Skip to main content Accessibility help
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T22:16:26.447Z Has data issue: false hasContentIssue false

5 - Plagues, Populations and Survival

Published online by Cambridge University Press:  24 March 2017

Steven J. O'brien
Cornell University
Jonathan L. Heeney
University of Cambridge
Sven Friedemann
University of Bristol
Get access


The rush of whole genome sequences spurred by the human genome project has heralded a new way to explore unknown events in our pre-history. Using gene sequences from the genome we are able to mine the vast amount of genetic information coming out of genome sequences from humans and animal species. Certain genetic patterns or ‘footprints’ allow us to deduce ancient defining events in the natural history of a species. Just as early palaeontologists dug up the fossil remains of extinct species, ‘genetic archaeologists’ are beginning to reconstruct the origins of genomic patterns and to link them to ancient demographic events. Modern diseases that clog wards in the world's hospitals represent a major challenge to human health. Historically, such diseases were a selective regulator on a species, the genetically strong individuals survived an infectious disease outbreak and the weak perished. Those that survived passed on the good, beneficial genes to their descendants who later had the right genetics that gave their immune systems an advantage the next time the same type of disease came along. Past interactions between pathogens which had genes that allowed them to quickly adapt finely tuned ever-evolving immune defences that we and other species have developed to protect us from pathogenic organisms. This represents a biological puzzlement that is only beginning to be deciphered. Here, I illustrate how we learn of the acquired, hidden lessons of survival, adaptation and genome evolution by examining natural history from within the genomes of animals and humans. In so doing, we are able to provide an early glimpse of the coming discipline of genomic archaeology. I will illustrate this with examples from ‘The Plague’ (Yesinia pestis, the cause of the black death), SARS and HIV/AIDS. Furthermore, I will describe how scientists have been able to track the emergence and progression of deadly outbreaks, sometimes revealing unfathomed threats to the very existence of a population or the whole species. Examples will include how this new science is able to unlock medical secrets that someday may be used to prevent the extinction of a species.

Infectious diseases, genomes and the arms race

The delicate balance between host species and their pathogens is akin to a deadly arms race, waged fiercely every day multiplied by individuals and populations in different geographical settings. These events are to a different extent recapitulated over the approximately 62,000 species of vertebrates that survive on earth today.

Plagues , pp. 114 - 135
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Garrett, L. (1994) The Coming Plague. Penguin: New York.
2. Drazen, J.M. (2003) SARS–looking back over the first 100 days. N Engl J Med 349:319–20.Google Scholar
3. Drosten, C., Preiser, W., Gunther, S., Schmitz, H., Doerr, H.W. (2003) Severe acute respiratory syndrome: Identification of the etiological agent. Trends Mol Med 9:325–7.Google Scholar
4. Holmes, K.V. (2003) SARS-associated coronavirus. N Engl J Med 348:1948–51.Google Scholar
5. Enserink, M. (2013) SARS: Chronology of the epidemic. Science 339:1266–71.Google Scholar
6. Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Li, P.H., Zhang, L.J., Guan, Y.J., Butt, K.M., Wong, K.L., Chan, K.W., Lim, W., Shortridge, K.F., Yuen, K.Y., Peiris, J.S., Poon, L.L. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–8.Google Scholar
7. Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Leung, S.Y., Chan, K.H., Yuen, K.Y. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 102:14040–5.Google Scholar
8. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B.T., Zhang, S., Wang, L.F. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–9.Google Scholar
9. Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Woo, P.C., Suen, K.Y., Yuen, K.Y., Guan, Y., Peiris, J.S. (2005) Identification of a novel coronavirus in bats. J Virol 79:2001–9.Google Scholar
10. Savarino, A. (2005) Expanding the frontiers of existing antiviral drugs: possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol 34:170–8.Google Scholar
11. Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., Xi, D., Li, C., Liu, Y., Cao, A., Lai, L. (2006) The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun 339:865–72.Google Scholar
12. Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C. (1997) Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J Am Vet Med Assoc 210:1313–18.Google Scholar
13. Ballesteros, M.L., Sanchez, C.M., Enjuanes, L. (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–88.Google Scholar
14. Sanchez, C.M., Izeta, A., Sanchez-Morgado, J.M., Alonso, S., Sola, I., Balasch, M., Plana-Duran, J., Enjuanes, L. (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73:7607–18.Google Scholar
15. Heeney, J.L., Evermann, J.F., McKeirnan, A.J., Marker-Kraus, L., Roelke, M.E., Bush, M., Wildt, D.E., Meltzer, D.G., Colly, L., Lukas, J., et al. (1990) Prevalence and implications of feline coronavirus infections of captive and free-ranging cheetahs (Acinonyx jubatus). J Virol 64:1964–72.Google Scholar
16. O'Brien, S.J., Roelke, M.E., Marker, L., Newman, A., Winkler, C.A., Meltzer, D., Colly, L., Evermann, J.F., Bush, M., Wildt, D.E. (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–34.Google Scholar
17. Evermann, J.F., Heeney, J.L., Roelke, M.E., McKeirnan, A.J., O'Brien, S.J. (1988) Biological and pathological consequences of feline infectious peritonitis virus infection in the cheetah. Arch Virol 102:155–71.Google Scholar
18. Wilkerson, A.J. Pearks, Teeling, E.C., Troyer, J.L., Bar-Gal, G.K., Roelke, M., Marker, L., Pecon-Slattery, J., O'Brien, S.J. (2004) Coronavirus outbreak in cheetahs: Lessons for SARS. Curr Biol 14:R227–28.Google Scholar
19. Menotti-Raymond, M., O'Brien, S.J. (1993) Dating the genetic bottleneck of the African cheetah. Proc Natl Acad Sci USA 90:3172–6.Google Scholar
20. Yuhki, N., Beck, T., Stephens, R.M., Nishigaki, Y., Newmann, K., O'Brien, S.J. (2003) Comparative genome organization of human, murine, and feline MHC class II region. Genome Res 13:1169–79.Google Scholar
21. Yuhki, N., O'Brien, S.J. (1990) DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. Proc Natl Acad Sci USA 87:836–40.Google Scholar
22. CDC (1981). MMWR Kaposi's sarcoma and pneumocystis pneumonia among homosexual men – New York City and California – Los Angeles. MMWR Morb Mortal Wkly Rep 1981, 30:250–2; ibid. 305–8.
23. Pedersen, N.C., Ho, E.W., Brown, M.L., Yamamoto, J.K. (1987) Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–3.Google Scholar
24. Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., Johnson, W., VandeWoude, S., Vazquez-Salat, N., Brown, M., Frank, L., Woodroffe, R., Winterbach, C., Winterbach, H., Hemson, G., Bush, M., Alexander, K.A., Revilla, E., O'Brien, S.J. (2005) Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. J Virol 79:8282–94.Google Scholar
25. Olmsted, R.A., Langley, R., Roelke, M.E., Goeken, R.M., Adger-Johnson, D., Goff, J.P., Albert, J.P., Packer, C., Laurenson, M.K., Caro, T.M., et al. (1992) Worldwide prevalence of lentivirus infection in wild feline species: Epidemiologic and phylogenetic aspects. J Virol 66:6008–18.Google Scholar
26. Carpenter, M.A., O'Brien, S.J. (1995) Coadaptation and immunodeficiency virus: Lessons from the Felidae. Curr Opin Genet Dev 5:739–45.Google Scholar
27. Antunes, A., Troyer, J.L., Roelke, M.E., Pecon-Slattery, J., Packer, C., Winterbach, C., Winterbach, H., Hemson, G., Frank, L., Stander, P., et al. (2008) The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics. PLoS Genet 4:e1000251.Google Scholar
28. Packer, C., Altizer, S., Appel, M., Brown, E., Martenson, J., O'Brien, S.J., Roelke-Parker, M., Hofmann-Lehmann, R., Lutz, H. (1999) Viruses of the Serengeti: Patterns of infection and mortality in African lions. J Anim Ecol 68:1161–78.Google Scholar
29. Roelke, M.E., Brown, M.A., Troyer, J.L., Winterbach, H., Winterbach, C., Hemson, G., Smith, D., Johnson, R.C., Pecon-Slattery, J., Roca, A.L., et al. (2009) Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions. Virology 390:1–12.Google Scholar
30. Pecon-Slattery, J., Troyer, J.L., Johnson, W.E. O'Brien, S.J.: Evolution of feline immunodeficiency virus in Felidae: implications for human health and wildlife ecology. Vet Immunol Immunopathol 123:32–44, 2008.Google Scholar
31. O'Brien, Stephen J., Troyer, Jennifer L., Brown, Meredith A., Johnson, Warren E., Antunes, Agostinho, Roelke, Melody E., Pecon-Slattery, Jill (2012) Emerging Viruses in the Felidae: Shifting Paradigms Viruses 4:236–57.Google Scholar
32. Keele, B.F., Jones, J.H., Terio, K.A., Estes, J.D., Rudicell, R.S., Wilson, M.L., Li, Y., Learn, G.H., Beasley, T.M., Schumacher-Stankey, J., et al. (2009) Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460:515–19.Google Scholar
33. Weiss, R.A., Heeney, J.L. (2009) Infectious Diseases,; An ill wind for chimps. Nature 460:470–1.Google Scholar
34. Carpenter, M.A., Appel, M.J., Roelke-Parker, M.E., Munson, L., Hofer, H., East, M., O'Brien, S.J. (1998) Genetic characterization of canine distemper virus in Serengeti carnivores. Vet Immunol Immunopathol 65:259–66.Google Scholar
35. Roelke-Parker, M.E., Munson, L., Packer, C., Kock, R., Cleaveland, S., Carpenter, M., O'Brien, S.J., Pospischil, A., Hofmann-Lehmann, R., Lutz, H., et al. (1996) A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 379:441–5.Google Scholar
36. Brown, E.W., Yuhki, N., Packer, C., O'Brien, S.J. (1994) A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects. J Virol 68:5953–68.Google Scholar
37. Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., Black, L., Packer, C., O'Brien, S.J. (2004) Patterns of feline immunodeficiency virus multiple infection and genome divergence in a free-ranging population of African lions. J Virol 78:3777–91.Google Scholar
38. Brown, E.W., Miththapala, S., O'Brien, S.J. (1993) Prevalence of exposure to feline immunodeficiency virus in exotic felid species. J Zoo Wildl Med 24:357–64.Google Scholar
39. Troyer, J.L., Roelke, M.E., Jespersen, J.M., Baggett, N., Buckley-Beason, V., Macnulty, D., Craft, M., Packer, C., Pecon-Slattery, J., O'Brien, S.J. (2011) FIV diversity: FIV(Ple) subtype composition may influence disease outcome in African lions. Vet Immunol Immunopathol 143:338–46.Google Scholar
40. Pecon-Slattery, J., Troyer, J.L., Johnson, W.E., O'Brien, S.J. (2008) Evolution of feline immunodeficiency virus in Felidae: Implications for human health and wildlife ecology. Vet Immunol Immunopathol 123:32–44.Google Scholar
41. VandeWoude, S., Hageman, C.L., Hoover, E.A. (2002) Domestic cats infected with lion or puma lentivirus develop anti-feline immunodeficiency virus immune responses. J Acquir Immune Defic Syndr 2003(34):20–31.Google Scholar
42. An, P., Winkler, C.A. (2010) Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet 26:119–31.Google Scholar
43. O'Brien, S.J., Nelson, G.W. (2004) Human genes that limit AIDS. Nat Genet 36:565–74.Google Scholar
44. O'Brien, S.J., Hendrickson, S. (2013) Host genomic influences on HIV/AIDS. Genome Biology 14:201.Google Scholar
45. Dean, M., Carrington, M., Winkler, C., Huttley, G.A., Smith, M.W., Allikmets, R., Goedert, J.J., Buchbinder, S.P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R., O'Brien, S.J. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–62.Google Scholar
46. Liu, R., Paxton, W.A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., MacDonald, M.E., Stuhlmann, H., Koup, R.A., Landau, N.R. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–77.Google Scholar
47. Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C., Farber, C.M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R.J., Collman, R.G., Doms, R.W., Vassart, G., Parmentier, M. (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–5.Google Scholar
48. Aquaro, S., D'Arrigo, R., Svicher, V., Perri, G.D., Caputo, S.L., Visco-Comandini, U., Santoro, M., Bertoli, A., Mazzotta, F., Bonora, S., Tozzi, V., Bellagamba, R., Zaccarelli, M., Narciso, P., Antinori, A., Perno, C.F. (2006) Specific mutations in HIV-1 gp41 are associated with immunological success in HIV-1-infected patients receiving enfuvirtide treatment. J Antimicrob Chemother 58:714–22.Google Scholar
49. Dorr, P., Westby, M., Dobbs, S., Griffin, P., Irvine, B., Macartney, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., Perros, M. (2005)Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49:4721–32.Google Scholar
50. Manfredi, R., Sabbatani, S. (2006) A novel antiretroviral class (fusion inhibitors) in the management of HIV infection: Present features and future perspectives of enfuvirtide (T-20). Curr Med Chem J 13:2369–84.Google Scholar
51. Hedrick, Philip W., Verrelli, Brian C. (2006) ‘Ground Truth’ for selection on CCR5-Δ32. Trends Genet 22:293–6.Google Scholar
52. Allers, K., Hütter, G., Hofmann, J., Loddenkemper, C., Rieger, K., Thiel, E., Schneider, T. (2011) Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117:2791–9.Google Scholar
53. Cohen, J. (2011) The emerging race to cure HIV infections. Science 332:784–9.Google Scholar
54. Hutter, G., Nowak, D., Mossner, M., Ganepola, S., Mussig, A., Allers, A., Schneider, T., Hofmann, J., Kucherer, C, Blau, O., Blau, I., Hofmann, W.K., Thiel, E. (2009) Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. New Engl J Med 360:692–8.Google Scholar
55. June, C., Levine, B. (2012) Blocking HIV's attack. Sci Am 3:54–9.Google Scholar
56. Tebas, P., Stein, D., Tang, W.W., Frank, I., Wang, S.Q., Lee, G., Spratt, S.K., Surosky, R.T., Giedlin, M.A., Nichol, G., Holmes, M.C., Gregory, P.D., Ando, D.G., Kalos, M., Collman, R.G., Binder-Scholl, G., Plesa, G., Hwang, W.T., Levine, B.L., June, C.H. (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar 6;370(10):901–10. doi: 10.1056/NEJMoa1300662.Google Scholar
57. Reshef, R, Luger, SM, Hexner, EO, Loren, AW, Frey, NV, Nasta, SD, Goldstein, SC,Stadtmauer, EA, Smith, J, Bailey, S, Mick, R, Heitjan, DF, Emerson, SG, Hoxie, JA, Vonderheide, RH, Porter, DL: Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med 2012, 367:135–145.Google Scholar
58. Glass, W.G., Lim, J.K., Cholera, R., Pletnev, A.G., Gao, J.L., Murphy, P.M. (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202:1087–98.Google Scholar
59. Glass, W.G., McDermott, D.H., Lim, J.K., Lekhong, S., Yu, S.F., Frank, W.A., Pape, J., Cheshier, R.C., Murphy, P.M. (2006) CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med. 2006 Jan 23;203(1):35–40.Google Scholar
60. Willett, B.J., Flynn, J.N., and Hosie, M.J. 1997. FIV infection of the domestic cat: an animal model for AIDS. Immunol. Today 18:182–189.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats