Skip to main content Accessibility help
Hostname: page-component-7d684dbfc8-4nnqn Total loading time: 0 Render date: 2023-09-27T23:08:20.580Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

11 - Plasticity and Restoration after Visual System Damage: Clinical Applications of the “Residual Vision Activation Theory”


Published online by Cambridge University Press:  05 January 2013

Carolin Gall
Otto-von-Guericke University of Magdeburg Medical Faculty
Bernhard A. Sabel
Otto-von-Guericke University of Magdeburg Medical Faculty
Jennifer K. E. Steeves
York University, Toronto
Laurence R. Harris
York University, Toronto
Get access


In this chapter, we discuss the recently proposed residual vision activation theory that is based on both human and animal studies (Sabel, Henrich-Noack, et al., 2011). The central point of the theory is that partially damaged brain systems have a particularly good potential for restoration of vision. Fortunately, in the clinical world, complete visual system lesions are extremely rare because complete damage is only found in total eye or optic nerve damage or some severe congenital defects. As a consequence, even in patients considered to be legally blind, there is almost always some degree of residual vision and hence restoration potential.

This chapter focuses on human studies and therapeutic applications that build on the “residual vision activation theory.” We discuss work with patients that suffered postretinal lesions to the central visual pathway. Although visual fields may recover spontaneously to some extent, after the first few weeks or months following damage, this recovery no longer continues in most cases. Therefore, we focus on the time after this initial recovery and consider the effects of training procedures and noninvasive alternating current stimulation as an innovative mean to kindle vision restoration long after the lesion has occurred. Both treatment approaches restore visual fields, mainly in areas that were not absolutely blind but have some residual capacities. The nature of residual vision, its measurement, and the role of activating residual vision as a means to promote recovery of vision are discussed.

Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Antal, A., Artl, S., Nitsche, M. A., Chadaide, Z. and Paulus, W. (2006). Higher variability of phosphene thresholds in migraineurs than in controls: a consecutive transcranial magnetic stimulation study. Cephalalgia, 26: 865–870.Google Scholar
Antal, A., Boros, K., Poreisz, C., Chaieb, L., Terney, D. and Paulus, W. (2008). Comparatively weak after- effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul., 1: 97–105.Google Scholar
Antal, A., Kincses, T. Z., Nitsche, M. A. and Paulus, W. (2003). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 41: 1802–1807.Google Scholar
Bak, M.,Girvin, J. P., Hambrecht, F. T., Kufta, C. V., Loeb, G. E. and Schmidt, E.M. (1990). Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med. Biol. Eng. Comput., 28: 257–259.Google Scholar
Balliett, R., Blood, K. M. and Bach-y-Rita, P. (1985). Visual field rehabilitation in the cortically blind?J. Neurol. Neurosurg. Psychiatry, 48: 1113–1124.Google Scholar
Bebie, H., Fankhauser, F. and Spahr, J. (1976). Static perimetry: accuracy and fluctuations. Acta Ophthalmol., 54: 339–348.Google Scholar
Bechtereva, N. P., Bondartchuk, A. N., Gretchin, V. B., Iliukhina, V. A., Kambarova, D. K., Matveev, Y. K., Pozdeev, V. K., Petuschkov, E. P., Smirnov, V. M. and Shandurina, A. N. (1972). Structural-functional organization of the human brain and the pathophysiology of the Parkinsonian type hyperkineses. Confin. Neurol., 34: 14–17.Google Scholar
Bechtereva, N. P., Shandurina, A. N., Khilko, V. A., Lyskov, E. B.,Matveev, Y. K., Panin, A. V. and Nikolsky, A. V. (1985). Clinical and physiological basis for a new method underlying rehabilitation of the damaged visual nerve function by direct electric stimulation. Int. J. Psychophysiol., 2: 257–272.Google Scholar
Brindley, G. S. and Lewin, W. S. (1968). The sensations produced by electrical stimulation of the visual cortex. J. Physiol., 96: 479–493.Google Scholar
Brindley, G. S. and Rushton, D. N. (1977). Observations on the representation of the visual field on the human occipital cortex. In F. T., Hambrecht and J. B., Reswick (eds.), Functional Electrical Stimulation: Applications in Neural Prostheses. New York: Marcel Dekker, pp. 261–276.
