Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-04T04:15:50.911Z Has data issue: false hasContentIssue false

11 - Chronology of Planetesimal Differentiation

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 224 - 245
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelin, Y. 2008. U–Pb ages of angrites. Geochimica et Cosmochimica Acta, 72, 221232.CrossRefGoogle Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. 2010. U–Pb chronology of the solar system’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.CrossRefGoogle Scholar
Baker, J. A., Schiller, M., and Bizzarro, M. 2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early solar system? Geochimica et Cosmochimica Acta, 77, 415431.CrossRefGoogle Scholar
Bouvier, A., Spivak-Birndorf, L. J., Brennecka, G. A., and Wadhwa, M. 2011. New constraints on early solar system chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta, 75, 53105323.CrossRefGoogle Scholar
Bouvier, A. and Wadhwa, M. 2010. The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.CrossRefGoogle Scholar
Brennecka, G. A. and Wadhwa, M. 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early solar system. Proceedings of the National Academy of Sciences of the United States of America, 109, 92999303.CrossRefGoogle ScholarPubMed
Brennecka, G. A., Weyer, S., Wadhwa, M. et al. 2010. 238U/235U variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science, 327, 449451.CrossRefGoogle ScholarPubMed
Burkhardt, C., Kleine, T., Palme, H., et al. 2008. Hf–W mineral isochron for Ca, Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta, 72, 61776197.CrossRefGoogle Scholar
Campbell, A. J. and Humayun, M. 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta, 69, 47334744.CrossRefGoogle Scholar
Chabot, N. L. 2004. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 36073618.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338 , 651655.CrossRefGoogle ScholarPubMed
Day, J. M. D., Walker, R. J., Qin, L., and Rumble Iii, D. 2012. Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614617.CrossRefGoogle Scholar
Glavin, D. P., Kubny, A., Jagoutz, E., and Lugmair, G. W. 2004. Mn–Cr isotope systematics of the D’Orbigny angrite. Meteoritics & Planetary Science, 39, 693700.CrossRefGoogle Scholar
Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., and Wadhwa, M. 2015. The uranium isotopic composition of the Earth and the solar system. Geochimica et Cosmochimica Acta, 148, 145158.CrossRefGoogle Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. 1973. Identification of early condensates from solar nebula. Icarus, 20, 213239.CrossRefGoogle Scholar
Grossman, L. 1980. Refractory inclusions in the Allende meteorite. Annual Review of Earth and Planetary Sciences, 8, 559608.CrossRefGoogle Scholar
Hans, U., Kleine, T., and Bourdon, B. 2013. Rb–Sr chronology of volatile depletion in differentiated pro-toplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters, 374, 204214.CrossRefGoogle Scholar
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.CrossRefGoogle Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013) 182Hf–182W dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early solar system. Proceedings of the National Academy of Sciences of the United States of America, 110, 88198823.CrossRefGoogle ScholarPubMed
Hopkins, M., Mojzsis, S., Bottke, W., and Abramov, O. 2015. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245, 367378.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.CrossRefGoogle Scholar
Kita, N. T., Huss, G. R., Tachibana, S., et al. 2005. Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the Protoplanetary Disk, ed. Krot, A. N., Scott, E. R. D., and Reipurth, B.. San Francisco, CA: Astronomical Society of the Pacific, 558587.Google Scholar
Kleine, T., Münker, C., Mezger, K., and Palme, H. 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952955.CrossRefGoogle ScholarPubMed
Kleine, T., Mezger, K., Münker, C., Palme, H., and Bischoff, A., 2004. 182Hf–182W isotope systematics of chondrites, eucrites, and Martian meteorites: Chronology of core formation and mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta, 68, 29352946.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. 2005a. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. 2005b. The W isotope composition of eucrites metal: Constraints on the timing and cause of the thermal metamorphism of basaltic eucrites. Earth and Planetary Science Letters, 231 , 4152.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. 2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta, 73, 49634997.CrossRefGoogle Scholar
Kruijer, T. S., Fischer-Gödde, M., Kleine, T., et al. 2013. Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals. Earth and Planetary Science Letters, 361, 162172.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. 2014a. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth and Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. 2014b. Protracted core formation and rapid accretion of protoplanets. Science, 344 , 11501154.CrossRefGoogle ScholarPubMed
