Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-s4zlt Total loading time: 0.478 Render date: 2022-10-07T03:09:32.454Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true
Object Categorization Object Categorization
Computer and Human Vision Perspectives
Buy print or eBook[Opens in a new window]

Book contents

12 - Object Categorization in Man, Monkey, and Machine: Some Answers and Some Open Questions

Published online by Cambridge University Press:  20 May 2010

Sven J. Dickinson
Affiliation:
University of Toronto
Aleš Leonardis
Affiliation:
University of Ljubljana
Bernt Schiele
Affiliation:
Technische Universität, Darmstadt, Germany
Michael J. Tarr
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

Introduction

Understanding how the brain performs object categorization is of significant interest for cognitive neuroscience as well as for machine vision. In the past decade, building on earlier efforts (Fukushima 1980; Perrett and Oram 1993; Wallis and Rolls 1997), there has been significant progress in understanding the neural mechanisms underlying object recognition in the brain (Kourtzi and DiCarlo 2006; Peissig and Tarr 2007; Riesenhuber and Poggio 1999b; Riesenhuber and Poggio 2000; Riesenhuber and Poggio 2002; Serre et al. 2007a). There is now a quantitative computational model of the ventral visual pathway in primates that models rapid object recognition (Riesenhuber and Poggio 1999b; Serre et al. 2007a), putatively based on a single feedforward pass through the visual system (Thorpe and Fabre-Thorpe 2001). The model has been validated through a number of experiments that have confirmed nontrivial qualitative and quantitative predictions of the model (Freedman et al. 2003; Gawne and Martin 2002; Jiang et al. 2007; Jiang et al. 2006; Lampl et al. 2004). In the domain of machine vision, the success of the biological model in accounting for human object recognition performance (see, e.g., (Serre et al. 2007b)) has led to the development of a family of biologically inspired machine vision systems (see, e.g., (Marin-Jimenez and Perez de la Blanca, 2006; Meyers and Wolf, 2008; Mutch and Lowe, 2006; Serre et al. 2007c)).

Type
Chapter
Information
Object Categorization
Computer and Human Vision Perspectives
, pp. 216 - 240
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×