Brodtmann, A., Puce, A., Darby, D. and Donnan, G. (2009). Serial functional imaging poststroke reveals visual cortex reorganization. Neurorehabil. Neural Repair, 23: 150–159.Google Scholar
Chaieb, L., Antal, A. and Paulus, W. (2008). Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Vis. Neurosci., 25: 77–81.Google Scholar
Chibisova, A. N., Fedorov, A. B. and Fedorov, N. A. (2001). Neurophysiological characteristics of compensation-recovery processes in the brain during rehabilitation of the neurosensory impairment of the visual and acoustic systems. Fiziol. Cheloveka., 27: 14–21.Google Scholar
Chokron, S., Perez, C., Obadia, M., Gaudry, I., Laloum, L. and Gout, O. (2008). From blindsight to sight: cognitive rehabilitation of visual field defects. Restor. Neurol. Neurosci., 26: 305–320.Google Scholar
Cole, S. R., Beck, R. W., Moke, P. S., Gal, R. L. and Long, D. T. (2000). The National Eye Institute Visual Function Questionnaire: experience of the ONTT. Invest. Ophthalmol. Vis. Sci., 41: 1017–1021.Google Scholar
Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z. and Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nat. Neurosci., 8: 1603–1610.Google Scholar
Cowey, A. and Stoerig, P. (1991). The neurobiology of blindsight. Trends Neurosci., 14: 140–145.Google Scholar
Darian-Smith, C. and Gilbert, C. D. (1995). Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J. Neurosci., 15: 1631–1647.Google Scholar
Dilks, D. D., Serences, J. T., Rosenau, B. J., Yantis, S. and McCloskey, M. (2007). Human adult cortical reorganization and consequent visual distortion. J. Neurosci., 27: 9585–9594.Google Scholar
Dobelle, W. H. and Mladejovsky, M. G. (1974). Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol., 243: 553–576.Google Scholar
Dobelle, W. H., Mladejovsky, M. G., Evans, J. R., Roberts, T. S. and Girvin, J. P. (1976). “Braille” reading by a blind volunteer by visual cortex stimulation. Nature, 259: 111–112.Google Scholar
Dobelle, W. H., Mladejovsky, M. G. and Girvin, J. P. (1974). Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science, 183: 440–444.Google Scholar
Dohle, C. I., Eysel, U. T. and Mittmann, T. (2009). Spatial distribution of long-term potentiation in the surround of visual cortex lesions in vitro. Exp. Brain Res., 199: 423–433.Google Scholar
Dor, H. (1873). Beiträge zur Electrotherapie der Augenkrankheiten. Graefes Arch. Clin. Exp. Ophthalmol., 19: 316–352.Google Scholar
Eysel, U. T. (1997). Perilesional cortical dysfunction and reorganization. In H.-J., Freund, B. A., Sabel and O. W., Witte (eds.), Brain Plasticity. Adv. Neurol., 73: 195–206.
Eysel, U. T. and Grüsser, O.-J. (1978). Increased transneuronal excitation of the cat lateral geniculate nucleus after acute differentiation. Brain Res., 158: 107–128.Google Scholar
Fedorov, A., Jobke, S., Bersnev, V., Chibisova, A., Chibisova, Y., Gall, C. and Sabel, B. A. (2011). Restoration of vision after optic nerve lesions with non-invasive alternative current stimulation: a clinical observational study. Brain Stimul., 4: 189–201.Google Scholar
Fedorov, A. B., Chibisova, A. M. and Tchibissova, J. M. (2005). Impulse modulating therapeutic electrical stimulation (IMTES) increases visual field size in patients with optic nerve lesions. Int. Congr. Series, 1282: 525–529.