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T., 2004. Initial 26Al/27Al in carbonaceous-chondrite chondrules: Too little 26Al to melt asteroids. Geochimica et Cosmochimica Acta, 68, 29472957.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, L37.Google Scholar
Leya, I., Wieler, R., and Halliday, A. N. 2003. The influence of cosmic-ray production on extinct nuclide systems. Geochimica et Cosmochimica Acta, 67, 529541.CrossRefGoogle Scholar
Lugmair, G. W. and Shukolyukov, A. 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.CrossRefGoogle Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S. and Davis, A. M., 2012. Well-resolved variations in the formation ages for Ca‚ Al-rich inclusions in the early solar system. Earth and Planetary Science Letters, 331332, 4354.Google Scholar
Mandler, B. E. and Elkins-Tanton, L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Markowski, A., Quitté, G., Halliday, A. N., and Kleine, T. 2006. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects. Earth and Planetary Science Letters, 242, 115.CrossRefGoogle Scholar
McCoy, T. J., Mittlefehldt, D. W. and Wilson, L. 2006. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 733745.CrossRefGoogle Scholar
Misawa, K., Yamaguchi, A., and Kaiden, H., 2005. U–Pb and Pb-207–Pb-206 ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochimica et Cosmochimica Acta, 69, 58475861.CrossRefGoogle Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. Papike, J. J.. Washington, DC: Mineralogical Society of America, ch. 4.Google Scholar
Moskovitz, N. and Gaidos, E. 2011. Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics & Planetary Science, 46, 903918.CrossRefGoogle Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.CrossRefGoogle Scholar
Nyquist, L. E., Kleine, T., Shih, C. Y., and Reese, Y. 2009. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary alteration. Geochimica et Cosmochimica Acta, 73, 51155136.CrossRefGoogle Scholar
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J., and Janney, P. E. 2008. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth and Planetary Science Letters, 273, 94-104.CrossRefGoogle Scholar
Righter, K. and Shearer, C. K. 2003. Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars. Geochimica et Cosmochimica Acta, 67, 24972507.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. S., and Masarik, J. 2006. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.CrossRefGoogle Scholar
Schiller, M., Baker, J. A., and Bizzarro, M. 2010. 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta, 74, 48444864.CrossRefGoogle Scholar
Schiller, M., Baker, J., Creech, J., et al. 2011. Rapid timescales for magma ocean crystallization on the howardite–eucrite–diogenite parent body. The Astrophysical Journal Letters, 740, L22.CrossRefGoogle Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T., and Bizzarro, M. 2015. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 420, 4554.CrossRefGoogle ScholarPubMed
Schoenberg, R., Kamber, B. S., Collerson, K. D., and Eugster, O. 2002. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochimica et Cosmochimica Acta, 66, 31513160.CrossRefGoogle Scholar
Scott, E. R. D. 1972. Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36, 12051236.CrossRefGoogle Scholar
Scott, E. R. D. and Wasson, J. T. 1975. Classification and properties of iron meteorites. Reviews of Geophysics, 13, 527546.CrossRefGoogle Scholar
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. E. 2009. 26Al–26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta, 73, 52025211.CrossRefGoogle Scholar
Taylor, G. J. 1992. Core formation in asteroids. Journal of Geophysical Research – Planets, 97, 1471714726.CrossRefGoogle Scholar
Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B., and Kleine, T. 2015. Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.CrossRefGoogle Scholar
Trinquier, A., Birck, J. L., Allègre, C. J., Göpel, C., and Ulfbeck, D. 2008. 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. 2009. Homogeneous distribution of Al-26 in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle Scholar
Wasserburg, G. J., Wimpenny, J., and Yin, Q. Z. 2012. Mg isotope heterogeneity, Al–Mg isochrons, and canonical 26Al/27Al in the early solar system Meteoritics & Planetary Science, 47, 19801997.CrossRefGoogle Scholar
Wasson, J. T. and Huber, H. 2006. Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core. Geochimica et Cosmochimica Acta, 70, 61536167.CrossRefGoogle Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.CrossRefGoogle Scholar
Wittig, N., Humayun, M., Brandon, A. D., Huang, S., and Leya, I. 2013. Coupled W–Os–Pt isotope systematics in IVB iron meteorites: In situ neutron dosimetry for W isotope chronology. Earth and Planetary Science Letters, 361, 152161.CrossRefGoogle Scholar
Yamaguchi, A., Taylor, G. J., and Keil, K. 1996. Global crustal metamorphism of the eucrite parent body. Icarus, 124, 97112.CrossRefGoogle Scholar
Yin, Q. Z., Jacobsen, S. B., Yamashita, K., et al. 2002. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 418, 949952.CrossRefGoogle Scholar
Zhou, Q., Yin, Q. Z., Young, E. D., et al. 2013. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×