Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.446 Render date: 2022-08-20T05:01:31.205Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true
Object Categorization Object Categorization
Computer and Human Vision Perspectives
Buy print or eBook[Opens in a new window]

Book contents

11 - Learning Hierarchical Compositional Representations of Object Structure

Published online by Cambridge University Press:  20 May 2010

Sven J. Dickinson
Affiliation:
University of Toronto
Aleš Leonardis
Affiliation:
University of Ljubljana
Bernt Schiele
Affiliation:
Technische Universität, Darmstadt, Germany
Michael J. Tarr
Affiliation:
Carnegie Mellon University, Pennsylvania
Get access

Summary

Introduction

Visual categorization of objects has captured the attention of the vision community for decades (Dickinson 2008). The increased popularity of the problem witnessed in recent years and the advent of powerful computer hardware have led to a seeming success of categorization approaches on the standard datasets such as Caltech-101 (Fei-Fei et al. 2004). However, the high level of discrepancy between the accuracy of object classification and detection/segmentation (Everingham et al. 2007) suggests that the problem still poses a significant and open challenge. The recent preoccupation with tuning the approaches to specific datasets might have averted attention from the most crucial issue: the representation (Edelman and Intrator 2004).

This chapter focuses on what we believe are two central representational design principles: a hierarchical organization of categorical representations, or, more specifically, the principles of hierarchical compositionality and statistical, bottom-up learning.

Given images of complex scenes, objects must be inferred from the pixel information through some recognition process. This requires an efficient and robust matching of the internal object representation against the representation produced from the scene. Despite the seemingly effortless performance of human perception, the diversity and the shear number of visual object classes appearing at various scales, 3-D views, and articulations have placed a great obstacle to the task. In fact, it has been shown by Tsotsos (1990) that the unbounded visual search is NP complete; thus, approximate, hierarchical solutions might be the most promising or plausible way to tackle the problem. This line of architecture is also consistent with the findings on biological systems (Rolls and Deco 2002; Connor et al. 2007).

Type
Chapter
Information
Object Categorization
Computer and Human Vision Perspectives
, pp. 196 - 215
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
11
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×