.Google Scholar
Neumar, R.W., Otto, C.W., Link, M.S., et al. Part 8: Adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010; 122(18 Suppl 3):S729S767.Google Scholar
d’Heurle, A., Archdeacon, M.T.. Compartment syndrome after intraosseous infusion associated with a fracture of the tibia. A case report. JBJS Case Connect 2013; 3:e20. http://dx.doi.org/10.2106/JBJS.CC.L.00231.Google Scholar
Anson, J.A.. Vascular access in resuscitation. Is there a role for the intraosseous route? Anesthesiology 2014; 120:10151031.CrossRefGoogle Scholar
Paxton, J.H.. Intraosseous vascular access. A review. J Trauma 2012; 14:195232.Google Scholar
Ananthanarayan, C., Castro, C., McKee, N., Sakotic, G.. Compartment syndrome following intravenous regional anesthesia. Can J Anaesth 2000; 47:10941098.CrossRefGoogle ScholarPubMed
Maletis, G.B., Watson, R.C., Scott, S.. Compartment syndrome following intravenous regional anesthesia in the reduction of lower leg shaft fractures. Injury 2008; 39:12041209.Google Scholar
Bocca, G., van Moorselaar, J.A., Feltz, W.F., van der Staak, F.H., Monnens, L.A.. Compartment syndrome, rhabdomyolysis and risk of acute renal failure as complications of lithotomy position. J Nephrol 2002; 15:183185.Google Scholar
Kikuno, N., Urakami, S., Shigeno, K., et al. Traumatic rhabdomyolysis resulting from continuous compression in the exaggerated lithotomy position for radical prostatectomy. Int J Urol 2002; 9:521524.Google Scholar
Muckart, D.J.J., Bhagwanjee, S., van der Merwe, R.. Spinal cord injury as a result of endotracheal intubation in patients with undiagnosed cervical fractures. Anesthesiology 1997; 87:418420.Google Scholar
Redl, G.. Massive pyramidal tract signs after endotracheal intubation: a case report of spondyloepiphyseal dysplasia congenita. Anesthesiology 1998; 89:12621264.CrossRefGoogle ScholarPubMed
Yan, K., Diggan, M.F.. A case of central cord syndrome caused by intubation: a case report. J Spinal Cord Med 1997; 20:230232.Google Scholar
Farmer, J., Vaccaro, A., Albert, T.J., et al. Neurologic deterioration after cervical spinal cord injury. J Spinal Disord 1998; 11:192196.CrossRefGoogle ScholarPubMed
Hastings, R.H., Kelley, S.D.. Neurologic deterioration associated with airway management in a cervical spine-injured patient. Anesthesiology 1993; 78:380383.Google Scholar
Yaszemski, M.J., Shepler, T.R.. Sudden death from cord compression associated with atlanto-axial instability in rheumatoid arthritis. Spine 1990; 15:580583.Google Scholar
Kudo, T., Sato, Y., Kowatari, K., Nitobe, T., Hirota, K.. Postoperative transient tetraplegia in two patients caused by cervical spondylotic myelopathy. Anaesthesia 2011; 66:213216.Google Scholar
Whiteson, J.H., Panaro, N., Ahn, J.H., Firooznia, H.. Tetraparesis following dental extraction: case report and discussion of preventive measures for cervical spinal hyperextension injury. J Spinal Cord Med 1997; 20:422425.Google Scholar
Buchowski, J.M., Kebaish, K.M., Suk, K.S., Kostuik, J.P.. Central cord syndrome after total hip arthroplasty: a patient report. Spine 2005; 30:E103E105.CrossRefGoogle ScholarPubMed
Wantanabe, T., Takizawa, D., Sato, T., et al. A case of central cord syndrome following thyroidectomy. J Clin Anesth 2010; 22:307309.Google Scholar
Levy, W.J., Dohn, D.F., Hardy, R.W.. Central cord syndrome as a delayed complication of decompressive laminectomy. Neurosurgery 1982; 11:491495.CrossRefGoogle ScholarPubMed
Standefer, M., Bay, J.W., Trusso, R.. The sitting position in neurosurgery: a retrospective analysis of 488 cases. Neurosurgery 1984; 14:649658.Google Scholar
Wilder, B.L.. Hypothesis. The etiology of midcervical quadriplegia after operation with the patient in the sitting position. Neurosurgery 1982; 11:530531.Google Scholar
Dominguez, J., Rivas, J.J., Lobato, R.D., Díaz, V., Larrú, E.. Irreversible tetraplegia after tracheal resection. Ann Thorac Surg 1996; 62:278280.Google Scholar
Levy, L.M.. An unusual case of flexion injury of the cervical spine. Surg Neurol 1982; 11:255259.CrossRefGoogle Scholar
Chin, K.R., Seale, J., Cumming, V.. “White cord syndrome” of acute tetraplegia after anterior cervical decompression and fusion for chronic spinal cord compression: a case report. Case Rep Orthop 2013; 2013: 697918; doi.org/10.1155/2013/697918.Google Scholar
Lee, M.H., Cha, Y.D., Song, J.H., et al. Transient quadriplegia after fluoroscopic-guided selective cervical nerve root block in a patient who received cervical interbody fusion. A case report. Korean J Anesthesiol 2010; 59(Suppl):S95S98.Google Scholar
Moore, A.F.K.. Tetraplegia after elective abdominal aortic aneurysm repair. J Vasc Surg 2006; 44:401403.Google Scholar
Beatty, R.M., Winston, K.R.. Spontaneous cervical epidural hematoma. A consideration of etiology Neurosurgery 1984; 61:143148.Google Scholar
Metzger, G., Singbartl, G.. Spinal epidural hematomas following epidural anesthesia versus spontaneous spinal subdural hematoma. Two case reports. Acta Anaesthesiol Scand 1991; 35:105107.Google Scholar
Sowden, J.M., Borsey, D.Q.. Hyperkalemic periodic paralysis: a rare presentation of Addison’s disease. Postgrad Med J 1989; 65:238240.Google Scholar
Kokenge, F., Moenig, H.. Thyrotoxic periodic paralysis. A peculiar case with weekend-related quadriplegia. Endocrinologist 2005; 15:297299.Google Scholar
Abbas, H., Kothart, N., Bogra, J.. Hypokalemic periodic paralysis. Nat J Maxillofacial Surg 2012; 3:220221.Google Scholar
Leavitt, J.O.. Practical aspects in the management of hypokalemic periodic paralysis. J Transl Med 2008; 6:18; doi: 10.1186/1479-5876-6-18.Google Scholar
Mehrez, I.O., Nabseth, D.C., Hogan, E.L., Deterling, R.A.. Paraplegia following resection of abdominal aortic aneurysm. Ann Surg 1962; 156:501503.Google Scholar
Lazorthes, G., Gouaze, A., Zadeh, J.O., et al. Arterial vascularization of the spinal cord. Neurosurgery 1971; 35:253262.Google Scholar
Zuber, W.F., Gaspar, M.R., Rothschild, P.D.. The anterior spinal artery syndrome – a complication of abdominal aortic surgery: report of five cases and review of the literature. Ann Surg 1970; 172:909915.Google Scholar
Reid, J.A., Mole, D.J., Johnston, L.C.. Delayed paraplegia after endovascular repair of abdominal aortic aneurysm. J Vasc Surg 2003; 37:13221323.CrossRefGoogle ScholarPubMed
Mallick, I.H., Kumar, S., Samy, A.. Paraplegia after elective repair of an infrarenal aortic aneurysm. J R Soc Med 2003; 96:501503.Google Scholar
Takahashi, Y., Tsutsumi, Y., Monta, O., et al. Acute onset of paraplegia after repair of abdominal aortic aneurysm in a patient with acute type B aortic dissection. Interact Cardiovasc Thorac Surg 2009; 8:240242.Google Scholar
Singh, B.M., Fass, A.E., Pooley, R.W.. Paraplegia associated with intraaortic balloon pump counterpulsation. Stroke 1983; 14:983985.Google Scholar
Trabattoni, P., Zoli, S., Dainese, L., et al. Aortic dissection complicating intraaortic balloon pumping: percutaneous management of delayed spinal cord ischemia. Ann Thorac Surg 2009; 88:e60e62.Google Scholar
Popat, K., Ngyugen, T., Kowalski, A., et al. Postoperative paraplegia after nonvascular thoracic surgery. Internet J Anesthesiol 2003; 8; https://ispub.com/IJA/8/1/5155Google Scholar
Horlocker, T.T., Wedel, D.J.. Anticoagulation and neuraxial block: historical perspective, anesthetic implications and risk management. Reg Anesth Pain Med 1998; 23(Suppl 2):129134.Google ScholarPubMed
Lee, L.A., Posner, K.L., Domino, K.B., et al. Injuries associated with regional anesthesia in the 1980s and 1990s: a closed claims analysis. Anesthesiology 2004; 101:143152.CrossRefGoogle ScholarPubMed
Kreppel, D., Antoniadis, G., Seeling, W.. Spinal hematoma: a literature survey with meta-analysis of 613 patients. Neurosurg Rev 2003; 26:149.Google Scholar
Heitz, J.W., Viscusi, E.R.. Neuraxial anesthesia and anticoagulants. Tech Orthop 2008; 23:259272.Google Scholar
Nay, P.G., Milaszkiewicz, R., Jothiligam, S.. Extradural air as a cause of paraplegia following lumbar analgesia. Anaesthesia 1993; 48:402404.Google Scholar
Dalmau-Carolà, J.. An old complication of a new technique: pneumorrhachis from caudal epidural pulsed radiofrequency. Pain Physician 2014; 17:E790E793.Google Scholar
Tripathi, M., Nath, S.S., Gupta, R.K.. Paraplegia after intracord injection during attempted epidural steroid injection in an awake-patient. Anesth Analg 2005; 101:12091211.CrossRefGoogle Scholar
Girdha, K.K., Banerjee, N.. Transverse myelitis following spinal anesthesia-a case report. Indian J Anaesth 2002; 46:476477.Google Scholar
Martinez-Garcia, E., Pelaez, E., Roman, J.C., Perez-Gallardo, A.. Transverse myelitis following general and epidural anaesthesia in a paediatric patient. Anaesthesia 2005; 60:921923.Google Scholar
Jha, S., Kumar, R.. Transverse myelitis following spinal anesthesia. Neurol India 2006; 54:425427.Google Scholar
Globokar, M.D., Erzen, V.P., Jankovic, V.N.. Transverse myelitis following general and thoracic epidural anaesthesia. Signa Vitae 2010; 5:2931.Google Scholar
Seok, J.H., Lim, Y.H., Woo, S.H., Yon, J.H.. Transverse myelitis following combined spinal-epidural anesthesia. Korean J Anesthesiol 2012; 63:473474.Google Scholar
Dueñas-Garcia, O.F., Diaz-Sotomayor, M.. Postpartum complicated by transverse myelitis West Indian Med J 2012; 61:643645.Google Scholar
Killeen, T., Kamat, A., Walsh, D., Parker, A., Aliashkevich, A.. Severe adhesive arachnoiditis resulting in progressive paraplegia following obstetric spinal anaesthesia: a case report and review. Anaesthesia 2012; 67:13861394.CrossRefGoogle ScholarPubMed
Petty, P., Hudgson, P., Hare, W.. Symptomatic lumbar spinal arachnoiditis: fact or fallacy? J Clin Neurosci 2000; 7:395399.CrossRefGoogle ScholarPubMed
Ng, J.L., Chan, M.T., Geth, A.W.. Perioperative stroke in noncardiac, nonneurosurgical surgery. Anesthesiology 2011; 155:879890.CrossRefGoogle Scholar
Dong, T.T., Gelb, A.W.. Perioperative stroke remains an underappreciated cause of morbidity and mortality. J Anesth Periop Med 2014; 1:5759.CrossRefGoogle Scholar
Limburg, M., Wijdicks, E.F., Li, H.. Ischemic stroke after surgical procedures: clinical features, neuroimaging, and risk factors. Neurology 1998; 50:895901.Google Scholar
Yokoyama, K., Okutsu, Y., Fujita, H.. A case of monoplegia from conversion disorder after spinal anesthesia. Masui 2002; 51:13631367.Google Scholar
Gihyeong, R., Song, S.H., Lee, K.H.. Monolimb paralysis after laparoscopic appendectomy due to conversion disorder. Korean J Fam Med 2014; 35:321324.Google Scholar
Berhane, L., Kurman, R., Smith, S.. Lower extremity paralysis after operative laparoscopy from conversion disorder. A case report. J Reprod Med 1998; 43:831835.Google Scholar
Hirjak, D., Thomann, P.A., Wolf, R.C., Weidner, N., Wilder-Smith, E.P.. Dissociative paraplegia after epidural anesthesia: a case report. Int Med Case Rep J 2013; 7:56; doi:10.1186/1752-1947-7-56.Google Scholar
Han, D., Connelly, N.R., Weintraub, A., Kanev, P., Solis, E.. Conversion locked-in syndrome after implantation of a spinal cord stimulator. Anesth Analg 2007; 104:163165.Google Scholar
Judge, A., Spielman, F.. Postoperative conversion disorder in a pediatric patient. Paediatr Anaesth 2010; 20:10521054.Google Scholar

References

Aderibigbe, T., Lang, B.H., Rosenberg, H., Chen, Q., Li, G.. Cost-effectiveness analysis of stocking dantrolene in ambulatory surgery centers for the treatment of malignant hyperthermia. Anesthesiology 2014; 120(6):13331338.Google Scholar
Li, G., Warner, M., Huang, L., Sun, L.S.. Epidemiology of anesthesia-related mortality in the United States, 1999–2005. Anesthesiology 2009; 110(4):759765.Google Scholar
Larach, M.G., Brandorn, B.W., Allen, G.C., Gronert, G.A., Lehman, E.B.. Malignant hyperthermia deaths related to inadequate temperature monitoring, 2007–2012: a report from the North American Malignant Hyperthermia Registry of the Malignant Hyperthermia Association of the United States. Anesth Analg 2014; 119(6):13591366.Google Scholar
Kripke, B.J., Blanck, T.J.J., Sizemore, D.A., et al. Association of post-anaesthetic hyperthermia with abnormal muscle characteristics: a case report. Can Anaesth Soc J 1983; 30(3):290294.CrossRefGoogle ScholarPubMed
Schulte-Sasse, J., Hess, W., Eberlein, J.. Postoperative malignant hyperthermia and dantrolene therapy. Can Anaesth Soc J 1983; 30(6):635640.Google Scholar
Grinberg, J., Edelist, G., Gordon, J.. Postoperative malignant hyperthermia episodes in patients who received “safe” anesthetics. Can Anaesth Soc J 1983; 30(3):273276.Google Scholar
Mathieu, A., Bogosian, A.J., Ryan, J.F., Crone, R.K., Crocker, D.. Recrudescence after survival of initial episode of malignant hyperthermia. Anesthesiology 1979; 51(5):454455.Google Scholar
Fletcher, R., Blennow, G., Olsson, A.-K., Ranklev, E., Törnebrandt, K.. Malignant hyperthermia in a myopathic child. Prolonged postoperative course requiring dantrolene. Acta Anaesthesiol Scand 1982; 26(5):435438.CrossRefGoogle Scholar
Rutenberg, H., Håkanson, E.. Malignant hyperthermia: clinical course and metabolic changes in two patients. Acta Anaesthesiol Scand 1986; 30(3):211214.Google Scholar
Souliere, C. R., Weintraub, S.J., Kirchner, C.. Markedly delayed postoperative malignant hyperthermia. Arch Otolaryngol Head Neck Surg 1986; 112(5):564566.CrossRefGoogle ScholarPubMed
Short, J.A., Cooper, C.M.S.. Suspected recurrence of malignant hyperthermia after post-extubation shivering in the intensive care unit, 18 h after tonsillectomy. Br J Anaesth 1999; 82(6):945947.Google Scholar
Hoenemann, C.W., Halene-Holtgraeve, T.B., Booke, M., et al. Delayed onset of malignant hyperthermia in desflurane anesthesia. Anesth Analg 2003; 96(1):165167.Google Scholar
Visoiu, M., Youn, M.C., Wieland, K., Brandom, B.W.. Anesthetic drugs and onset of malignant hyperthermia. Anesth Analg 2014; 118(2):388396.Google Scholar
Larach, M.G., Localio, A.R., Allen, G.C., et al. A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology 1994; 80(4):771779.Google Scholar
Adnet, P., Lestavel, P., Krisvosic-Horber, R.. Neuroleptic malignant syndrome. Br J Anaesth 2000; 85(1):129135.Google Scholar
Muhnoz, R.P.. Serotonin syndrome induced by a combination of bupropion and SSRIs. Clin Neuropharmacol 2004; 27(5):219222.Google Scholar
Rastogi, R., Swarm, R.A., Patel, T.A.. Case scenario: opioid association with serotonin syndrome: implications to the practitioners. Anesthesiology 2011; 115(6):12911298.Google Scholar
Izdes, S., Altintas, N.D., Soykut, C.. Serotonin syndrome caused by administration of methylene blue to a patient receiving selective serotonin reuptake inhibitors. Anesth Analg 2014; 2(9):111112.Google Scholar
Benthuysen, J.L., Smith, N.T., Sanford, T.J., Head, N., Dec-Silver, H.. Physiology of alfentanil-induced rigidity. Anesthesiology 1986; 64(4):440446.Google Scholar
Bowdle, T.A., Rooke, A.. Postoperative myoclonus and rigidity after anesthesia with opioids. Anesth Analg 1994; 78(4):783786.Google Scholar
Christian, C.M., Waller, J.L., Moldenhauer, C.C.. Postoperative rigidity following fentanyl anesthesia. Anesthesiology 1983; 58(3):275277.CrossRefGoogle ScholarPubMed
Roy, S., Fortier, L.P.. Fentanyl-induced rigidity during emergence from general anesthesia potentiated by venlafexine. Can J Anaesth 2003; 50(1):3235.Google Scholar
Klausner, J.M., Caspi, J., Leluek, S., et al. Delayed muscular rigidity and respiratory depression following fentanyl anesthesia. Arch Surg 1988; 123(1):6667.Google Scholar
Melnick, B.M.. Extrapyramidal reactions to low-dose droperidol. Anesthesiology 1988; 69(3):424425.Google Scholar
Tolan, M.M., Fuhrman, T.M., Tsueda, K.. Lippmann, S.B.. Perioperative extrapyramidal reactions associated with ondansetron. Anesthesiology 1999; 90(1):340341.Google Scholar
Jo, Y.Y., Kim, Y.B., Yang, M.R., Chang, Y.J.. Extrapyramidal side effects after metoclopramide administration in a post-anesthesia care unit: a case report. Korean J Anesthesiol 2012; 63(3):274276.Google Scholar
Constantino, C., Torres, L.. Propofol-induced paroxysmal dystonia. Parkinsonism Relat Disord 2012; 18(2):115116.Google Scholar
Tohme, J.F., Bilezikian, J.P.. Hypocalcemic emergencies. Endocrinol Metab Clin North Am 1993; 22(2):363375.Google Scholar
Muravchick, S., Smith, D.S.. Parkinsonian symptoms during emergence from general anesthesia. Anesthesiology 1995; 82(1):305307.Google Scholar
Ramani, M.B., Rabin, M.L., Kurlan, R.. Postoperative and postpartum onset of chronic parkinsonism: four case reports. Int J Med Students 2014; 2(1):2223.Google Scholar
Kao, L.W., Amin, Y., Kirk, M.A., et al. Intrathecal baclofen withdrawal mimicking sepsis. J Emerg Med 2003; 24(4):423427.Google Scholar
Coffey, R.J., Edgar, T.S., Francisco, G.E., et al. Abrupt withdrawal from intrathecal baclofen: recognition and management of a potentially life-threatening syndrome. Arch Phys Med Rehabil 2002; 83(10):735741.Google Scholar
U.S. Food and Drug Administration. MedWatch. The FDA Safety Information and Adverse Event Reporting Program. Lioresal Intrathecal (baclofen injection) [cited April 2002]. Available from: http://www.fda.gov/Safety/MedWatch/ SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm154505.htm.Google Scholar
Mohammed, I., Hussain, A.. Intrathecal baclofen withdrawal syndrome-a life-threatening complication of baclofen pump: a case report. BMC Clin Pharmacol 2004; 4:6; doi:10.1186/1472-6904-4-6.Google Scholar
Duhon, B.S., MacDonald, J.D.. Infusion of intrathecal baclofen for acute withdrawal. J Neurosurg 2007; 107(4):878880.Google Scholar
Khorasani, A., Peruzzi, W.T.. Dantrolene treatment for abrupt intrathecal baclofen withdrawal. Anesth Analg 1995; 80(5):10541056.Google ScholarPubMed
Ackland, G.L., Fox, R.. Low-dose propofol infusion for controlling acute hyperspasticity after withdrawal of intrathecal baclofen therapy. Anesthesiology 2005; 103(3):663665.Google Scholar

References

Tesche, S., Henckell, C., Metternich, F.U.. Therapy of postoperative nausea and vomiting in ENT–tardive dyskinesia as an adverse effect of metoclopramide – a case report. Laryngorhinootologie 2006; 85:824826.Google Scholar
Weinberg, G.L.. Treatment of local anesthetic toxicity (LAST). Reg Anesth Pain Med 2010; 35:188193.Google Scholar
Rosenblatt, M.A., Abel, M., Fischer, G.W., Itzkovich, C.J., Eisenkraft, J.B.. Successful use of 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-induced cardiac arrest. Anesthesiology 2006; 105:217218.Google Scholar
Foxall, G., McCahon, R., Lamb, L., Hardman, J.G., Bedforth, N.M.. Levobupivacaine-induced seizures and cardiovascular collapse treated with Intralipid. Anaesthesia 2007; 62:516518.Google Scholar
Spence, A.G.. Lipid reversal of central nervous system symptoms of bupivacaine toxicity. Anesthesiology 2007; 107:516517.Google Scholar
McCutchen, T., Gerancher, J.C.. Early intralipid therapy may have prevented bupivacaine-associated cardiac arrest. Reg Anesth Pain Med 2008; 22:178180.Google Scholar
Di Gregorio, G., Neal, J.M., Rosenquist, R.W., Weinberg, G.L.. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979–2009. Reg Anesth Pain Med 2010; 35:181187.Google Scholar
Weinberg, G.L.. Treatment of local anesthetic toxicity (LAST). Reg Anesth Pain Med 2010; 35:188193.Google Scholar
Weinberg, G.L.. Lipid emulsion infusion – resuscitation for local anesthetic and other drug overdoses. Anesthesiology 2012; 117:180187.Google Scholar
Gevirtz, C.. Local anesthetic systemic toxicity – prevention and treatment. Top Pain Management 2012; 27:16.Google Scholar
Modica, P., Tempelhoff, R., White, P.F.. Pro- and anticonvulsant effects of anesthetics. Part I. Anesth Analg 1990; 70:303315.Google Scholar
Modica, P., Tempelhoff, R., White, P.F.. Pro- and anticonvulsant effects of anesthetics. Part II. Anesth Analg 1990; 70:433444.Google Scholar
Folkerts, H.. Spontaneous seizure after concurrent use of methohexital anesthesia for electroconvulsive therapy and paroxetine: a case report. J Nerv Ment Dis 1995; 183:115116.CrossRefGoogle ScholarPubMed
Krieger, W., Copperman, J., Laxer, K.D.. Seizures with etomidate anesthesia. Anesth Analg 1985; 64:12261227.Google Scholar
Hansen, H.C., Drenck, N.E.. Generalized seizures after etomidate anaesthesia. Anaesthesia 1988; 43:805806.Google Scholar
Borris, D.J., Bertram, E.H., Kapur, J.. Ketamine controls prolonged status epilepticus. Epilepsy Res 2000; 42:117122.CrossRefGoogle ScholarPubMed
Fisher, M.M.. Use of ketamine hydrochloride in the treatment of convulsions Anaesth Intensive Care 1974; 2:266268.Google Scholar
Davis, R.W., Tolstoshev, G.C.. Ketamine use in severe febrile convulsions. Med J Aust 1976; 2:465466.Google ScholarPubMed
Bevan, J.C.. Propofol-related convulsions. Can J Anaesth 1993; 40:805809.Google Scholar
Martin, B.A., Cooper, R.M., Parikh, S.V.. Propofol anesthesia, seizure duration, and ECT: a case report and literature review. J ECT 1998; 14:99108.Google Scholar
Gábor, G., Judit, T., Zsolt, I.. Comparison of propofol and etomidate regarding impact on seizure threshold during electroconvulsive therapy in patients with schizophrenia Neuropsychopharmacol Hung 2007; 9:125130.Google Scholar
Walder, B., Tramer, M.R., Seeck, M.. Seizure-like phenomena and propofol: a systemic review. Neurology 2002; 58:13271332.CrossRefGoogle Scholar
Committee on Safety of Medicines, Medicine Control Agency M, UK: UK Summary of product of characteristics (SPC) for Diprivan 2%, 1992.Google Scholar
Australian Adverse Drug Reactions Advisory Committee A: Propofol, Convulsions. Australian Adverse Drug Reactions Publications 1993;12:7.Google Scholar
Wang, B., Bai, Q., Jiao, X., Wang, E., White, P.F.. Effect of sedative and hypnotic doses of propofol on the EEG activity of patients with or without a history of seizure disorders. J Neurosurg Anesthesiol 1997; 9:335340.Google Scholar
Voss, L.J., Sleigh, J.W., Barnard, J.P.M., Kirsch, H.E.. The howling cortex: seizures and general anesthetic drugs. Anesth Analg 2008; 107:16891703.Google Scholar
Schlick, K.S., Hemmen, T.M., Lyden, P.D.. Seizures and Meperidine: overstated and underutilized. Ther. Hypothermia Temp. Manag. 2015; 5:223227.Google Scholar
Hornbein, T.F., Eger, E.I., Winter, P.M., et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 1982; 61:553556.Google Scholar
Zacharias, M.. Convulsive movements with sevoflurane in children. Anaesth Intensive Care 1997; 25:727.Google Scholar
Baines, D.. Convulsive movements with sevoflurane. Anaesth Intensive Care 1998; 26:329.Google Scholar
Hilty, C.A., Drummond, J.C.. Seizure-like activity on emergence from sevoflurane anesthesia. Anesthesiology 2000; 93:13571359.Google Scholar
Iijima, T., Nakamura, Z., Iwao, Y., Sankawa, H.. The epileptogenic properties of the volatile anesthetics sevoflurane and isoflurane in patients with epilepsy. Anesth Analg 2000; 91:989995.Google Scholar
Hisada, K., Morioka, T., Fukui, K., et al. Effects of sevoflurane and isoflurane on electrocorticographic activities in patients with temporal lobe epilepsy. J Neurosurg Anesthesiol 2001; 13:333337.Google Scholar
Ng, L., Chambers, N.. Postoperative pseudoepileptic seizures in a known epileptic: complications in recovery. Br J Anaesth 2000; 91:598600.CrossRefGoogle Scholar
Ramos, J.A., Brull, S.J.. Psychogenic non-epileptic seizures in the post-anesthesia recovery unit. Rev Bras Anestesiol 2014 (in press); doi:10.1016/j.bjane.2013.10.005 accessed December 5, 2014.Google Scholar
Delanty, N., Vaughan, C.J., French, J.A.. Medical causes of seizures. Lancet 1998; 352:383390.Google Scholar
Beleza, P.. Acute symptomatic seizures: a clinically oriented review. Neurologist 2012; 18:109119.Google Scholar

References

Mantz, J., Hemmings, H.C., Boddaert, J.. Case scenario: postoperative delirium in elderly surgical patients. Anesthesiology 2010; 112:189195.Google Scholar
Grover, S., Sharma, A., Aggarwal, M., et al. Comparison of symptoms of delirium across various motoric subtypes. Psychiatry Clin Neurosci 2014; 68:283291.Google Scholar
Rose, D.K.. Recovery room problems or problems in the PACU. Can J Anaesth 1996; 43:R116R128.Google Scholar
Lepousé, C., Lautner, C.A., Liu, L., Gomis, P., Leon, A.. Emergence delirium in adults in the post-anesthesia care unit. Br J Anaesth 2006; 96:747752.Google Scholar
Peteron, J.F., Pun, B.T., Dittus, R.S., et al.Delirium and its motor subtypes: a study of 614 critically ill patients. J Am Geriatr Soc 2006; 54:479484.CrossRefGoogle Scholar
Robinson, T.N., Raeburn, C.D., Tran, Z.V., Brenner, L.A., Moss, M.. The motor subtypes of postoperative delirium in the elderly. Arch Surg 2011; 146:295300.Google Scholar
Inouye, S.K., Foreman, M.D., Mion, L.C., Katz, K.H., Cooney, L.M.. Nurses’ recognition of delirium and symptoms: comparison of nurse and researcher ratings. Arch Intern Med 2001; 161:24672473.Google Scholar
Card, E., Hughes, C., Tomes, C., et al. Incidence and risk factors for emergence and PACU delirium. J Perianesth Nurs 2014; 29:e35e36.Google Scholar
Neufeld, K.J., Leoutsakos, J.M.S., Sieber, F.E., et al. Outcomes of early delirium diagnosis after general anesthesia in the elderly. Anesth Analg 2013; 117:471478.Google Scholar
Franco, K., Litaker, D., Locala, J., et al. The cost of delirium in the surgical patient. Psychosomatics 2001; 43:6873.Google Scholar
McCusker, J., Cole, M.G., Dendukuri, N., Belzile, E.. Does delirium increase hospital stay? J Am Geriatr Soc 2003; 51:15391546.Google Scholar
Cole, M., McCusker, J., Dendukuri, N., Han, L.. The prognostic significance of subsyndromal delirium in elderly medical inpatients. J Am Geriatr Soc 2003; 51:754760.Google Scholar
Dolan, M.M., Hawkes, W.G., Zimmerman, S.I., et al. Delirium on hospital admission in aged hip fracture patients: prediction of mortality and 2-year functional outcomes. J Gerontol A Biol Sci Med Sci 2000; 55A:M527M534.CrossRefGoogle Scholar
Rockwood, K., Cosway, S., Carver, D., et al. The risk of dementia and death after delirium. Age Ageing 1999; 28:551556.Google Scholar
Ely, E.W, Gautam, S., Margolin, R., et al. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med 2001; 27:18921900.Google Scholar
McCusker, J., Cole, M., Abrahamowicz, M., Primeau, F., Belzile, E.. Delirium predicts 12-month mortality. Arch Intern Med 2002; 162:457463.Google Scholar
Gruber-Baldini, A.L., Zimmerman, S., Morrison, R.S., et al. Cognitive impairment in hip fracture patients: Timing of detection and longitudinal follow-up. J Am Geriatr Soc 2003; 51:12271236.Google Scholar
Lundström, M., Edlund, A., Bucht, G., Karlsson, S., Gustafson, Y.. Dementia after delirium in patients with femoral neck fractures. J Am Geriatr Soc 2003; 51:10021006.Google Scholar
Smith, J., Seirafi, J.. Delirium and dementia. In: Marx, JA III, Hockberger, RS, Walls, RM, editors. Rosen’s Emergency Medicine Concepts and Clinical Practices. 7th edn. Philadelphia, PA: Elsevier; 2010. pp. 13671373.CrossRefGoogle Scholar
Flaherty, J.H., Morley, J.E.. Delirium: a call to improve current standards of care. J Gerontol A Biol Sci Med Sci 2004; 59A:341343.CrossRefGoogle Scholar
Mantz, J., Hemmings, H.C., Boddaert, J.. Case scenario: postoperative delirium in elderly surgical patients. Anesthesiology 2010; 112:189195.Google Scholar
Sieber, F.E.. Postoperative delirium and the elderly surgical patient. Anesthesiol Clin 2009; 27:451464.Google Scholar
Deiner, S., Silverstein, J.H.. Postoperative delirium and cognitive dysfunction. Br J Anaesth 2009; 103:141146.Google Scholar
Sharma, P.T., Sieber, F.E., Khwaja, J., et al. Recovery room delirium predicts postoperative delirium after hip-fracture repair. Anesth Analg 2005; 105:12151220.Google Scholar
Epstein, R.H., Dexter, F., Lopez, M.G., Ehrenfeld, J.M.. Anesthesiologist staffing considerations consequent to the temporal distribution of hypoxemic episodes in the postanesthesia care unit. Anesth Analg 2014; 119:13221333.CrossRefGoogle Scholar
Halaszynski, T.M.. Pain management in the elderly and cognitively impaired patient: the role of regional anesthesia and analgesia. Curr Opin Anaesthesiol 2009; 22:594599.CrossRefGoogle ScholarPubMed
Krenk, L., Rasmussen, L.S., Hansen, T.B., et al. Delirium after fast-track hip and knee arthroplasty. Br J Anaesth 2012; 108:607611.Google Scholar
Li, H., Qing, Y., Yang, F-S., et al. The study of multimodal analgesia on postoperative delirium in elder patients with hip fracture. Chin J Orthop 2013; 33:736740.Google Scholar
Inouye, S.K., Bogardus, S.T., Charpentier, P.A., et al. A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med 1999; 340:669676.Google Scholar
Michaud, L., Büla, C., Berney, A., et al. Delirium: guidelines for general hospitals. J Psychosom Res 2007; 62:371383.Google Scholar
American Geriatrics Society. Postoperative delirium in older adults: best practice statement from the American Geriatrics Society. J Am Coll Surg 2015; 220:136148.Google Scholar

References

Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013; 33:629808.Google Scholar
Dodick, D.W.. Clinical clues and clinical rules: primary versus secondary headaches. Adv Stud Med 2003; 3:S550S555.Google Scholar
Blau, J.N., Kell, C.A., Sperling, J.M.. Water-deprivation headache: a new headache with two variants. Headache 2004; 44:7983.Google Scholar
Blau, J.N.. Water deprivation: a new migraine precipitant. Headache 2005; 45:757759.CrossRefGoogle ScholarPubMed
Mitchell, D.C., Knight, C.A., Hockenberry, J., Teplansky, R., Hartmann, T.J.. Beverage caffeine intakes in the US. Food Chem Toxicol 2014; 63:136142.Google Scholar
Griffiths, R.R., Evans, S.M., Heishman, S.J., et al. Low-dose caffeine physical dependence in humans. J Pharmacol Exp Ther 1990; 255:11231132.Google Scholar
Juliano, L.M., Griffiths, R.R.. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 2004; 176:129.Google Scholar
Fennelly, M., Galletly, D.C., Purdie, G.I.. Is caffeine withdrawal the mechanism of postoperative headache? Anesth Analg 1991; 72:449453.CrossRefGoogle ScholarPubMed
Nikolajsen, L., Larsen, K.M., Kierkegaard, O.. Effect of previous frequency of headache, duration of fasting and caffeine abstinence on perioperative headache. Br J Anaesth 1994; 72:295297.Google Scholar
Hampl, K.L., Schneider, M.C., Uttimann, U.R., Ummenhofer, W., Drewe, J.. Perioperative administration of caffeine tablets for prevention of postoperative headaches. Can J Anaesth 1995; 42:789792.Google Scholar
Weber, J.G., Klindworth, J.T., Arnold, J.J., Danielson, D.R., Ereth, M.H.. Prophylactic intravenous administration of caffeine and recovery after ambulatory surgical procedures. Mayo Clin Proc 1997; 72:621626.Google Scholar
Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: applicationto healthy patients undergoing elective procedures. Anesthesiology 2011; 114:495–511.Google Scholar
Couch, J. R.. Rebound-withdrawal headache (medication overuse headache). Curr Treat Options Neurol 2006, 8:1119.CrossRefGoogle ScholarPubMed
Stalnikowicz, R.. Nicotine gum withdrawal and migraine headaches. Eur J Emerg Med 2006; 13:247248.Google Scholar
Sørensen, L. T.. Wound healing and infection in surgery: the pathophysiological impact of smoking, smoking cessation, and nicotine replacement therapy: a systematic review. Ann Surg 2012; 255:10691079.Google Scholar
Warner, D.O., Pattern, C.A., Ames, S.C., Offord, K.P., Schroeder, D.R.. Effect of nicotine replacement therapy on stress and smoking behavior in surgical patients. Anesthesiology 2005; 102:11381146.Google Scholar
Paciullo, C.A., Short, M.R., Steinke, D.T., Jennings, H.R.. Impact of nicotine replacement therapy on postoperative mortality following coronary artery bypass graft surgery. Ann Pharmacother 2009; 43:11971202.Google Scholar
Gan, T.J., Diemunsch, P., Habib, A.S., et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg 2014; 118:85113.Google Scholar
Venezian, M., Framarino Dei Malatesta, M., Bandiera, A.F., et al. Ondansetron-induced headache. Our experience in gynecological cancer. Eur J Gynaecol Oncol 1995; 16:203207.Google Scholar
Singh, V., Sinha, A., Prakash, N.. Ondansetron-induced migraine-type headache. Can J Anaesth 2010; 57:872873.Google Scholar
Ye, J.H., Ponnudurai, R., Schaef, R.. Ondansetron: A selective 5-HT3 receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev 2001; 7:199213.Google Scholar
Tramèr, M.R., Phillips, C., Reynolds, D.J.M., McQuay, H.J., Moore, R.A.. Cost-effectiveness of ondansetron for postoperative nausea and vomiting. Anaesthesia 1999; 54:226234.Google Scholar
Johnson, J.L., Hutchinson, M.R., Williams, D.B., Rolan, P.. Medication-overuse headache and opioid-induced hyperalgesia: a review of mechanisms, a neuroimmune hypothesis and a novel approach to treatment. Cephalalgia 2013; 33:5264.Google Scholar
Viscusi, E.R., Siccardi, M., Damaraju, C.V., Hewitt, D.J., Kershaw, P.. The safety and efficacy of fentanyl iontophoretic transdermal system compared with morphine intravenous patient-controlled analgesia for postoperative pain management: an analysis of pooled data from three randomized, active controlled clinical studies. Anesth Analg 2007; 105:14281436.Google Scholar
Gaiser, R.. Postdural puncture headache. Curr Opin Anaesthesiol 2006; 19:249253.Google Scholar
Horlocker, T.T., McGregor, D.G., Matsushige, D.K., Schroeder, D.R., Besse, J.A.. A retrospective review of 4767 consecutive spinal anesthetics: central nervous system complications. Anesth Analg 1997; 84:578584.Google Scholar
Evans, R.W., Armon, C., Frohman, E.M., Goodin, D.S.. Assessment/prevention of post-lumbar puncture headaches. Report of the Therapeutics and Technology Assessment Subcommittee of the Academy of Neurology. Neurology 2000; 55:909914.Google Scholar
Stella, C.L., Jodicke, C.D., How, H.Y., Harkness, U.F., Sibai, B.M.. Postpartum headache: is your work-up complete? Am J Obstet Gynecol 2007; 196:318.e1318.e7.Google Scholar
Berry, P.D., Sessler, D.I., Larson, M.D.. Severe carbon monoxide poisoning during desflurane anesthesia. Anesthesiology 1999; 90:613616.CrossRefGoogle ScholarPubMed
Lane, J.C., Arciniegas, D.B.. Post-traumatic headache. Curr Treat Options Neurol 2002; 4:89104.Google Scholar
Ko, J.I., Rozen, T.D.. Valsalva-induced cluster: a new subtype of cluster headache. Headache 2002; 42:301302.CrossRefGoogle Scholar

References

Hines, R., Barash, P.G., Watrous, G., O’Connor, T.. Complications occurring in the postanesthesia care unit: a survey. Anesth Analg 1992; 74:503509.Google Scholar
Radhakrishnan, J., Jesudasan, S., Jacob, R.. Delayed awakening or emergence from anesthesia. Update Anesthesia 2001; 13:46.Google Scholar
Posadzki, P., Watson, L., Ernst, E.. Herb–drug interactions: an overview of systematic reviews. Br J Clin Pharmacol 2013; 75:603618.Google Scholar
Kaye, A.D., Clarke, R.C., Sabar, R., et al. Herbal medicines: current trends in anesthesiology practice – a hospital survey. J Clin Anesth 2000; 12:468471.Google Scholar
Ang-Lee, M.K., Moss, J., Yuan, C.. Herbal medicines and perioperative care. JAMA 2001; 286:208216.Google Scholar
Bajwa, S.J.S., Panda, A.. Alternative medicine and anesthesia: implications and considerations in daily practice. Ayu 2012; 33:475480.Google Scholar
Crowe, S., McKeating, K.F.. Delayed emergence and St. John’s wort. Anesthesiology 2002; 96:10251027.Google Scholar
Murphy, G.S., Brull, S.J.. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 2010; 111:120128.Google Scholar
Eriksson, L.I.. The effects of residual neuromuscular blockade and volatile anesthetics on the control of ventilation. Anesth Analg 1999; 89:243251.Google Scholar
Spacek, A., Nickl, S., Neiger, F.X., et al. Augmentation of the rocuronium-induced neuromuscular block by the acutely administered phenytoin. Anesthesiology 1999; 90:15511555.CrossRefGoogle ScholarPubMed
Rose, D.K., Cohen, M.M., Wigglesworth, D.F., DeBoer, D.P.. Critical respiratory events in the postanesthesia care unit. Patient, surgical, and anesthetic factors. Anesthesiology 1994; 81:410418.Google Scholar
Arbous, M.S., Meursing, A.E., van Kleef, J.W., de Lange, J.J., Spoormans, H.H.. Impact of anesthesia management characteristics on severe morbidity and mortality. Anesthesiology 2005; 102:257268.Google Scholar
Meuret, P., Backman, S.B., Bonhomme, V., et al. Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 2000; 93:708717.Google Scholar
Link, J., Papadopoulos, G., Dopjans, D., et al. Distinct central anticholinergic syndrome following general anesthesia. Eur J Anaesthesiol 1997; 14:1523.Google Scholar
Rastogi, R., Swarm, R.A., Patel, T.A.. Case scenario: opioid association with serotonin syndrome: implications to the practitioners. Anesthesiology 2011; 115:12911298.CrossRefGoogle Scholar
Dagtekin, O., Marcus, H., Müller, C., Böttiger, B.W., Spöhr, F.. Lipid therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam. Minerva Anestesiol 2011; 77:9395.Google ScholarPubMed

References

Package insert, Sevoflurane, Abbot Phamaceuticals, August 2012.Google Scholar
Lourenco-Matharu, L., Roberts, G.J.. Effectiveness and acceptability of intravenous sedation in child and adolescent dental patients: report of a case series at King's College Hospital, London. Br Dent J 2011; 210(12):567572.Google Scholar
Robin, C., Trieger, N.. Paradoxical reactions to benzodiazepines in intravenous sedation: a report of 2 cases and review of the literature. Anesth Prog 2002; 49(4):128132.Google Scholar
Crozier, T.A., Kietzmann, D., Döbereiner, B.. Mood change after anaesthesia with remifentanil or alfentanil. Eur J Anaesth 2004; 21(1):2024.Google Scholar
Miceli, M., Castelfranchi, C.. Crying: discussing its basic reasons and uses. New Ideas Psychol 2003; 21(3):247273.Google Scholar
Lardner, D.R., Dick, B.D., Crawford, S.. The effects of parental presence in the postanesthetic care unit on children’s postoperative behavior: a prospective, randomized, controlled study. Anesth Analg 2010; 110(4):11021108.Google Scholar
Gunawardana, R.H., Ratnayaka, I.L.B.. Postoperative crying in infants. Anaesthesia 2000; 55(2):197.Google Scholar
Pareja, J.A., Caminero, A.B., Siaastad, O.. SUNCT syndrome: diagnosis and treatment. CNS Drugs 2002; 16(6):373383.CrossRefGoogle ScholarPubMed
Weaver-Agosoni, J.. Cluster headache. Am Fam Physician 2013; 88(2):122128.Google Scholar
Ko, J.I., Rozen, T.D.. Valsalva-induced cluster: a new subtype of cluster headache. Headache 2002; 42(4):301302.Google Scholar

References

Sivagnanam, S., Deleu, D.. Red man syndrome. Crit Care 2003; 7:119120.Google Scholar
Wallace, M., Mascola, J., Oldfield, E.. Red-man syndrome: incidence, etiology, and prophylaxis. J Infect Dis 1991; 164:11801185.Google Scholar
Healy, D.P., Sahai, J.V., Fuller, S.H., Polk, R.E.. Vancomycin-induced histamine release and “red man syndrome”: comparison of 1- and 2-hour infusions. Antimicrob Agents Chemother 1990; 34:550554.CrossRefGoogle ScholarPubMed
Gruchalla, R., Pirmohamed, M.. Antibiotic allergy. N Engl J Med 2006; 354:601609.Google Scholar
Limsuwan, T., Demoly, P.. Acute symptoms of drug hypersensitivity (urticaria, angioedema, anaphylaxis, anaphylactic shock). Med Clin North Am 2010; 94:691710.Google Scholar
Torres, M.J., Blanca, M.B.. The complex picture of β-lactam hypersensitivity: penicillins, cephalosporins, monobactams, carbapenems and clavams. Med Clin North Am 2010; 94:805820.Google Scholar
Leaute-Labreze, C., Lamireau, T., Chawki, D., Maleville, J., Taïeb, A.. Diagnosis, classification, and management of erythema multiforme and Stevens–Johnson syndrome. Arch Dis Child 2000; 83:347352.CrossRefGoogle ScholarPubMed
Solensky, R., Khan, D.A.. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol 2010; 105:259273.Google Scholar
Zamir, D., Groisman, G., Zamir, C., et al. Severe jaundice in a gunshot casualty due to the coexistence of Dubin–Johnson and glucose-6-phosphate dehydrogenase deficiency. J Clin Gastroenterol 1999; 28:383385.Google Scholar
Nishi, H., Sakaguchi, T., Miyagawa, S., Yoshikawa, Y., Sawa, Y.. Cardiac surgery in patients with Gilbert’s syndrome. J Card Surg 2012; 27:6061.Google Scholar
Burka, E.R., Weaver, Z., Marks, P.A.. Clinical spectrum of hemolytic anemia associated with glucose-6-phosphate dehydrogenase deficiency. Ann Intern Med 1966; 64 :817825.Google Scholar
Edwards, C.Q.. Anemia and the liver: hepato-biliary manifestations of anemia. Clin Liver Dis 2002; 6:891907.Google Scholar
Elyassi, A.R., Rowshan, H.H.. Perioperative management of the glucose-6-phosphate dehydrogenase deficient patient: a review of literature. Anesth Prog 2009; 56:8691.CrossRefGoogle Scholar
Martin, J.L., Plevak, D.J., Flannery, K.D., et al. Hepatotoxicity after desflurane anesthesia. Anesthesiology 1995; 83:11251129.Google Scholar
Wu, P.A., Balagula, Y., Lacouture, M.E., Anadkat, M.J.. Prophylaxis and treatment of dematologic adverse events from epidermal growth factor receptor inhibitors. Curr Opin Oncol 2011; 23:343351.Google Scholar
Akhtar, S.. Fat embolism. Anesthesiol Clin 2009; 27:533550.Google Scholar
Grissinger, M.. Preventing serious tissue injury with intravenous promethazine. Pharmacol Ther 2009; 34:175176.Google Scholar
Bohm, N.M., Wong, J.G.. Bullous dermatosis associated with vancomycin extravasation. Am J Med Sci 2012; 343:177179.Google Scholar
O’Brien, T.J., Cascino, G.D., So, E.L., Hannah, D.R.. Incidence and clinical consequence of the purple glove syndrome in patients receiving intravenous phenytoin. Neurology 1998; 51:10341039.Google Scholar
Siddik-Sayyid, S.M., Saasouh, W.A., Mallat, C.E., Aowad, M.T.. Thermal burn following combined use of forced air and fluid warming devices. Anaesthesia 2010; 65:646656.Google Scholar
Massarweh, N.N., Cosgriff, N., Slakey, D.P.. Electrosurgery: history, principles, and current and future uses. J Am Coll Surg 2006; 202:520530.Google Scholar
Hubik, D.J., Connors, A., Cleland, H.. Iatrogenic chemical burns associated with tourniquet use and prep solution ANZ J Surg 2009; 79:762770.Google Scholar
Jones, E.G.. Recognizing hospital-acquired burn injury in patients after coronary artery bypass surgery. J Wound Ostomy Continence Nurs 2011; 38:193195.Google Scholar

References

Berk, P.D., Howe, R.B., Bloomer, J.R., Berlin, N.I.. Studies of bilirubin kinetics in normal adults. J Clin Invest 1969; 48:21762190.Google Scholar
LaMoung, J.T., Isselbacher, K.J.. Current concepts. Postoperative jaundice. N Engl J Med 1973; 288:305307.Google Scholar
Roche, S.P., Kobos, R.. Jaundice in the adult patient. Am Fam Physician 2004; 69:299304.Google Scholar
Lockey, E., McIntyre, N., Ross, D.N., Brookes, E.W.A., Sturridge, M.F.. Early jaundice after open-heart surgery. Thorax 1967; 22:165169.Google Scholar
Mastoraki, A., Karatzis, E., Mastoraki, S., et al. Postoperative jaundice after cardiac surgery. Hepatobiliary Pancreat Dis Int 2007; 6:383387.Google Scholar
Garratty, G.. Immune hemolytic anemia associated with drug therapy. Blood Rev 2010; 24:143150.Google Scholar
Bansal, V., Schuchert, V.D.. Jaundice in the Intensive Care Unit. Surg Clin N Am 2006; 86:14951502.Google Scholar
Cokkinou, V., Katsiyanni, A., Orkopoulou, M., et al. Evidence of increased hemolysis after open heart surgery in patients heterozygous for beta-thalassemia. Tex Heart Inst J 1988; 15:3538.Google Scholar
Waser, M., Kleihues, P., Frick, P.. Kernicterus in an adult. Ann Neurol 1986; 19:595598.Google Scholar
Owens, D., Evans, J.. Population studies on Gilbert's syndrome. J Med Genet 1975; 12:152156.Google Scholar
Quinn, N.W., Gollan, J.L.. Jaundice following oral surgery: Gilberts syndrome. Br J Oral Surg 1975; 12:285288.Google Scholar
Taylor, S.. Gilbert's syndrome as a cause of postoperative jaundice. Anaesthesia 1984; 39:12221224.Google Scholar
Lindenbaum, J., Leifer, E.. Hepatic necrosis associated with halothane anesthesia. N Engl J Med 1963; 268:525530.Google Scholar
Brody, G.L., Sweet, R.B.. Halothane anesthesia as a possible cause of massive hepatic necrosis. Anesthesiology 1963; 24:2937.Google Scholar
Heidenberg, W.J., Torio, I.. Additional case of halothane hepatitis. N Engl J Med 1963; 268:10901091.Google ScholarPubMed
Kerbel, N.C., Hilliard, I.M.. Halothane hepatotoxicity. Can Med Assoc J 1963; 89:944946.Google Scholar
Habibollahi, P., Mahboobi, N., Esmaeli, S., Safari, S.. Halothane-induced hepatitis: a forgotten issue in developing countries. Hepat Mon 2011; 11:36.Google Scholar
Malnick, S.D., Mahlab, K., Borchardt, J., Sokolowski, N., Attali, M.. Acute cholestatic hepatitis after exposure to isoflurane. Ann Pharmacother 2002; 36:261263.Google Scholar
Meldrum, D.J., Griffiths, R., Kenna, J.G.. Gallstones and isoflurane hepatitis. Anaesthesia 1998; 53:905909.Google Scholar
Ihtiyar, E., Algin, C., Haciolu, A., Isiksoy, S.. Fatal isoflurane hepatotoxicity without re-exposure. Indian J Gastroenterol 2006; 25:4142.Google Scholar
Thill, R.H., Millikan, K.W., Doolas, A.. Isoflurane hepatitis. Infect Med 1996; 13:322324.Google Scholar
Turner, G.B., O'Rourke, D., Scott, G.O., Beringer, T.R.. Fatal hepatotoxicity after re-exposure to isoflurane: a case report and review of the literature. Eur J Gastroenterol Hepatol 2000; 12:955959.Google Scholar
Martin, J.L., Keegan, M.T., Vasdev, G.M., et al. Fatal hepatitis associated with isoflurane exposure and CYP2A6 autoantibodies. Anesthesiology 2001; 95:551553.Google Scholar
Hasan, F.. Isoflurane hepatotoxicity in a patient with a previous history of halothane-induced hepatitis. Hepatogastroenterology 1998; 45:518522.Google Scholar
Peiris, L.J., Agrawal, A., Morris, J.E., Basnyat, P.S.. Isoflurane hepatitis-induced liver failure: a case report. J Clin Anesth 2012; 24:477479.Google Scholar
Anderson, J.S., Rose, N.R., Martin, J.L., Eger, E.I., Njoku, D.B.. Desflurane hepatitis associated with hapten and autoantigen-specific IgG4 antibodies. Anesth Analg 2007; 104:14521453.Google Scholar
Katz, J., Magee, J., Baker, B., Eger, E.I.. Hepatic necrosis associated with herpesvirus after anesthesia with desflurane and nitrous oxide. Anesth Analg 1994; 78:11731176.Google Scholar
Tung, D., Yoshida, E.M., Wang, C.S., Steinbrecher, U.P.. Severe desflurane hepatotoxicity after colon surgery in an elderly patient. Can J Anaesth 2005; 52:133136.Google Scholar
Martin, J.L., Plevak, D.J., Flannery, K.D.. Hepatotoxicity after desflurane anesthesia. Anesthesiology 1995; 83:11251129.CrossRefGoogle ScholarPubMed
Berghaus, T.M., Baron, A., Geier, A.. Hepatotoxicity following desflurane anesthesia. Hepatology 1999; 29:613614.Google Scholar
Nelson, T.. Desflurane-induced hepatitis. Internet J Anesthesiol. 2012; 30(3).Google Scholar
Reich, A., Everding, A.S., Bulla, M., et al. Hepatitis after sevoflurane exposure in an infant suffering from primary hyperoxaluria type 1. Anesth Analg 2004; 99:370372.Google Scholar
Jang, Y., Kim, I.. Severe hepatotoxicity after sevoflurane anesthesia in a child with mild renal dysfunction. Paediatr Anaesth 2005; 15:11401144.Google Scholar
Turillazzi, E., D'Errico, S., Neri, M., et al. A fatal case of fulminant hepatic necrosis following sevoflurane anesthesia. Toxicol Pathol 2007; 35:840845.Google Scholar
Lehmann, A., Nehe, M., Kiessling, A.H., et al. Case report: fatal hepatic failure after aortic valve replacement and sevoflurane exposure. Can J Anaesth 2007; 54:917921.Google Scholar
Shinghal, S., Gray, T., Guzman, G., Verma, A., Anand, K.. Sevoflurane hepatotoxicity: a case report of sevoflurane hepatic necrosis and review of the literature. Am J Ther 2010; 1:219222.Google Scholar
Schmid, M., Hefti, M.L., Gattiker, R., Kistler, H.J., Senning, A.. Benign postoperative intrahepatic cholestasis. N Engl J Med 1965; 272:545550.Google Scholar

References

Roth, S., Thisted, R.A., Erickson, J.P., Black, S., Schreider, B.D.. Eye injuries after non-ocular surgery: a study of 60,945 anesthetics from 1988 to 1992. Anesthesiology 1996; 85:10201027.Google Scholar
Caplan, R.A., Lee, L.A., Domino, K.B.. ASA Closed Claims Project and Its Registries: Value to Patients and Pocketbook. ASA Refresher Courses, 2008, p. 433.Google Scholar
Batra, Y.K., Bali, I.M.. Corneal abrasions during general anesthesia. Anesth Analg 1977; 56:363365.Google Scholar
Warner, M.E., Fronapfel, P.J., Hebl, J.R., et al. Perioperative visual changes. Anesthesiology 2002; 96:855859.Google Scholar
Abbott, M.A., McLaren, A.D., Algie, T.. Intra-ocular pressure during cardiopulmonary bypass: a comparison of crystalloid and colloid priming solutions. Anaesthesia 1994; 49:343346.Google Scholar
Gelinas, J.J., Cherry, R., MacDonald, S.J.. Fat embolism syndrome after cementless total hip arthroplasty. J Arthroplasty 2000; 15:809813.Google Scholar
Crosby, E.T., Preston, R.. Obstetrical anesthesia for a parturient with preeclampsia, HELLP syndrome and acute cortical blindness. Can J Anaesth 1998; 45:452459.Google Scholar
Della Sala, S., Spinnler, H.. Anton's (-Redlich-Babinski's) syndrome associated with Dide–Botcazo's syndrome: a case report of denial of cortical blindness and amnesia. Schweiz Arch Neurol Psychiatr 1998; 139:515.Google Scholar
Amar, A.P., Levy, M.L., Giannotta, S.L.. Iatrogenic vertebrobasilar insufficiency after surgery of the subclavian or brachial artery: review of three cases. Neurosurgery 1998; 43:14501457.Google Scholar
Chaudhry, T., Chamberlain, M.C., Vila, H.. Unusual case of postoperative blindness. Anesthesiology 2006; 106:869870.Google Scholar
Kumar, N., Jivan, S., Topping, N., Morrell, A.J.. Blindness and rectus muscle damage following spinal surgery. Am J Ophthalmol 2004; 138:889891.Google Scholar
Halfon, M.J., Bonardo, P., Valiensi, S., et al. Central retinal artery occlusion and ophthalmoplegia following spinal surgery. Br J Ophthalmol 2004; 88: 13501352.Google Scholar
Practice Advisory for Perioperative Visual Loss Associated with Spine Surgery: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Anesthesiology 2012; 116:274–285.Google Scholar
Myers, M.A., Hamilton, S.R., Bogosian, A.J., Smith, C.H., Wagner, T.A.. Visual loss as a complication of spine surgery: a review of 37 cases. Spine 1997; 22:13251329.Google Scholar
Shen, Y., Drum, M., Roth, S.. The prevalence of perioperative visual loss in the United States: a 10-year study from 1996 to 2005 of spinal, orthopedic, cardiac, and general surgery. Anesthesiology 2009; 109:15341545.Google Scholar
Fugate, J.E., Claassen, D.O., Cloft, H.J. et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 2010; 85:427432.CrossRefGoogle ScholarPubMed

References

Aggarwal, NT, Bergen, DC, Calbresi, PA, et al. Neurology for the Non-Neurologist. 6th edn. Weiner, WJ, Goetz, CG, Shin, RK, Lewis, SL, editors. Philadelphia, PA: Lippincott Williams & Wilkins; 2010.Google Scholar
Daroff, RB, Fenichel, GM, Jankovic, J, Maziotta, JC. Bradley's Neurology in Clinical Practice. 6th edn. Philadelphia, PA: Elsevier; 2012.Google Scholar
Staff, NP, Engelstad, JE, Klein, CJ, et al. Post-surgical inflammatory neuropathy. Brain. 2010; 133: p. 28662880.Google Scholar
Healey, S, O’Neill, B, Bilal, H, et al. Does retraction of the sternum during median sternotomy result in brachial plexus injuries? Interact Cardiovasc Thorac Surg. 2013 July; 17(1): p. 151157.Google Scholar
Nair, UR, Griffiths, G, Lawson, RA. Postoperative neuralgia in the leg after saphenous vein coronary artery bypass graft: a prospective study. Thorax. 1988 Jan; 43(1):p. 4143.Google Scholar
Adams, VJ, Adler, JR, Albanese, C, et al. Anesthesiologist's Manual of Surgical Procedures. 4th edn. Jaffe, RA, Samuels, SI, editors. Philadelphia, PA: Lippincott Williams & Wilkins; 2009.Google Scholar
Moore, KL, Dalley, AF. Clinically Oriented Anatomy. 5th edn. Sun, B, Scogna, KH, Glazer, J, Odyniec, C, editors. Baltimore, MD: Lippincott Williams & Wilkins; 2006.Google Scholar
Brucoli, M, Arcuri, F, Cavenaghi, R, Benech, A. Analysis of complications after surgical repair of orbital fractures. J Craniofac Surg. 2011 July; 22(4): p. 13871390.Google Scholar
Kim, JW, Chin, BR, Park, HS, Lee, SH, Kwon, TG. Cranial nerve injury after Le Fort I osteotomy. Int J Oral Maxillofac Surg. 2011 March; 40(3): p. 327329.Google Scholar
Marques, TMS, Gomes, JM. Decompression of inferior alveolar nerve: case report. J Can Dent Assoc. 2011 March; 77: p. b34.Google Scholar
Pogrel, MA, Jergensen, R, Burgon, E, Hulme, D. Long-term outcome of trigeminal nerve injuries related to dental treatment. J Oral Maxillofac Surg. 2011 September; 69(9): p. 22842288.CrossRefGoogle ScholarPubMed
Kiyama, T, Naito, M, Shiramizu, K, Shinoda, T, Maeyama, A. Ischemia of the lateral femoral cutaneous nerve during periacetabular osteotomy using Smith-Petersen approach. J Orthop Traumatol. 2009 September; 10(3): p. 123126.Google Scholar
Dellon, AL, Mont, M, Ducic, I. Involvement of the lateral femoral cutaneous nerve as source of persistent pain after total hip arthroplasty. J Arthroplasty. 2008 April; 23(3): p. 480485.Google Scholar
Al-Benna, S. Right hypoglossal nerve paralysis after tracheal intubation for aesthetic breast surgery. Saudi J Anaesth. 2013 July; 9(3): p. 341343.Google Scholar
Barash, P, Cullen, BF, Stoelting, RK et al., editors. Clinical Anesthesia. 7th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.Google Scholar
Fredrickson, MJ, Kilfoyle, DH. Neurological complication analysis of 1000 ultrasound-guided peripheral nerve blocks for elective orthopaedic surgery: a prospective study. Anaesthesia. 2009 August; 64(8): p. 836844.Google Scholar
Jeng, CL, Rosenblatt, MA. Intraneural injections and regional anesthesia: the known and the unknown. Minerva Anestesiol. 2011 January; 77: p. 5458.Google Scholar
Cummings, DR, Yamashita, DDR, McAndrews, JP. Complications of local anesthesia used in oral and maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2011 August; 23(3): p. 369377.CrossRefGoogle ScholarPubMed
Ogle, OE, Mahjoubi, G. Advances in local anesthesia in dentistry. Dent Clin N Am. 2011 July; 55(3): p. 481499.Google Scholar
Miller, RD, Pardo, MC. Local anesthetics. Ch. ll in Basics of Anesthesia. 6th edn. Goolsby, J, editor. Philadelphia, PA: Saunders; 2011.Google Scholar
Neal, JM, Bernards, CM, Butterworth, JF, et al. ASRA Practice Advisory on Local Anesthetic Systemic Toxicity. Reg Anesth Pain Med. 2010 March/April; 35(2): p. 152161.Google Scholar
Tam, IL, Polydefkis, MJ, Ebenezer, G, Hauer, P, McArthur, JC. Peripheral nerve toxic effects of nitrofurantoin. Arch Neurol. 2012 February; 69(2): p. 265268.Google Scholar
Jesus, JE, Landry, A. Images in clinical medicine: Chvostek's and Trousseau's signs. N Engl J Med. 2012 September; 367(11): p. e24.Google Scholar
Halevy, J, Bulvik, S. Severe hypophosphatemia in hospitalized patients. Arch Intern Med. 1988 January; 148(1): p. 153155.Google Scholar
Longo, DL, Fauci, AS, Kasper, DL, et al., editors. Harrison's Principles of Internal Medicine. 18th edn. New York: McGraw-Hill; 2012.Google Scholar

References

Bhattacharya, P.K., Bhattacharya, L., Jain, R.K., Agarwal, R.C.. Post anaesthesia shivering (PAS): a review. Indian J Anaesth 2003; 47:8893.Google Scholar
Crowley, L.J., Buggy, D.J.. Shivering and neuraxial anesthesia. Reg Anesth Pain Med 2008; 33:241252.Google Scholar
Leslie, K., Sessler, D.I.. Reducing in the shivering threshold is proportional to spinal block height. Anesthesiology 1996; 84:13271331.Google Scholar
Crossley, A.W.. Six months of shivering in a district general hospital. Anaesthesia 1992; 47:845848.Google Scholar
Eberhart, L.H., Doderlein, F., Eisenhardt, G., et al. Independent risk factors for postoperative shivering. Anesth Analg 2005; 101:18491857.Google Scholar
Bay, J., Nunn, J.F., Prys-Roberts, C.. Factors influencing arterial PO2 during recovery from anesthesia. Br J Anaesth 1968; 40:398407.Google Scholar
Macintyre, P.E., Pavlin, E.G., Dwersteg, J.F.. Effect of meperidine on oxygen consumption, carbon dioxide production, and respiratory gas exchange in postanesthesia shivering. Anesth Analg 1987; 66:751755.Google Scholar
Sessler, D.I., Rubinstein, E.H., Moayeri, A.. Physiologic responses to mild perianesthetic hypothermia in humans. Anesthesiology 1991; 75:594610.Google Scholar
Mahajan, R.P., Grover, V.K., Sharma, S.L., Singh, H.. Intraocular pressure changes during muscular hyperactivity after general anesthesia. Anesthesiology 1987; 66:419421.Google Scholar
Dupuis, J.Y., Nathan, H.J., DeLima, L., et al. Pancuronium or vecuronium for treatment of shivering after cardiac surgery. Anesth Analg 1994; 79:472481.CrossRefGoogle ScholarPubMed
Frank, S.M., Fleisher, L.A., Breslow, M.J., et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA 1997; 277:11271134.Google Scholar
Frank, S.M., Beattie, C., Christopherson, R., et al. Unintentional hypothermia is associated with postoperative myocardial ischemia. The Perioperative Ischemia Randomized Anesthesia Trial Study Group. Anesthesiology 1993; 78:468476.CrossRefGoogle ScholarPubMed
Collins, K.J., Dore, C., Exton-Smith, A.N., et al. Accidental hypothermia and impaired temperature homeostasis in the elderly. Br Med J 1977; 1:353356.Google Scholar
Carli, F., Gabrielczyk, M., Clark, M.M., Aber, V.R.. An investigation of factors affecting postoperative rewarming of adult patients. Anaesthesia 1986; 41:363369.Google Scholar
Frank, S.M., Fleisher, L.A., Olson, K.F., et al. Multivariate determinants of early postoperative oxygen consumption in elderly patients. Anesthesiology 1995; 83:241249.Google Scholar
Gautier, H., Bonora, M., Schultz, S.A., Remmers, J.E.. Hypoxia-induced changes in shivering and body temperature. J Appl Physiol 1987; 62:24772484.Google Scholar
Iwashita, H., Matsukawa, T., Ozaki, M., et al. Hypoxemia decreases the shivering threshold in rabbits anesthetized with 0.2 MAC isoflurane. Anesth Analg 1998; 87:14081411.CrossRefGoogle Scholar
Passias, T.C., Meneilly, G.S., Mekjavić, I.B.. Effect of hypoglycemia on thermoregulatory responses. J Appl Physiol 1996; 80:10211032.Google Scholar
Macario, A., Weinger, M., Truong, P., Lee, M.. Which clinical anesthesia outcomes are both common and important to avoid? The perspective of a panel of expert anesthesiologists. Anesth Analg 1999; 88:10851091.Google Scholar
De Courcy, J.G.. Artefactual “hypotension” from shivering. Anaesthesia 1989; 44:787788.CrossRefGoogle ScholarPubMed
Barker, S.J., Shah, N.K.. Effects of motion on the performance of pulse oximeters in volunteers. Anesthesiology 1996; 85:774781.CrossRefGoogle ScholarPubMed
Practice Guidelines for Postanesthetic Care. A report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology 2002; 96:742752.Google Scholar
Practice Guidelines for Postanesthetic Care. An updated report by the American Society of Anesthesiologists Task Force on Postanesthetic Care. Anesthesiology 2013; 118:291307.Google Scholar
Kranke, P., Eberhart, L.H., Roewer, N., Tramer, M.R.. Pharmacological treatment of postoperative shivering: a quantitative systematic review of randomized controlled trials. Anesth Analg 2002; 94:453460.Google Scholar
Takada, K., Clark, D.J., Davies, M.F., et al. Meperidine exerts agonist activity at the alpha(2B)-adrenoceptor subtype. Anesthesiology 2002; 96:14201426.Google Scholar
Kurz, M., Belani, K., Sessler, D.I., et al. Naloxone, meperidine, and shivering. Anesthesiology 1993; 79:11931201.Google Scholar
Nakasuji, M., Nakamura, M., Imanaka, N., et al. Intraoperative high-dose remifentanil increases post-anaesthetic shivering. Br J Anaesth 2010; 105:162167.Google Scholar
Song, Y.K., Lee, C., Seo, D.H., et al. Interaction between postoperative shivering and hyperalgesia caused by high-dose remifentanil. Korean J Anesthesiol 2014; 66(1):4451.Google Scholar
Kose, E.A., Dal, D., Akinci, S.B., Saricaoglu, F., Aypar, U.. The efficacy of ketamine for the treatment of postoperative shivering. Anesth Analg 2008; 106:120122.Google Scholar
Joris, J., Banache, M., Bonnet, F., Sessler, D.I., Lamy, M.. Clonidine and ketanserin both are effective treatment for postanesthetic shivering. Anesthesiology 1993; 79:532539.Google Scholar
Blaine, E.R., Brady, K.M., Tobias, J.D.. Dexmedetomidine for the treatment of postanesthesia shivering in children. Paediatr Anaesth 2007; 17:341346.Google Scholar
Kelsaka, E., Baris, S., Karakaya, D., Sarihasan, B.. Comparison of ondansetron and meperidine for prevention of shivering in patients undergoing spinal anesthesia. Reg Anesth Pain Med 2006; 31:4045.Google Scholar
Mazzola-Pomietto, P., Aulakh, C.S., Murphy, D.L.. Temperature, food intake, and locomotor activity effects of a 5-HT3 receptor agonist and two 5-HT3 receptor antagonists in rats. Psychopharmacology (Berl) 1995; 21:488493.Google Scholar
Kandasamy, S.B.. Effect of ondansetron and ICS 205–930 on radiation-induced hypothermia in rats. Radiat Res 1997; 147:741746.CrossRefGoogle ScholarPubMed
Powell, R.M., Buggy, D.J.. Ondansetron given before induction of anesthesia reduces shivering after general anesthesia. Anesth Analg 2000; 90:14231427.Google Scholar
Tie, H-T., Su, G-Z., Lian, S-R., Yuan, H-W., Mou, J-Z.. Efficacy and safety of ondansetron in preventing postanesthesia shivering: a meta-analysis of randomized controlled trials. BMC Anesthesiol 2014; 14:12. doi:10.1186/1471-2253-14-12.CrossRefGoogle ScholarPubMed
Browning, R.M., Fellingham, W.H., O’Loughlin, E.J., Brown, N.A., Paech, M.J.. Prophylactic ondansetron does not prevent shivering or decrease shivering severity during cesarean delivery under combined spinal epidural anesthesia: a randomized trial. Reg Anesth Pain Med 2013; 38:3943.CrossRefGoogle ScholarPubMed
Joshi, S.S., Arora, A., George, A., Shidhaye, R.V.. Comparison of intravenous butorphanol, ondansetron and tramadol for shivering during regional anesthesia: a prospective randomized double-blind study. Anaesth Intensive Care Med 2013; 17:3339.Google Scholar

References

Bellomo, R., Ronco, C., Kellum, J.A., Mehta, R.L., Palevsky, P.. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8:R204R212.Google Scholar
Novis, B.K., Roizen, M.F., Aronson, S., Thisted, R.A.. Association of preoperative risk factors with postoperative acute renal failure. Anesth Analg 1994; 78:143149.Google Scholar
Zanardo, G., Michielon, P., Paccagnella, A., et al. Acute renal failure in the patient undergoing cardiac operations: prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg 1994; 107:14891495.Google Scholar
Verhataraman, R., Kellum, J.A.. Treatment of acute oliguria. Perioperative Medicine: Managing for Outcome (ed. Newman, MF, Fleisher, LA, Fink, MP), Philadelphia, Saunders Elsevier, 2008.Google Scholar
Cordes-Behringer, E.. Oliguria: perioperative management. Rev Mex Anest 2006; 29:S21S26.Google Scholar
Marik, P.E., Baram, M., Vahid, B.. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134:172178.Google Scholar
Murray, A., Drummond, G.B., Dodds, S., Marshall, L.. Low frequency changes in finger volume in patients after surgery, related to respiration and venous pressure. Eur J Anaesthesiol 2009; 26:916.Google Scholar
Song, Y., Kwak, Y.L., Song, J.W., Kim, Y.J., Shim, J.K.. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth 2014; 113:6166.Google Scholar
Van Noord, B.A., Roffey, P., Thangathurai, D.. Abdominal compartment syndrome following opioid-induced postoperative ileus. J Clin Anesth 2013; 25:146149.Google Scholar
Thadhani, R., Pascual, M., Bonventre, J.V.. Acute renal failure. N Engl J Med 1996; 334:14481460.Google Scholar
Bergman, B.D., Sprung, J.. Unusual cause of intraoperative urinary retention. Anesthesiology 2003; 4:10301031.Google Scholar
Baldini, G., Bagry, H., Aprikian, A., Carli, F.. Postoperative urinary retention: anesthestic and perioperative considerations. Anesthesiology 2009; 110:11391157.Google Scholar
Coombes, G.M., Millard, R.J.. The accuracy of portable ultrasound scanning in the measurement of residual urine volume. J Urol 1994; 152:20832085.Google Scholar
Tammela, T., Kontturi, M., Lukkarinen, O.. Postoperative urinary retention: I. Incidence and predisposing factors. Scand J Urol Nephrol 1986; 20:197201.Google Scholar
Keitz, H., Diouf, E., Tubach, F., et al. Predictive factors of early postoperative urinary retention in the postanesthesia care unit. Anesth Analg 2005; 101:592596.Google Scholar
Zaheer, S., Reilly, W.T., Pemberton, J.H., Ilstrup, D.. Urinary retention after operations for benign anorectal diseases. Dis Colon Rectum 1998; 41:696704.Google Scholar
Waterhouse, N., Beaumont, A.R., Murray, K., Staniforth, P., Stone, M.H.. Urinary retention after total hip replacement. A prospective study. J Bone Joint Surg Br 1987; 69:6466.Google Scholar
Oishi, C.S., Williams, V.J., Hanson, P.R., et al. Perioperative bladder management after primary total hip arthroplasty. J Arthroplasty 1995; 10:732736.Google Scholar
Lingaraj, K., Ruben, M., Chan, Y.H., Das, S.D.. Identification of risk factors for urinary retention following total knee arthroplasty. A Singapore hospital experience. Singapore Med J 2007; 48:213216.Google Scholar
O’Riordan, J.A., Hopkins, P.M., Ravenscroft, A., Stevens, J.D.. Patient-controlled analgesia and urinary retention following lower limb joint replacement: prospective audit and logistic regression analysis. Eur J Anaesthesiol 2000; 7:431435.Google Scholar
Kamphuis, E.T., Lonescu, T.I., Kuipers, P.W., et al. Recovery of storage and emptying functions of the urinary bladder after spinal anesthesia with lidocaine and with bupivacaine in men. Anesthesiology 1998; 88:310316.Google Scholar
Sullivan, M.M., Sutter, V.I., Mims, M.M., Marsh, V.H., Finegold, S.M.. Clinical aspects of bacteremia after manipulation of the genitourinary tract. J Infect Dis 1973; 127:4955.CrossRefGoogle ScholarPubMed
Akhtar, M.S., Beere, D.M., Wright, J.T., MacRae, K.D.. Is bladder catheterization really necessary before laparoscopy? Br J Obstet Gynaecol 1985; 92:11761178.Google Scholar

References

Wilmore, D.W., Smith, R.J., O’Dwyer, S.T., et al. The gut – a central organ following surgical stress. Surgery 1988; 104:917923.Google Scholar
Desborough, J.P.. The stress response to trauma and surgery. Br J Anaesth 2000; 85:109117.Google Scholar
Holte, K., Sharrock, N.E., Kehlet, H.. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth 2002; 89:622632.Google Scholar
McAnulty, G.R., Robertshaw, H., Hall, G.M.. Anaesthetic management of patients with diabetes mellitus. Br J Anaesth 2000; 85:8090.Google Scholar
Manninen, P.H., Lam, A.M., Gelb, A.W., Brown, S.C.. The effect of high-dose mannitol on serum and urine electrolytes and osmolality in neurosurgical patients. Can J Anaesth 1987; 34:442446.Google Scholar
Rimal, J., Pisklakov, S.V., Boules, H., Patel, A.. Acute hyperkalemia and hyponatremia following intraoperative mannitol administration. J Anesth Clin Res 2013; 4:294. doi:10.4172/2155-6148.1000294.Google Scholar
Nakasuji, M., Nomura, M., Yoshioka, M., et al. Hypertonic mannitol-induced hyperkalemia during craniotomy. J Anesth Clin Res 2013; 4:299. doi:10.4172/2155-6148.1000299.Google Scholar
Sharma, J.P., Salhotra, R.. Mannitol-induced intraoperative hyperkalemia, a little-known clinical entity. J Anaesthesiol Clin Pharmacol 2012; 28:546547.Google Scholar
Hensen, J., Henig, A., Fahlbusch, R., et al. Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol (Oxf) 1999; 50:431439.Google Scholar
Zada, G., Sivakumar, W., Fishback, D., Singer, P.A., Weiss, M.H.. Significance of postoperative fluid diuresis in patients undergoing transsphenoidal surgery for growth hormone-secreting adenomas. J Neurosurg 2010; 112:744749.Google Scholar
Saifan, C., Nasr, R., Mehta, S., et al. Diabetes insipidus: a challenging diagnosis with new drug therapies. ISRN Nephrol 2013: 797620. doi:10.5402/2013/797620.Google Scholar
Bendz, H., Aurell, M.. Drug-induced diabetes insipidus. Incidence, prevention, and management. Drug Saf 1999; 21:449456.Google Scholar
Ghirardello, S., Hopper, N., Albanese, A., Maghnie, M.. Diabetes insipidus in craniopharyngioma: postoperative management of water and electrolyte disorders. J Pediatr Endocrinol Metab 2006; 19:413421.Google ScholarPubMed
Seckl, J.R., Dunger, D.B., Bevan, J.S., et al. Vasopressin antagonist in early postoperative diabetes insipidus. Lancet 1990; 335:13531356.CrossRefGoogle ScholarPubMed
Ananthakrishnan, S.. Diabetes insipidus in pregnancy: etiology, evaluation, and management. Endocr Pract 2009; 15:377382.Google Scholar
Yee, A.H., Burns, J.D., Wijdicks, E.F.M.. Cerebral salt wasting: pathophysiology, diagnosis, and treatment. Neurosurg Clin N Am 2010; 21:339352.Google Scholar
Wang, W., Li, C., Summer, S.N., Falk, S., Schrier, R.W.. Polyuria of thyrotoxicosis: down regulation of aquaporin water channels and increased solute excretion. Kidney Int 2007; 72:10881094.Google Scholar
Morita, K., Otsuka, T., Ogura, T., et al. Sevoflurane anaesthesia causes a transient decrease in aquaporin-2 and impairment of urine concentration. Br J Anaesth 1999; 83:734739.CrossRefGoogle ScholarPubMed
Lee, S.Y., Kim, H.Y., Shin, H.W., et al. Transient polyuria during sevoflurane anesthesia: a report of two cases. Anesth Pain Med 2006; 1:139143.Google Scholar
Kim, S.H., Kim, C.H., Kim, Y.J., et al. Polyuria during sevoflurane anesthesia for parotidectomy patient. Ewha Med J 2013; 36:7276.Google Scholar
Schirle, L.. Polyuria with sevoflurane administration: a case report. AANA J 2011; 79:4750.Google Scholar

References

Bell, G.R., Gurd, A.R., Orlowski, J.P., et al. The syndrome of inappropriate antidiuretic-hormone secretion following spinal fusion. J Bone Joint Surg Am 1986; 68:720724.CrossRefGoogle ScholarPubMed
Aycock, R.D., Kass, D.A.. Abnormal urine color. South Med J 2012; 105:4347.CrossRefGoogle ScholarPubMed
Puy, H., Gouya, L., Deybach, J.C.. Porphyrias. Lancet 2010; 375:924937.CrossRefGoogle ScholarPubMed
Fudickar, A., Bein, B.. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol 2009; 75:339344.Google Scholar
Masuda, A., Hirota, K., Satone, T., Ito, Y.. Pink urine during propofol anesthesia. Anesth Analg 1996; 81:666667.CrossRefGoogle Scholar
Masuda, A., Asahi, T., Sakamaki, M., et al. Uric acid excretion increases during propofol anesthesia. Anesth Analg 1997; 85:144148.Google Scholar
Foot, C.L., Fraser, J.F.. Uroscopic rainbow: modern matula medicine. Postgrad Med J 2006; 82:126129.Google Scholar
Noll, W.W., Glass, D.D.. Cause of dark urine. JAMA 1980; 243:2398.Google Scholar
Bodenham, A., Culank, L.S., Park, G.R.. Propofol infusion and green urine. Lancet 1987; 2:740.Google Scholar
O’Regan, A.W., Joyce-Brady, M.. “Pond poop” from propofol. Intensive Care Med 2003; 29:2106.Google Scholar
Birkholz, T., Eckardt, G., Renner, S., Irouschek, A., Schmidt, J.. Green breast milk after propofol administration. Anesthesiology 2009; 111:11681169.Google Scholar
Ananthanarayan, C., Fisher, J.A.. Why was the urine green? Can J Anaesth 1995; 42:8788.Google Scholar
Barbara, D.W., Whalen, F.X.. Propofol induction resulting in green urine discoloration. Anesthesiology 2012; 116:924.Google Scholar
Pedersen, A.B., Kobborg, T.K., Larsen, J.R.. Grass-green urine from propofol infusion. Acta Anaesthiol Scand 2015; 59:265267.Google Scholar
Ku, B.D., Park, K.C., Yoon, S.S.. Dark green discolouration of the urine after prolonged propofol infusion: a case report. J Clin Pharm Ther 2011; 36:734736.Google Scholar
Blakey, S.A., Hixson-Wallace, J.A.. Clinical significance of rare and benign side effects: propofol and green urine. Pharmacotherapy 2000; 20:11201122.Google Scholar
Lepenies, J., Toubekis, E., Frei, U.. Green urine after motorcycle accident. Nephrol Dial Transplant 2000; 15;725726.CrossRefGoogle ScholarPubMed
Leclercq, P., Loly, C., Delanaye, P., Garweg, C., Lambermont, B.. Green urine. Lancet 2009; 373:1462.Google Scholar
Lin, C.H., Huang, H.T., Chien, C.C., Tzeng, D.S., Lung, F.W.. Purple urine bag syndrome in nursing homes: ten elderly case reports and a literature review. Clin Interv Aging 2008; 3:729734.Google Scholar
Fletcher, S.J., Slaymaker, A.E., Bodenham, A.R., Vucevic, M.. Urine colour as an index of hydration in critically ill patients. Anaesthesia 1999; 54:189192.Google Scholar

References

Apfelbaum, J.L., Chen, C.M., Mehta, S.S., Gan, T.J.. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth Analg 2003; 97:534540.Google Scholar
Sinatra, R., de Leon-Cassasola, O.A., Ginsberg, B., Viscusi, E.R.. Acute Pain Management. New York, NY: Cambridge University Press; 2009; 147616.Google Scholar
Mazoit, J.X., Butscher, K., Samii, K.. Morphine in postoperative patients: pharmacokinetics and pharmacodynamics of metabolites. Anesth Analg 2007; 105:7078.Google Scholar
Hill, R.P., Lubarsky, D.A., Phillips-Bute, B., et al. Cost-effectiveness of prophylactic antiemetic therapy with ondansetron, droperidol, or placebo. Anesthesiology 2000; 92:958967.CrossRefGoogle ScholarPubMed
Loewen, P.S., Marra, C.A., Zed, P.J.. 5-HT3 receptor antagonists vs. traditional agents for the prophylaxis of postoperative nausea and vomiting. Can J Anaesth 2000; 47:10081018.CrossRefGoogle ScholarPubMed
Karanicolas, P.J., Smith, S.E., Kanbur, B., et al. The impact of prophylactic dexamethasone on nausea and vomiting after laparoscopic cholecystectomy: a systematic review and meta-analysis. Ann Surg 2008; 248:751762.CrossRefGoogle ScholarPubMed
Dahan, A., Aarts, L., Smith, T.W.. Incidence, reversal, and prevention of opioid induced respiratory depression. Anesthesiology 2010; 112:226238.CrossRefGoogle ScholarPubMed
Twersky, R., Lebovits, A., Williams, C., et al. Ketorolac versus fentanyl for postoperative pain management in outpatients. Clin J Pain 1995; 11:127133.CrossRefGoogle ScholarPubMed
Fletcher, D., Zetlaoui, P., Monin, S., et al. Influence of timing on the analgesic effect of intravenous ketorolac after orthopedic surgery. Pain 1995;61:291297.Google Scholar
Vanlersberghe, C., Lauwers, M.H., Camu, F.. Preoperative ketorolac administration has no preemptive analgesic effect for minor orthopaedic surgery. Acta Anaesthesiol Scand 1996; 40(8 Pt 1):948952.Google Scholar
De Oliveira, G.S. Jr., Agarwal, D., Benzon, H.T.. Perioperative single dose ketorolac to prevent postoperative pain: a meta-analysis of randomized trials. Anesth Analg 2012; 114:424433.CrossRefGoogle ScholarPubMed
Kroll, P., Meadows, L., Rock, A., et al. A multicenter, randomized, double-blind, placebo-controlled trial of intravenous ibuprofen (i.v. ibuprofen) in the management of postoperative pain following abdominal hysterectomy. Pain Pract 2011; 11:2332.Google Scholar
Southworth, S., Peters, J., Rock, A., et al. A multicenter, randomized, double-blind, placebo-controlled trial of intravenous ibuprofen 400 mg and 800 mg every 6 hours in the management of postoperative pain. Clin Ther 2009; 31:19221935.CrossRefGoogle ScholarPubMed
Toms, L., McQuay, H., Derry, S., et al. Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst Rev 2008;(4):CD004602.Google Scholar
Sinatra, R., Jahr, J., Reynolds, L., et al. Efficacy and safety of single and repeated administration of 1 gram intravenous acetaminophen injection (paracetamol) for pain management after major orthopedic surgery. Anesthesiology 2005; 102: 822931.Google Scholar
Brett, C.N., Barnett, S.G., Pearson, J.. Postoperative plasma paracetamol levels following oral or intravenous paracetamol administration: a double-blind randomized controlled trial. Anaesth Intensive Care 2012; 40:166171.Google Scholar
World Health Organization (WHO) Stepwise Approach to Pain Management. 2012. http://www.who.int/cancer/palliative/painladder/en/. (Accessed November 05, 2012.)Google Scholar
American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012; 116:248–273.Google Scholar
Ilfeld, B.M.. Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904925.Google Scholar
Ilfeld, B.M., Enneking, F.K.. Continuous peripheral nerve block at home: a review. Anesth Analg 2005;100:18221833.Google Scholar
Hermanides, J., Hollmann, M.W., Stevens, M.F., et al. Failed epidural: causes and management. Br J Anaesth 2012; 109:144154.Google Scholar
Read, L.B.. Acute pain: lessons learned from 25,000 patients. Reg Anesth Pain Med 1999; 24:499505.Google Scholar

References

Neer, C.S.. Impingement lesions. Clin Orthop Relat Res 1983;173:7077.Google Scholar
Campbell, S.. Referred shoulder pain: an elusive diagnosis. Postgrad Med 1983; 73:193203.Google Scholar
Brooke, B., Freischlag, J.. Contemporary management of thoracic outlet syndrome. Curr Opin Cardiol 2010; 25:535540.Google Scholar
Cunniffe, M.G., McAnena, O.J., Dar, M.A., Calleary, J., Flynn, N.. A prospective random trial of intraoperative bupivacaine irrigation for management of shoulder tip pain following laparoscopy. Am J Surg 1998; 176:258261.Google Scholar
Tsai, H., Chen, Y., Ho, C., et al. Maneuvers to decrease laparoscopy-induced shoulder and upper abdominal pain: a randomized controlled study. Arch Surg 2011; 146:13601366.Google Scholar
Rosenblum, M., Weller, R.S., Conrad, P.L., Falvey, E.A., Gross, J.B.. Ibuprofen provides longer lasting analgesia than fentanyl after laparoscopic surgery. Anesth Analg 1991; 73:255259.CrossRefGoogle ScholarPubMed
Nyerges, A.. Pain mechanisms in laproscopic surgery. Semin Laparosc Surg 1994; 1:215218.Google Scholar
Schoeffle, P., Diemunsch, P., Fourgeau, L.. Coelioscopie ambulatoire. Cah Anesthesiol 1993; 41:385391.Google Scholar
Zhang, W., Davenport, P.. Activation of thalamic ventroposteriolateral neurons by phrenic nerve afferents in cats and rats. J Appl Physiol 2002; 94:220226.Google Scholar
Berberoglu, M., Dilek, O.N., Ercan, F., et al. The effect of CO2 insufflation rate on postlaparoscopic shoulder pain. J Laparoendosc Adv Surg Tech A 1998; 8:768770.Google Scholar
Donatsky, A.M., Bjerrum, F., Gögenur, I.. Surgical techniques to minimize shoulder pain after laparoscopic cholecystectomy. A systematic review. Surg Endosc 2013;27:22752282.CrossRefGoogle ScholarPubMed
Taș, B., Donatsky, A.M., Gögenur, I.. Surgical techniques to minimize shoulder pain after laparoscopic surgery for benign gynaecological disease. A systematic review. Gynecol Surg 2013;10:169173.Google Scholar
Mats, K., Yoshida, M., Maemura, Y., et al. Significance of phrenic nerve block in the anesthetic management of laparoscopic cholecystectomy. Masui 1994; 43:17181721.Google Scholar
MacDougall, P.. Postthoracotomy shoulder pain: diagnosis and management. Curr Opin Anaesthesiol 2008; 21:1215.CrossRefGoogle ScholarPubMed
Barak, M., Ziser, A., Katz, Y.. Thoracic epidural local anesthetics are ineffective in alleviating postthoracotomy ipsilateral shoulder pain. J Cardiothorac Anesth 2004; 18:458460.Google Scholar
Tan, N., Agnew, N.M., Scawn, N.D., et al. Suprascapular nerve block for ipsilateral shoulder pain after thoracotomy with thoracic epidural anesthesia: a double blind comparison of 0.5% bupivacaine and 0.9% saline. Anesth Analg 2002; 94: 199202.Google Scholar
Pennefather, S.H., Akrofi, M.E., Kendall, J.B., et al. Double-blind comparison of intrapleural saline and 0.25% bupivacaine for ipsilateral shoulder pain after thoracotomy in patients receiving thoracic epidural analgesia. Br J Anaesth 2005; 94:234238.CrossRefGoogle ScholarPubMed
Scawn, N.D., Pennefather, S.H., Soorae, A., et al. Ipsilateral shoulder pain after thoracotomy with epidural analgesia: the influence of phrenic nerve infiltration with lidocaine. Anesth Analg 2001; 93:260264.Google Scholar
Warner, M.A., Warner, M.E., Weber, J.G.. Clinical significance of pulmonary aspiration during the perioperative period. Anesthesiology 1993; 78:5662.Google Scholar

References

Wallis, J.P., Wells, A.W., Whitehead, S., Brewster, N.. Recovery from postoperative anaemia. Transfus Med 2005; 15:413418.Google Scholar
Shander, A., Knight, K., Thurer, R., Adamson, J., Spence, R.. Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med 2004; 116 (7 Suppl 1):5869.Google Scholar
Brant, H.A.. Precise estimation of postpartum haemorrhage: difficulties and importance. Br J Med 1967; 1:398400.Google Scholar
Higgins, P.G.. Measuring nurses’ accuracy of estimating blood loss. J Adv Nurs 1982; 7:157162.Google Scholar
Duthie, S.J., Ven, D., Yung, G.L., et al. Discrepancy between laboratory determination and visual estimation of blood loss during normal delivery. Eur J Obstet Gynecol Reprod Biol 1991; 38:119124.Google Scholar
Duthie, S.J., Ghosh, A., Ng, A., Ho, P.C.. Intraoperative blood loss during elective lower segment caesarean section. Br J Obstet Gynaecol 1992; 99:364367.Google Scholar
Razvi, K., Chua, S., Arulkumaran, S., Ratnam, S.S.. A comparison between visual estimation and laboratory determination of blood loss during the third stage of labour. Aust N Z J Obstet Gynaecol 1996; 36:152154.Google Scholar
Prasertcharoensuk, W., Swadpanich, U., Lumbiganon, P.. Accuracy of the blood loss estimation in the third stage of labor. Int J Gynaecol Obstet 2000; 71:6970.Google Scholar
Glover, P.. Blood loss at delivery: how accurate is your estimation? Aust J Midwifery 2003; 16:2124.Google Scholar
Kavle, J.A., Khalfan, S.S., Stoltzfus, R.J., et al. Measurement of blood loss at childbirth and postpartum. Int J Gynaecol Obstet 2006; 95:2428.Google Scholar
Larsson, C., Saltvedt, S., Wilkund, I., Pahlen, S., Andolf, E.. Estimation of blood loss after cesarean section and vaginal delivery has low validity with a tendency to exaggeration. Acta Obstet Gynecol Scand 2006; 85:14481452.Google Scholar
Buckland, S.S., Homer, C.S.E.. Estimating blood loss after birth: using simulated clinical examples. Women Birth 2007; 20:8588.Google Scholar
Stafford, I., Dildy, G.A., Clark, S.L., Belfort, M.A.. Visually estimated and calculated blood loss in vaginal and cesarean delivery. Am J Obstet Gynecol 2008; 199:519.e1519.e7.Google Scholar
Budny, P.G., Regan, P.J., Roberts, A.H.N.. The estimation of blood loss during burns surgery. Burns 1993; 19:134137.Google Scholar
Tall, G., Wise, D., Grove, P., Wilkinson, C.. The accuracy of external blood loss estimation by ambulance and hospital personnel. Emerg Med 2003; 15:318321.CrossRefGoogle ScholarPubMed
Patton, K., Funk, D.L., McErlean, M., Bartfield, J.M.. Accuracy of estimation of external blood loss by EMS personnel. J Trauma 2001; 50:914916.Google Scholar
Beer, H.L., Duvvi, S., Webb, C.J., Tandon, S.. Blood loss estimation in epistaxis scenarios. J Laryngol Otol 2005; 119:1618.Google Scholar
Dildy, G.A., Paine, A.R., George, N.C., Velasc, C.. Estimating blood loss: can teaching significantly improve visual estimation? Obstet Gynecol 2004; 104:601606.Google Scholar
Sehat, K.R., Evans, R.L., Newman, J.H.. Hidden blood loss following hip and knee arthroplasty. J Bone Joint Surg Br 2004; 86:561565.Google Scholar
Maslovitz, S., Barkai, G., Lessing, J.B., Ziv, A., Many, A.. Improved accuracy of postpartum blood loss estimation as assessed by simulation. Acta Obstet Gynecol Scand 2008; 87:929934.Google Scholar
Maier, C., Gleim, M., Weiss, T., et al. Severe bleeding following lumbar sympathetic blockade in two patients under medication with irreversible platelet aggregation inhibitors. Anesthesiology 2002; 97:740743.Google Scholar
Garratty, G.. Immune hemolytic anemia associated with drug therapy. Blood Rev 2010; 24:143150.Google Scholar
Elyassi, A.R., Rowshan, H.H.. Perioperative management of the glucose-6-phosphate dehydrogenase deficient patient: a review of literature. Anesth Prog 2009; 56:8691.Google Scholar
Eber, S.W., Pekrun, A., Neufeldt, A., Schröter, W.. Prevalence of increased osmotic fragility of erythrocytes in German blood donors: screening using a modified glycerol lysis test. Ann Hematol 1992; 64:8894.Google Scholar
Biesma, D.H., van de Wiel, A., Benguin, Y., Kraaijenhagen, R., Marx, J.J.M.. Postoperative erythropoiesis is limited by the inflammatory effect of surgery on iron metabolism. Eur J Clin Invest 1995; 25:383389.Google Scholar
van Iperen, C.E., Kraaijenhagen, R.J., Biesma, D.H., et al. Iron metabolism and erythropoiesis after surgery. Br J Surg 1998; 85:4145.Google Scholar
Böhrer, H., Quintel, M., Fischer, M.V.. Clinical evaluation of electrostimulation anesthesia for hysterectomy. Acta Anaesthesiol Scand 1991; 35:529534.CrossRefGoogle ScholarPubMed
Carson, J.L., Spence, R.K., Poses, R.M., Bonavita, G.. Severity of anaemia and operative mortality and morbidity. Lancet 1988; 1:727729.Google Scholar
Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology 2006; 105:198–208.Google Scholar
Lau, K.K.W., Utukuri, M.M., Ramachandran, M., Jones, D.H.. Iron supplementation for postoperative anaemia following major paediatric orthopaedic surgery. Ann R Coll Surg Engl 2007; 89:4446.Google Scholar
Parker, M.J.. Iron supplementation for anemia after hip fracture surgery: a randomized trial of 300 patients. J Bone Joint Surg Am 2010; 92:265269.Google Scholar
Berniere, J., Dehuliu, J.P., Gail, O., Murat, I.. Intravenous iron in the treatment of postoperative anemia in the surgery of the spine in infants and adolescents. Rev Chir Orthop Reparatrice Appar Mot 1998; 84:319322.Google Scholar
Munoz, M., Naveira, E., Seara, J., et al. Role of parenteral iron in transfusion requirements after total knee replacement: a pilot study. Transfus Med 2006; 16:137142.Google Scholar
Madi-Jebara, S.N., Sleilaty, G.S., Achouh, P.E., et al. Postoperative intravenous iron used alone or in combination with low-dose erythropoietin is not effective for the correction of anemia after cardiac surgery. J Cardiothorac Vasc Anesth 2004; 18:5963.CrossRefGoogle Scholar
Karkouti, K., McCluskey, S.A., Ghannam, M., et al. Intravenous iron and recombinant erythropoietin for the treatment of postoperative anemia. Can J Anaesth 2006; 53:1119.Google Scholar
von Drygalski, A., Andris, D.A.. Anemia after bariatric surgery: more than just iron deficiency. Nutr Clin Pract 2009; 24:217226.CrossRefGoogle ScholarPubMed
Jeong, O., Park, Y.K.. Effect of intravenous iron supplementation for acute postoperative anemia in patients undergoing gastrectomy for gastric carcinoma: a pilot study. Ann Surg Oncol 2014; 21:547552.Google Scholar

References

Hines, R., Barash, P.G., Watrous, G., O’Connor, T.. Complications occurring in the postanesthesia care unit; a survey. Anesth Analg 1992; 74: 503509.Google Scholar
ASA Task Force. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology 2006; 105: 198208.Google Scholar
Dagi, T.F.. The management of postoperative bleeding. Surg Clin N Am 2005; 85: 11911213.Google Scholar
Marietta, M., Facchini, L., Pedrazzi, P., Busani, S., Torelli, G.. Pathophysiology of bleeding in surgery. Transplant Proc 2006; 38: 812814.Google Scholar
Dolich, M.O., McKenney, M.G., Varela, J.E., et al. 2,576 ultrasounds for blunt abdominal trauma. J Trauma Acute Care Surg 2001; 50: 108112.Google Scholar
Levy, J.H., Szlam, F., Tanaka, K.A., Sniecisnki, R.M.. Fibrinogen and hemostasis: a primary hemostatic target for the management of acquired bleeding. Anesth Analg 2012; 114: 261274.Google Scholar
Lynn, M., Jeroukhimov, I., Klein, Y., Martinowitz, U.. Updates in the management of severe coagulopathy in trauma patients. Intensive Care Med 2002; 28: S241S247.Google Scholar
Brenni, M., Worn, M., Bruesch, M., Spahn, D.R., Ganter, M.T.. Successful rotational thromboelastometry‐guided treatment of traumatic haemorrhage, hyperfibrinolysis and coagulopathy. Acta Anaesthesiol Scand 2010; 54: 111117.Google Scholar
Ogawa, S., Szlam, F., Chen, E.P., et al. A comparative evaluation of rotation thromboelastometry and standard coagulation tests in hemodilution‐induced coagulation changes after cardiac surgery. Transfusion 2011; 52: 1422.Google Scholar
Johnston, T.D., Chen, Y., Reed, R.L.. Functional equivalence of hypothermia to specific clotting factor deficiencies. J Trauma 1994; 37: 413417.Google Scholar
Harke, H., Rahman, S.. Haemostatic disorders in massive transfusion. Bibl Haematol 1980; 46: 179188.Google Scholar
Repine, T.B., Perkins, J.G., Kauvar, D.S., et al. The use of fresh whole blood in massive transfusion. J Trauma Acute Care Surg 2006; 60: S59S69.Google Scholar
Dzik, W.H., Kirkley, S.A.. Citrate toxicity during massive blood transfusion. Transfus Med Rev 1988; 2: 7694.Google Scholar
Perioperative red cell transfusion. NIH Consensus Development Conference: Consensus Statement 1988; 7: 27–29.Google Scholar
Arya, R.C., Wander, G.S., Gupta, P.. Blood component therapy: which, when and how much. J Anaesthesiol Clin Pharm 2011; 27: 278284.Google Scholar
Koch, C., Li, L., Sessler, D.I., et al. Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 2008; 358: 12291239.Google Scholar
Vlaar, A.P.J., Binnekade, J.M., Prins, D., et al. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood 2011; 117: 42184225.Google Scholar
Bennett-Guerrero, E., Veldman, T.H., Doctor, A., et al. Evolution of adverse changes in stored RBCs. Proc Natl Acad Sci U S A 2007; 104: 1706317068.Google Scholar
Robinson, W.P., Ahn, J., Stifler, A., et al. Blood transfusion is an independent predictor of increased mortality in nonoperatively managed blunt hepatic and splenic injuries. J Trauma Acute Care Surg 2005; 58: 437445.Google Scholar
Holcomb, J.B., Wade, C.E., Michalek, J.E., et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg 2008; 248: 447458.Google Scholar
Cooper, E.S., Bracey, A.W., Horvath, A.E., et al. Practice parameters for the use of fresh frozen plasma, cryoprecipitate, and platelets. JAMA 1994; 271: 777781.Google Scholar
Chowdhury, P., Saayman, A.G., Paulus, U., Findlay, G.P., Collins, P.W.. Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol 2004; 125: 6973.Google Scholar
Marik, P.E., Corwin, H.L.. Acute lung injury following blood transfusion: expanding the definition. Crit Care Med 2008; 36: 30803084.Google Scholar
Mayer, S.A., Brun, N.C., Begtrup, K., et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2008; 358: 21272137.Google Scholar
Boffard, K.D., Riou, B., Warren, B., et al. Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma 2005; 59: 815.Google Scholar
Karkouti, K., Beattie, W.S., Wijeysundara, D.N., et al. Recombinant factor VIIa for intractable blood loss after cardiac surgery: a propensity score–matched case‐control analysis. Transfusion 2004; 45: 2634.Google Scholar
Levi, M., Levy, J.H., Anderson, H.F., Truloff, D.. Safety of recombinant activated factor VII in randomized clinical trials. New Engl J Med 2010; 363: 17911800.Google Scholar
Kaufmann, J.E., Vischer, U.M.. Cellular mechanisms of the hemostatic effects of desmopressin (DDAVP). J Thromb Haemost 2003; 1: 682689.Google Scholar

References

Sandin, R.H., Enlund, G., Samuelsson, P., Lennmarken, C.. Awareness during anaesthesia: a prospective case study. Lancet 2000; 355:707711.Google Scholar
Sebel, P.S., Bowdle, T.A., Ghoneim, M.M., et al. The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg 2004; 99:833839.Google Scholar
Errando, C.L., Sigl, J.C., Robles, M., et al. Awareness with recall during general anaesthesia: a prospective observational evaluation of 4001 patients. Br J Anaesth 2008; 101:178185.Google Scholar
Xu, L., Wu, A.S., Yue, Y.. The incidence of intraoperative awareness during general anesthesia in China: a multicenter observational study. Acta Anaesthesiol Scand 2009; 53:873882.Google Scholar
Pandit, J., Cook, T., Jonker, W., O'Sullivan, E.. A national survey of anaesthetists (NAP 5 baseline) to estimate an annual incidence of accidental awareness during general anaesthesia in the UK. Br J Anaesth 2013; 110:501509Google Scholar
Sanders, R.D., Tononi, G., Laureys, S., Sleigh, J.W.. Unresponsiveness ≠ unconsciousness. Anesthesiology 2012; 116:946959.Google Scholar
Bruchas, R.R., Kent, C.D., Wilson, H.D., Domino, K.B.. Anesthesia awareness: narrative review of psychological sequelae, treatment, and incidence. J Clin Psychol Med Settings 2011; 18:257267.Google Scholar
Leslie, K., Chan, M.T.V., Myles, P.S., Forbes, A., McCulloch, T.J.. Posttraumatic stress disorder in aware patients from the b-aware trial. Anesth Analg 2010; 110:823828.Google Scholar
Whitlock, E.L., Rodebaugh, T.L., Hasset, A.L., et al. Psychological sequalae of surgery in a prospective cohort of patients from three intraoperative awareness prevention trials. Anesth Analg 2015; 120:8795.Google Scholar
Mashour, G.A., Esaki, R.K., Tremper, K.K., et al. A novel classification instrument for intraoperative awareness events. Anesth Analg 2010; 100:813815.Google Scholar
Leslie, K., Sleigh, J., Paech, M.J., et al. Dreaming and electroencephalographic changes during anesthesia maintained with propofol or desflurane. Anesthesiology 2009; 111:547555.Google Scholar
Russell, I.F.. The Narcotrend ‘depth of anaesthesia’ monitor cannot reliably detect consciousness during general anaesthesia: an investigation using the isolated forearm technique. Br J Anaesth 2006; 96:346352.Google Scholar
Russell, I.F.. The ability of bispectral index to detect intraoperative wakefulness during total intravenous anesthesia compared with the isolated forearm technique. Anaesthesia 2013; 68:502511.Google Scholar
Ghoneim, M.M., Block, R.J., Haffarman, M., Matthews, J.. Awareness during anesthesia: risk factors, causes and sequel. A review of reported cases in the literature. Anesth Analg 2009; 108:527535.Google Scholar
Arake, A., Gradwhol, S., Ben-Abdallah, A., et al. Increased risk of intraoperative awareness in patients with a history of awareness. Anesthesiology 2013; 119:12751283.CrossRefGoogle Scholar
Brice, D.D., Hetherington, R.R., Utting, J.E.. A simple study of awareness and dreaming during anaesthesia. Br J Anaesth 1970; 42:535542.Google Scholar
Nordström, O., Engström, A.M., Persson, S., Sandin, R.. Incidence of awareness in total i.v. anaesthesia based on propofol, alfentanil and neuromuscular blockade. Acta Anaesthesiol Scand 2008; 41:978984.Google Scholar
Guerra, F.. Awareness during anaesthesia. Can Anaesth Soc J 1980; 27:178.Google Scholar
Mashour, G.A., Wang, L.Y., Esaki, R.K., Naughton, N.N.. Operating room desensitization as a novel treatment for post-traumatic stress disorder after intraoperative awareness. Anesthesiology 2008; 109:927929.Google Scholar
Apfelbaum, J.L., Arens, J.F., Cole, D.J., et al. Practice advisory for intraoperative awareness and brain function monitoring. Anesthesiology 2006; 104:847864.Google Scholar
Joint Commission Sentinel Alert Issue 32 October 6, 2004. Preventing, and managing the impact of, anesthesia awareness. http://www.jointcommission.org/assets/1/18/SEA_32.PDF. Accessed 12/1/2104.Google Scholar
Wei, M.. Doctors, apologies, and the law: an analysis and critique of apology laws. J Health Law 2007; 40:107159.Google Scholar
Robbennolt, J.K.. Apologies and settlement. Court Rev 2009; 45:9097.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Signs and symptoms
  • Edited by James W. Heitz
  • Book: Post-Anesthesia Care
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139519557.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Signs and symptoms
  • Edited by James W. Heitz
  • Book: Post-Anesthesia Care
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139519557.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Signs and symptoms
  • Edited by James W. Heitz
  • Book: Post-Anesthesia Care
  • Online publication: 05 August 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139519557.004
Available formats
×