Förster, O. (1929). Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J. Psychol. Neurol., 39: 435–463.Google Scholar
Franke, G. H. and Gall, C. (2008). Quality of life – methodology and clinical practice aspects with a focus on ocular medicine. Ophthalmologe, 105: 727–734.Google Scholar
Fujikado, T., Morimoto, T., Matsushita, K., Shimojo, H., Okawa, Y. and Tano, Y. (2006). Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn. J. Ophthalmol., 50: 266–273.Google Scholar
Gall, C., Antal, A. and Sabel, B. A. (in press). Noninvasive electrical brain stimulation induces vision restoration in patients with visual pathway damage. Graefes Arch. Clin. Exp. Ophthal.
Gall, C., Fedorov, A. B., Ernst, L., Borrmann, A. and Sabel, B. A. (2010). Repetitive transorbital alternating current stimulation in optic neuropathy. Neurorehabilitation, 27: 335–341.Google Scholar
Gall, C., Lucklum, J., Sabel, B. A. and Franke, G. H. (2009). Vision- and health-related quality of life in patients with visual field loss after postchiasmatic lesions. Invest. Ophthalmol. Vis. Sci., 50: 2765–2776.Google Scholar
Gall, C.,Mueller, I., Gudlin, J., Lindig, A., Schlüter, D., Jobke, S., Franke, G. H. and Sabel, B. A. (2008). Vision- and health-related quality of life before and after vision restoration training in cerebrally damaged patients. Restor. Neurol. Neurosci., 26: 341–353.Google Scholar
Gall, C., Mueller, I., Kaufmann, C., Franke, G. H. and Sabel, B. A. (2008). Zerebral bedingte Gesichtsfelddefekte aus Patientensicht. Gesundheitsbezogene und sehspezifische LebensqualitÃ/t unter Verwendung des SF-36 und des NEI-VFQ. Nervenarzt, 79: 185–194.Google Scholar
Gall, C., Sgorzaly, S., Schmidt, S., Brandt, S., Fedorov, A. and Sabel, B. A. (2011). Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Brain Stimul., 4: 175–188.Google Scholar
Giannikopoulos, D. V. and Eysel, U. T. (2006). Dynamics and specificity of cortical map reorganization after retinal lesions. Proc. Natl. Acad. Sci. USA, 103: 10805–10810.Google Scholar
Gilbert, C. D. (1998). Adult cortical dynamics. Physiol. Rev., 78: 467–485.Google Scholar
Gilbert, C. D., Sigman, M. and Crist, R. E. (2001). The neural basis of perceptual learning. Neuron, 31, 681–697.CrossRefGoogle Scholar
Gilbert, C. D. and Wiesel, T. N. (1992). Receptive field dynamics in adult primary visual cortex. Nature, 356: 150–152.Google Scholar
Gothe, J., Brandt, S. A., Irlbacher, K., Röricht, S., Sabel, B. A. and Meyer, B. U. (2002). Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain, 125: 479–490.Google Scholar
Greenwald, M. J. and Parks, M. M. (1999). Treatment of amblyopia. In T., Duane (ed.), Clinical Ophthalmology, Vol. 1. Hagerstown, MD: Harper and Row.
Guenther, T., Mueller, I., Preuss, M., Kruse, R. and Sabel, B. A. (2009). Treatment outcome prediction model of visual field recovery using self-organizing-maps. IEEE Trans. Biomed. Eng., 56: 572–581.Google Scholar
Henrich-Noack, P., Gorkin, A. G., Krautwald, K., Pforte, C., Schröder, U. H. and Reymann, K. G. (2005). Tetanus-induced re-activation of evoked spiking in the post-ischemic dentate gyrus. Neuroscience, 133: 571–581.Google Scholar
Henriksson, L., Raninen, A., Näsänen, R., Hyvärinen, L. and Vanni, S. (2007). Training-induced cortical representation of a hemianopic hemifield. J. Neurol. Neurosurg. Psychiatry, 78: 74–81.Google Scholar
Holmes, G. (1918). Disturbances of visual orientation. Br. J. Ophthalmol., 2: 449–506.Google Scholar
Huemmeke, M., Eysel, U. T. and Mittmann, T. (2004). Lesion-induced enhancement of LTP in rat visual cortexis mediated by NMDA receptors containing the NR2B subunit. J. Physiol., 559: 875–882.Google Scholar
Imbrosci, B., Eysel, U. T. and Mittmann, T. (2010). Metaplasticity of horizontal connections in the vicinity of laser lesions in rat visual cortex. J. Physiol., 588: 4695–4703.Google Scholar
Jobke, S., Kasten, E. and Sabel, B. A. (2009). Vision restoration through extrastriate stimulation in patients with visual field defects – a double-blind and randomized experimental study. Neurolrehabil. Neural Repair, 23: 246–255.Google Scholar
Julkunen, L., Tenovuo, O., Jääskeläinen, S. K. and Hämäläinen, H. (2003). Rehabilitation of chronic post-stroke visual field defect with computer-assisted training: a clinical and neurophysiological study. Restor. Neurol. Neurosci., 21: 19–28.Google Scholar
Julkunen, L., Tenovuo, O., Vorobyev, V., Hiltunen, J., Teräs, M., Jääskeläinen, S. K. and Hämäläinen, H. (2006). Functional brain imaging, clinical and neurophysiological outcome of visual rehabilitation in a chronic stroke patient. Restor. Neurol. Neurosci., 24: 123–132.Google Scholar
Kasten, E., Bunzenthal, U. and Sabel, B. A. (2006). Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study. Behav. Brain Res., 175: 18–26.Google Scholar
Kasten, E. and Sabel, B. A. (1995). Visual field enlargement after computer training in brain-damaged patients with homonymous deficits: an open pilot trial. Restor. Neurol. Neurosci., 8: 113–127.Google Scholar
Kasten, E., Wüst, S., Behrens-Baumann, W. and Sabel, B. A. (1998). Computer-based training for the treatment of partial blindness. Nat. Med., 4: 1083–1087.Google Scholar
Kasten, E.,Wüst, S. and Sabel, B. A. (1998). Residual vision in transition zones in patients with cerebral blindness. J. Clin. Exp. Neuropsychol., 20: 581–598.Google Scholar
Kerkhoff, G., Münßinger, U., Eberle-Strauss, G. and Stögerer, E. (1992). Rehabilitation of hemianopic alexia in patients with postgeniculate visual field disorders. Neuropsychol. Rehabil., 2: 21–42.Google Scholar
Kerkhoff, G., Münßinger, U., Haaf, E., Eberle-Strauss, G. and Stögerer, E. (1992). Rehabilitation of homonymous scotomata in patients with postgeniculate damage of the visual system: saccadic compensation training. Restor. Neurol. Neurosci., 4: 245–254.Google Scholar
Kerkhoff, G., Münßinger, U. and Meier, E. K. (1994). Neurovisual rehabilitation in cerebral blindness. Arch. Neurol., 51: 474–481.Google Scholar
Kerkhoff, G. and Schindler, I. (2000). Möglichkeiten und Grenzen restorativer Trainingsmethoden bei prä- und postchiasmatischen Skotomen. Z. Neuropsychol., 11: 82–85.Google Scholar
Kölmel, H. W. (1985). Complex visual hallucinations in the hemianopic field. J. Neurol. Neurosurg. Psychiatry, 48: 29–38.Google Scholar
Kölmel, H. W. (1993). Visual illusions and hallucinations. Bailleres Clin. Neurol., 2: 243–264.Google Scholar
Korsholm, K., Madsen, K. H., Frederiksen, J. L., Rowe, J. B. and Lund, T. E. (2008). Cortical neuroplasticity in patients recovering from acute optic neuritis. Neuroimage, 42: 836–844.Google Scholar
Korsholm, K., Madsen, K. H., Frederiksen, J. L., Skimminge, A. and Lund, T. E. (2007). Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas. Brain, 130: 1244–1253.Google Scholar
Levin, N.,Orloy, T., Dotan, S. and Zohary, E. (2006). Normal and abnormal fMRI activation patterns in the visual cortex after recovery from optic neuritis. Neuroimage, 33: 1161–1168.Google Scholar
Marshall, R. S., Ferrera, J. J., Barnes, A., Xian, Z., O'Brian, K. A., Chmayssani, M., Hirsch, J. and Lazar, R.M. (2008). Brain activity associated with stimulation therapy of the visual borderzone in hemianopic stroke patients. Neurorehabil. Neural Repair, 22: 136–144.Google Scholar
Merabet, L. B. (2011). Building the bionic eye: an emerging reality and opportunity. Prog. Brain Res., 192: 3–15.Google Scholar
Mueller, I., Gall, C., Kasten, E. and Sabel, B. A. (2008). Long-term learning of visual functions in patients after brain damage. Behav. Brain Res., 191: 32–42.Google Scholar
Mueller, I., Poggel, D. A., Kenkel, S., Kasten, E. and Sabel, B. A. (2003). Vision restoration therapy (VRT) after brain damage: subjective improvements of activities of daily life and their relationship to visual field enlargements. Vis. Impair. Res., 5: 157–178.Google Scholar
Nelles, G., Widman, G., de Greiff, A., Meistrowitz, A., Dimitrova, A., Weber, J., Forsting, M., Esser, J. and Diener, H. C. (2002). Brain representation of hemifield stimulation in poststroke visual field defects. Stroke, 33: 1286–1293.Google Scholar
Pambakian, A. L., Currie, J. and Kennard, C. (2005). Rehabilitation strategies for patients with homonymous visual field defects. J. Neuroophthalmol., 25: 136–142.Google Scholar
Papageorgiou, E., Hardiess, G., Schaeffel, F., Wiethoelter, H., Karnath, H. O., Mallot, H., Schoenfisch, B. and Schiefer, U. (2007). Assessment of vision-related quality of life in subjects with homonymous visual field defects. Graefes Arch. Clin. Exp. Ophthalmol., 245: 1749–1758.Google Scholar
Paramei, G. V. and Sabel, B. A. (2008). Contour integration deficits on the intact side of the visual field in hemianopic patients. Behav. Brain Res., 188: 109–124.Google Scholar
Pasik, T. and Pasik, P. (1973). Extrageniculostriate vision in the monkey. IV. Critical structures for light vs. no-light discrimination. Brain Res., 56: 165–182.Google Scholar
Poggel, D. A.,Kasten, E.Sabel, B. A. (2004). Attentional cueing improves vision restoration therapy in patients with visual field defects. Neurology, 63: 2069–2076.Google Scholar
Poggel, D. A., Müller-Oehring, E. M., Gothe, J., Kenkel, S., Kasten, E. and Sabel, B. A. (2007). Visual hallucinations during spontaneous and training-induced visual field recovery. Neuropsychologia, 45: 2598–2607.Google Scholar
Poggel, D. A., Mueller, I., Kasten, E., Bunzenthal, U. and Sabel, B. A. (2010). Subjective and objective outcome measures of computer-based vision restoration training. NeuroRehabilitation, 27: 173–187.Google Scholar
Poggel, D. A.,Mueller, I., Kasten, E. and Sabel, B. A. (2008). Multifactorial predictors and outcome variables of vision restoration training in patients with postgeniculate visual field loss. Restor. Neurol. Neurosci., 26: 321–339.Google Scholar
Poggel, D. A., Kasten, E., Müller-Oehring, E. M., Bunzenthal, U. and Sabel, B. A. (2006). Improving residual vision by attentional cueing in patients with brain lesions. Brain Res., 1097: 142–148.
Polat, U.,Ma-Naim, T.,Belkin, M. and Sagi, D. (2004). Improving vision in adult amblyopia by perceptual learning. Proc. Natl. Acad. Sci. USA, 101: 6692–6697.Google Scholar
Pollen, D. A. (1977). Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav. Evol., 14: 67–86.Google Scholar
Pöppel, E., Held, R. and Frost, D. (1973). Residual visual function after brain wounds involving the central visual pathways in man. Nature, 243: 295–296.Google Scholar
Poppelreuther, W. (1917). Die psychischen Schädigungen durch Kopfschuss im Kriege 1914–1916. Bd. I. Die Störungen der niederen und höheren Sehleistungen durch Verletzungen des Okzipitalhirns. Leipzig: L. Voss.
Prieto-Diaz, J. S.-D. C. (2000). Strabismus (4th ed.), Boston: Butterworth-Heinemann.
Prilloff, S., Noblejas, M. I., Chedhomme, V. and Sabel, B. A. (2007). Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics. Eur. J. Neurosci., 25: 3339–3346.Google Scholar
Raemaekers, M., Bergsma, D. P., van Wezel, R. J., van der Wildt, G. J. and van den Berg, A. V. (2011). Effects of vision restoration training on early visual cortex in patients with cerebral blindness investigated with functional magnetic resonance imaging. J. Neurophysiol., 105: 872–882.Google Scholar
Raninen, A., Vanni, S., Hyvärinen, L. and Näsänen, R. (2007). Temporal sensitivity in a hemianopic visual field can be improved by long-term training using flicker stimulation. J. Neurol. Neurosurg. Psychiatry, 78: 66–73.Google Scholar
Reinhard, J., Schreiber, A., Schiefer, U., Kasten, E., Sabel, B. A., Kenkel, S., Vonthein, R. and Trauzettel-Klosinski, S. (2005). Does visual restitution training change absolute homonymous visual field defects? A fundus controlled study. Br. J. Ophthalmol., 89: 30–35.Google Scholar
Riddoch, G. (1917). Dissociation of visual perceptions due to occipital injuries with special reference to appreciation of movement. Brain, 40: 15–57.Google Scholar
Romano, J. G., Schulz, P., Kenkel, S. and Todd, D. P. (2008). Visual field changes after a rehabilitation intervention: vision restoration therapy. J. Neurol. Sci., 273: 70–74.Google Scholar
Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A. and Thut, G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb. Cortex, 18: 2010–2018.Google Scholar
Romei, V., Rihs, T., Brodbeck, V. and Thut, G. (2008). Resting electroencephalogram alphapower over posterior sites indexes baseline visual cortex excitability. Neuro Report, 19: 203–208.Google Scholar
Roth, T., Sokolov, A. N., Messias, A., Roth, P., Weller, M. and Trauzettel-Klosinski, S. (2009). Comparing explorative saccade and flicker training in hemianopia: a randomized controlled study. Neurology, 72: 324–331.Google Scholar
Russ, M. O., Cleff, U., Lanfermann, H., Schalnus, R., Enzensberger, W. and Kleinschmidt, A. (2002). Functional magnetic resonance imaging in acute unilateral optic neuritis. J. Neuroimaging, 12, 339–350.CrossRefGoogle Scholar
Sabel, B. A. (1997). Unrecognized potential of surviving neurons:within-systems plasticity, recovery of function and the hypothesis of the minimal residual structure. Neuroscientist, 3: 366–370.Google Scholar
Sabel, B. A., Fedorov, A. B., Naue, N., Borrmann, A., Herrmann, C. and Gall, C. (2011). Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor. Neurol. Neurosci., 29: 493–505.Google Scholar
Sabel, B. A., Henrich-Noack, P., Fedorov, A. and Gall, C. (2011). Vision restoration after brain and retina damage: the “residual vision activation theory.”Prog. Brain Res., 192: 199–262.Google Scholar
Sabel, B. A. and Kasten, E. (2000). Restoration of vision by training of residual functions. Curr. Opin. Ophthalmol., 11: 430–436.Google Scholar
Sabel, B. A., Kenkel, S. and Kasten, E. (2004). Vision restoration therapy (VRT) efficacy as assessed by comparative perimetric analysis and subjective questionnaires. Restor. Neurol. Neurosci., 22: 399–420.Google Scholar
Sahraie, A., Trevethan, C. T., MacLeod, M. J., Murray, A. D., Olson, J. A. and Weiskrantz, L. (2006). Increased sensitivity after repeated stimulation of residual spatial channels in blindsight. Proc. Natl. Acad. Sci. USA, 103: 14971–14976.Google Scholar
Sakaguchi, H., Fujikado, T., Kanda, H., Osanai, M., Fang, X. Y., Nakauchi, K., Ikuno, Y., Kamei, M., Ohji, M., Yagi, T. and Tano, Y. (2004). Electrical stimulation with a needle type electrode placed into the optic nerve in rabbit eyes. Jpn. J. Ophthalmol., 48: 552–557.Google Scholar
Sale, A., De Pasquale, R., Bonaccorsi, J., Pietra, G., Oliveri, D., Berardi, N. and Maffei, L. (2010). Visual perceptual learning induces LTP in the visual cortex. Neuroscience, 172: 219–225.Google Scholar
Sanders, M. D., Warrington, E. K., Marshall, J. and Weiskrantz, L. (1974). “Blindsight”: Vision in a field defect. Lancet, 1: 707–708.Google Scholar
Sautter, J. and Sabel, B. A. (1993). Recovery of brightness discrimination in adult rats despite progressive loss of retrogradely labelled retinal ganglion cells after controlled optic nerve crush. Eur. J. Neurosci., 5: 680–690.Google Scholar
Schadow, J., Dettler, N., Paramei, G. V., Lenz, D., Fründ, I., Sabel, B. A. and Herrmann, C. (2009). Impairments of Gestalt perception in the intact hemifield of hemianopic patients are reflected in gamma-band EEG activity. Neuropsychologia, 47: 556–568.Google Scholar
Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. V., Rourke, D. K. O. and Vallabhanath, P. (1996). Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119: 507–522.Google Scholar
Schmielau, F. and Wong, E. K. Jr., (2007). Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment. J. Neuroeng. Rehabil., 4: 31.Google Scholar
Schoenfeld, M. A., Noesselt, T., Poggel, D., Tempelmann, C., Hopf, J.-M., Woldorff, M. G., Heinze, H. J. and Hillyard, S. A. (2002). Analysis of pathwaysmediating preserved vision after striate cortex lesions. Ann. Neurol., 52: 814–824.Google Scholar
Sprague, J.M. (1966). Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science, 153: 1544–1547.Google Scholar
Stoerig, P. (2006). Blindsight, conscious vision, and the role of primary visual cortex. Prog. Brain Res., 155: 217–234.Google Scholar
Stoerig, P. (2008). Functional rehabilitation of partial cortical blindness?Restor. Neurol. Neurosci., 26, 291–303.Google Scholar
Stoerig, P. and Cowey, A. (1997). Blindsight in man and monkey. Brain, 120, 535–559.CrossRefGoogle Scholar
Talacchi, A., Ganau, M. and Gerosa, M. (2010). Recovery from hemianopsia after surgical removal of spontaneous occipital haemorrhage. Br. J. Neurosurg., 24: 205–207.Google Scholar
Tan, C. S. and Sabel, B.A. (2006). Dynamic changes in visual acuity as the pathophysiologic mechanism in Charles Bonnet syndrome (visual hallucinations). Eur. Arch. Psychiatry Clin. Neurosci., 256: 62–63.Google Scholar
Tan, C. S., Sabel, B. A. and Goh, K. Y. (2006). Visual hallucinations during visual recovery after central retinal artery occlusion. Arch. Neurol., 63: 598–600.Google Scholar
Toosy, A. T., Hickman, S. J., Miszkiel, K. A., Jones, S. J., Plant, G. T., Altmann, D. R., Barker, G. J., Miller, D. H. and Thompson, A. J. (2005). Adaptive cortical plasticity in higher visual areas after acute optic neuritis. Ann. Neurol., 57: 622–633.Google Scholar
Toosy, A. T., Werring, D. J., Bullmore, E. T., Plant, G. T., Barker, G. J., Miller, D. H. and Thompson, A. J. (2002). Functional magnetic resonance imaging of the cortical response to photic stimulation in humans following optic neuritis recovery. Neurosci. Lett., 330: 255–259.Google Scholar
von Noorden, G. K. (1981). New clinical aspects of stimulus deprivation amblyopia. Am. J. Ophthalmol., 92: 416–421.Google Scholar
Voronin, L., Byzov, A., Kleschevnikov, A., Kozhemyakin, M., Kuhnt, U. and Volgushev, M. (1995). Neurophysiological analysis of long-term potentiation in mammalian brain. Behav. Brain Res., 66: 45–52.Google Scholar
Wabbels, B. K., Diehm, S. and Kolling, G. (2005). Continuous light increment perimetry compared to full threshold strategy in glaucoma. Eur. J. Ophthalmol., 15: 722–729.Google Scholar
Waleszczyk, W. J., Wang, C., Young, J. M., Burke, W., Calford, M. B. and Dreher, B. (2003). Laminar differences in plasticity in area 17 following retinal lesions in kittens or adult cats. Eur. J. Neurosci., 17: 2351–2368.Google Scholar
Weil, R. S.,Watkins, S. and Rees, G. (2008). Neural correlates of perceptual completion of an artificial scotoma in human visual cortexmeasured using functional MRI. Neuroimage, 42: 1519–1528.Google Scholar
Weiskrantz, L. (1996). Blindsight revisited. Curr. Opin. Neurobiol., 6: 215–220.Google Scholar
Weiskrantz, L. (2009). Is blindsight just degraded normal vision?Exp. Brain Res., 192: 413–416.Google Scholar
Weiskrantz, L., Warrington, E. K., Sanders, M. D. and Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97: 709–728.Google Scholar
Werring, D. J., Bullmore, E. T., Toosy, A. T., Miller, D. H., Barker, G. J., MacManus, D. G., Brammer, M. J., Giampietro, V. P., Brusa, A., Brex, P. A., Moseley, I. F. and Plant, G. T. (2000). Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J. Neurol. Neurosurg. Psychiatry, 68: 441–449.Google Scholar
Werth, R. (2008). Cerebral blindness and plasticity of the visual system in children: a review of visual capacities in patients with occipital lesions, hemispherectomy or hydranencephaly. Restor. Neurol. Neurosci., 26: 377–389.Google Scholar
Widdig, W., Pleger, B., Rommel, O., Malin, J. P. and Tegenthoff, M. (2003). Repetitive visual stimulation: a neuropsychological approach to the treatment of cortical blindness. Neuro Rehabilitation, 18: 227–237.Google Scholar
Wood, C. C., Spear, P. D. and Braun, J. J. (1974). Effects of sequential lesions of suprasylvian gyri and visual cortex on pattern discrimination in the cat. Brain Res., 66: 443–466.Google Scholar
Wyatt, H. J., Dul, M.W. and Swanson, W. H. (2007). Variability of visual field measurements is correlated with the gradient of visual sensitivity. Vision Res., 47: 925–936.Google Scholar
Zaehle, T., Rach, S. and Herrmann, C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE, 5: e13766.Google Scholar
Zhang, X., Kedar, S., Lynn, M. J., Newman, N. J. and Biousse, V. (2006). Natural history of homonymous hemianopia. Neurology, 66: 901–905.Google Scholar
Zihl, J., Pöppel, E. and von Cramon, D. (1977). Diurnal variation of visual field size in patients with postretinal lesions. Exp. Brain Res., 27: 245–249.Google Scholar
Zihl, J. and von Cramon, D. (1979). Restitution of visual function in patients with cerebral blindness. J. Neurol. Neurosurg. Psychiatry, 42: 312–322.Google Scholar
Zihl, J. and von Cramon, D. (1985). Visual field recovery from scotoma in patients with postgeniculate damage: a review of 55 cases. Brain, 108: 335–365.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats