Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-24rpz Total loading time: 0.764 Render date: 2022-10-07T04:14:29.602Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true
Object Categorization Object Categorization
Computer and Human Vision Perspectives
Buy print or eBook[Opens in a new window]

Book contents

21 - Spatial Pyramid Matching

Published online by Cambridge University Press:  20 May 2010

Sven J. Dickinson
Affiliation:
University of Toronto
Aleš Leonardis
Affiliation:
University of Ljubljana
Bernt Schiele
Affiliation:
Technische Universität, Darmstadt, Germany
Michael J. Tarr
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

Introduction

This chapter deals with the problem of whole-image categorization. We may want to classify a photograph based on a high-level semantic attribute (e.g., indoor or outdoor), scene type (forest, street, office, etc.), or object category (car, face, etc.). Our philosophy is that such global image tasks can be approached in a holistic fashion: It should be possible to develop image representations that use low-level features to directly infer high-level semantic information about the scene without going through the intermediate step of segmenting the image into more “basic” semantic entities. For example, we should be able to recognize that an image contains a beach scene without first segmenting and identifying its separate components, such as sand, water, sky, or bathers. This philosophy is inspired by psychophysical and psychological evidence that people can recognize scenes by considering them in a “holistic” manner, while overlooking most of the details of the constituent objects (Oliva and Torralba 2001). It has been shown that human subjects can perform high-level categorization tasks extremely rapidly and in the near absence of attention (Thorpe et al. 1996; Fei-Fei et al. 2002), which would most likely preclude any feedback or detailed analysis of individual parts of the scene.

Renninger and Malik (2004) have proposed an orderless texture histogram model to replicate human performance on “pre-attentive” classification tasks. In the computer vision literature, more advanced orderless methods based on bags of features (Csurka et al. 2004) have recently demonstrated impressive levels of performance for image classification.

Type
Chapter
Information
Object Categorization
Computer and Human Vision Perspectives
, pp. 401 - 415
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
25
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×