Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T19:05:46.497Z Has data issue: false hasContentIssue false

51 - The genetics of amyotrophic lateral sclerosis

from Part IX - Motor neuron diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Ammar Al-Chalabi
Affiliation:
Department of Neurology, Institute of Psychiatry, London, UK
Robert H. Brown
Affiliation:
Cecil B. Day Neuromuscular Laboratory, Massachusetts General Hospital East, Charlestown, MA, USA
Get access

Summary

Models of inheritance

The genetics of a disease such as amyotrophic lateral sclerosis (ALS) require some flexibility in thinking about familiality compared with the genetics of isolated cases. About 10% of the time, an individual who develops ALS also has first-degree relatives who have been affected. For the remainder, the disease is said to be sporadic, but detailed investigation of the family tree may occasionally reveal that cousins or other more distant relatives have been affected. ALS can therefore be seen as a disease with an inheritance pattern that lies on a continuum from sporadic disease, to familial clustering to clear Mendelian familiality. For simplicity we have maintained the conventional separation of familial and sporadic disease, but as will become obvious, this distinction is largely artificial.

Familial ALS and the first descriptions

The concepts of genetics were coming into being at about the same time as the earliest descriptions of motor neuron diseases. Mendel presented his classic paper in 1865 (Mendel, 1865) in which he described his famous sweet pea hybridization experiments. He did not use the term gene or genetic to describe the heritable units but called them “formative elements.” Cambridge Professor of Biology William Bateson coined the term “genetics” (from the Greek “to generate”) in 1905 when applying for a university chair in a letter to the Cambridge zoologist, Adam Sedgwick. He wrote, “Such a word is badly wanted and if it were desirable to coin one, Genetics might do.”

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 758 - 771
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abalkhail, H., Mitchell, J., Habgood, J., Orrell, R. & Belleroche, J. (2003). A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1–16q12.2. Am. J. Hum. Genet., 73, 383–9CrossRefGoogle ScholarPubMed
Ahmad-Annuar, A., Shah, P., Hafezparast, M.et al. (2003). No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 4, 150–7CrossRefGoogle ScholarPubMed
Al-Chalabi, A., Andersen, P. M., Chioza, B.et al. (1998). Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Hum. Mol. Genet., 7, 2045–50CrossRefGoogle Scholar
Al-Chalabi, A., Andersen, P. M., Nilsson, P.et al. (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet., 8, 157–64CrossRefGoogle ScholarPubMed
Al-Chalabi, A., Enayat, Z. E., Bakker, M. C.et al. (1996). Association of apolipoprotein E epsilon 4 allele with bulbar-onset motor neuron disease. Lancet, 347, 159–60CrossRefGoogle ScholarPubMed
Al-Chalabi, A., Hansen, V. K., Simpson, C. L.et al. (2003a). Variants in the ALS2 gene are not associated with sporadic amyotrophic lateral sclerosis. NeurogeneticsCrossRefGoogle Scholar
Al-Chalabi, A., Scheffler, M. D., Smith, B. N.et al. (2003b). Ciliary neurotrophic factor genotype does not influence clinical phenotype in amyotrophic lateral sclerosis. Ann. Neurol., 54, 130–4CrossRefGoogle Scholar
Alexander, M. D., Traynor, B. J., Miller, N.et al. (2002). “True” sporadic ALS associated with a novel SOD-1 mutation. Ann. Neurol., 52, 680–3CrossRefGoogle ScholarPubMed
Andersen, P. M., Forsgren, L., Binzer, M.et al. (1996). Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain, 119, 1153–72CrossRefGoogle ScholarPubMed
Andersen, P. M., Nilsson, P., Ala-Hurula, V.et al. (1995). Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat. Genet., 10, 61–6CrossRefGoogle ScholarPubMed
Andersen, P. M., Nilsson, P., Keranen, M. L.et al. (1997). Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain, 10, 1723–37CrossRefGoogle Scholar
Andersen, P. M., Sims, K. B., Xin, W. W.et al. (2003). Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 4, 62–73CrossRefGoogle ScholarPubMed
Bachus, R., Bader, S., Gessner, R. & Ludolph, A. C. (1997). Lack of association of apolipoprotein e epsilon 4 allele with bulbar-onset motor neuron disease. Ann. Neurol., 41, 417CrossRefGoogle ScholarPubMed
Bateson, W. (1906). Address. In Third Conference on Hybridisation, Cambridge, UK
Beckman, G. (1973). Population studies in northern Sweden. VI. Polymorphism of superoxide dismutase. Hereditas, 73, 305–10CrossRefGoogle ScholarPubMed
Ben Hamida, M., Hentati, F. & Ben Hamida, C. (1990). Hereditary motor system diseases (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. Brain, 113, 347–63CrossRefGoogle ScholarPubMed
Chance, P. F., Rabin, B. A., Ryan, S. G.et al. (1998). Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. American Journal of Human Genetics, 62, 633–40CrossRefGoogle ScholarPubMed
Charcot, J. M. & Joffroy, A. (1869). Deux cas d'atrophie musculaire progressive avec lesions de la substance grise et des faisceaux antero-lateraux de la moelle epiniere. Arch. Physiol., Neurol. Pathol., 2, 744Google Scholar
Chen, Y. Z., Beunett, C. L., Huynh, H. M.et al. (2004). DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet., 74(6), 1128–35CrossRefGoogle Scholar
Corcia, P., Mayeux-Portas, V., Khoris, J.et al. (2002). Abnormal SMN1 gene copy number is a susceptibility factor for amyotrophic lateral sclerosis. Ann. Neurol., 51, 243–6CrossRefGoogle ScholarPubMed
Crow, J. F. (2000). The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet., 1, 40–7CrossRefGoogle ScholarPubMed
Cudkowicz, M. E., McKenna-Yasek, D., Sapp, P. E.et al. (1997). Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis [see comments]. Ann. Neurol., 41 (2), 210–21CrossRefGoogle Scholar
Devon, R., Helm, J., Rouleau, G.et al. (2003). The first nonsense mutation in alsin results in a homogeneous phenotype of infantile-onset ascending spastic paralysis with bulbar involvement in two siblings. Clin. Genet., 64, 210–15CrossRefGoogle Scholar
Dhaliwal, G. K. & Grewal, R. P. (2000). Mitochondrial DNA deletion mutation levels are elevated in ALS brains. NeuroReport, 11, 2507–2509CrossRefGoogle ScholarPubMed
Ding, H., Schwarz, D. S., Keene, A.et al. (2003). Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell, 2, 209–17CrossRefGoogle ScholarPubMed
Drory, V. E., Birnbaum, M., Korczyn, A. D. & Chapman, J. (2001). Association of APOE varepsilon4 allele with survival in amyotrophic lateral sclerosis. J. Neurol. Sci., 190, 17–20CrossRefGoogle Scholar
Eymard-Pierre, E., Lesca, G., Dollet, S.et al. (2002). Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am. J. Hum. Genet., 71, 518–27CrossRefGoogle ScholarPubMed
Figlewicz, D. A., Krizus, A., Martinoli, M. G.et al. (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet., 3, 1757–61CrossRefGoogle ScholarPubMed
Giess, R., Beck, M., Goetz, R., Nitsch, R. M., Toyka, K. V. & Sendtner, M. (2000). Potential role of LIF as a modifier gene in the pathogenesis of amyotrophic lateral sclerosis. Neurology, 54, 1003–5CrossRefGoogle ScholarPubMed
Giess, R., Braga, M., Holtmann, B., Tokya, K. & Sendtner, M. (2001). A CNTF null mutation as a potential modifier to disease onset in familial ALS with a mutation in the SOD-1 gene and transgenic SOD-1 mutant mice. J. Neurol., 248, 41–2Google Scholar
Giess, R., Goetz, R., Schrank, B., Ochs, G., Sendtner, M. & Toyka, K. (1998). Potential implications of a ciliary neurotrophic factor gene mutation in a German population of patients with motor neuron disease. Muscle Nerve, 21, 236–83.0.CO;2-#>CrossRefGoogle Scholar
Giess, R., Holtmann, B., Braga, M.et al. (2002). Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am. J. Hum. Genet., 70, 1277–86CrossRefGoogle ScholarPubMed
Graham, A. J., Macdonald, A. M. & Hawkes, C. H. (1997). British motor neuron disease twin study. [Review] [60 refs]. J. Neurol, Neurosurg. Psychiatr., 62, 562–9CrossRefGoogle Scholar
Hadano, S., Hand, C. K., Osuga, H.et al. (2001). A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet., 29, 166–73CrossRefGoogle ScholarPubMed
Hafezparast, M., Klocke, R., Ruhrberg, C.et al. (2003). Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science, 300, 808–12CrossRefGoogle ScholarPubMed
Hand, C. K., Mayeux-Portas, Y., Khoris, J.et al. (2001). Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family. Ann. Neurol., 49(2), 267–713.0.CO;2-D>CrossRefGoogle Scholar
Hand, C. K., Khoris, J., Salachas, F.et al. (2002). A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet., 70, 251–6CrossRefGoogle ScholarPubMed
Hayward, C., Brock, D. J., Minns, R. A. & Swingler, R. J. (1998). Homozygosity for Asn86Ser mutation in the CuZn-superoxide dismutase gene produces a severe clinical phenotype in a juvenile onset case of familial amyotrophic lateral sclerosis [letter]. J. Med. Genet., 35, 174CrossRefGoogle Scholar
Hayward, C., Colville, S., Swingler, R. J. & Brock, D. J. (1999). Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology, 52, 1899–901CrossRefGoogle ScholarPubMed
Hentati, A., Bejaoui, K., Pericak Vance, M. A.et al. (1994). Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33–q35. Nat. Genet., 7, 425–8CrossRefGoogle ScholarPubMed
Hentati, A., Ouahchi, K., Pericak-Vance, M. A.et al. (1998). Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15–q22 markers [In Process Citation]. Neurogenetics., 2, 55–60CrossRefGoogle Scholar
Hosler, B. A., Siddique, T., Sapp, P. C.et al. (2000). Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. J. Am. Med. Assoc., 284, 1664–9CrossRefGoogle ScholarPubMed
Imura, T., Shimohama, S., Kawamata, J. & Kimura, J. (1998). Genetic variation in the ciliary neurotrophic factor receptor alpha gene and familial amyotrophic lateral sclerosis [letter]. Annals of Neurology, 43, 275CrossRefGoogle Scholar
Jackson, M., Al-Chalabi, A., Enayat, Z. E., Chioza, B., Leigh, P. N. & Morrison, K. E. (1997). Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann. Neurolog., 42, 803–7CrossRefGoogle ScholarPubMed
Jackson, M., Morrison, K. E., Al-Chalabi, A., Bakker, M. & Leigh, P. N. (1996). Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case. Ann. Neurol., 39, 796–800CrossRefGoogle Scholar
Jones, C. T., Swingler, R. J. & Brock, D. J. (1994). Identification of a novel SOD1 mutation in an apparently sporadic amyotrophic lateral sclerosis patient and the detection of Ile113Thr in three others. Hum. Mol. Genet., 3(4), 649–50CrossRefGoogle Scholar
Kato, M., Aoki, M., Ohta, M.et al. (2001). Marked reduction of the Cu/Zn superoxide dismutase polypeptide in a case of familial amyotrophic lateral sclerosis with the homozygous mutation. Neurosci. Lett., 312, 165–8CrossRefGoogle Scholar
Kisby, G. E., Milne, J. & Sweatt, C. (1997). Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue. NeuroReport, 8, 1337–40CrossRefGoogle ScholarPubMed
Lacomblez, L., Doppler, V., Beucler, I.et al. (2002). APOE: a potential marker of disease progression in ALS. Neurology, 58, 1112–14CrossRefGoogle ScholarPubMed
Lambrechts, D., Storkebaum, E., Morimoto, M.et al. (2003). VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet., 34, 383–94CrossRefGoogle ScholarPubMed
Lasker, G. W. (1968). The occurrence of identical (isonymous) surnames in various relationships in pedigrees: a preliminary analysis of the relation of surname combinations to inbreeding. Am. J. Hum. Genet., 20, 250–7Google ScholarPubMed
Lasker, G. W. (1977). A coefficient of relationship by isonymy: a method for estimating the genetic relationship between populations. Hum. Biol., 49, 489–93Google ScholarPubMed
Mawrin, C., Kirches, E. & Dietzmann, K. (2003). Single-cell analysis of mtDNA in amyotrophic lateral sclerosis: towards the characterization of individual neurons in neurodegenerative disorders. Pathol Res. Pract., 199, 415–18CrossRefGoogle ScholarPubMed
Maxwell, M. M., Pasinelli, P., Kazantsev, A. G. & Brown, R. H. Jr. (2004). RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc. Natl Acad. Sci. USA, 101, 3178–83CrossRefGoogle ScholarPubMed
Mendel, G. (1865). Versuche uber Pflanzen-Hybriden (Experiments in Plant Hybridization). In Verhandlungen es naturforschenden Vereines in Brunn 4 (Natural History Society of Brunn 4) Bohemia, Czechoslovakia
Moreira, M. C., Klur, S., Watanabe, M.et al. (2004). Senataxin, the orthologue of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat. Genet., 36, 225–7CrossRefGoogle Scholar
Morton, N. E. (1955). Sequential tests for the detection of linkage. Am. J. Hum. Genet., 7, 277–318Google ScholarPubMed
Moulard, B., Salachas, F., Chassande, B.et al. (1998). Association between centromeric deletions of the SMN gene and sporadic adult-onset lower motor neuron disease. Ann. Neurol., 43, 640–4CrossRefGoogle ScholarPubMed
Moulard, B., Sefiani, A., Laamri, A., Malafosse, A. & Camu, W. (1996). Apolipoprotein E genotyping in sporadic amyotrophic lateral sclerosis, evidence for a major influence on the clinical presentation and prognosis. J. Neurol. Sci., 139, 34–7CrossRefGoogle Scholar
Mui, S., Rebeck, G. W., McKenna Yasek, D., Hyman, B. T. & Brown, R. H. Jr. (1995). Apolipoprotein E epsilon 4 allele is not associated with earlier age at onset in amyotrophic lateral sclerosis. Ann. Neurol., 38, 460–3CrossRefGoogle Scholar
Niemann, S., Joos, H., Meyer, T.et al. (2004). Familial ALS in Germany: origin of the R115G SOD1 mutation by a founder effect. J. Neurol. Neurosurg. Psychiatr., 75, 1186–8CrossRefGoogle ScholarPubMed
Nishimura, A. L., Mitne-Neto, M., Silva, H. C., Oliveira, J. R., Vainzof, M. & Zatz, M. (2004a). A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13. J. med. Genet., 41, 315–20CrossRefGoogle Scholar
Nishimura, A. L., Mitne-Neto, M., Silva, H. C.et al. (2004b). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet., 75 822–31CrossRefGoogle Scholar
Olkowski, Z. L. (1998). Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. NeuroReport, 9, 239–42CrossRefGoogle ScholarPubMed
Orrell, R. W., Habgood, J. J., Belleroche, J. S. & Lane, R. J. M. (1997). The relationship of spinal muscular atrophy to motor neuron disease: Investigation of SMN and NAIP gene deletions in sporadic and familial ALS. J. Neurol. Sci., 145, 55–61CrossRefGoogle ScholarPubMed
Orrell, R. W., King, A. W., Lane, R. J. & Belleroche, J. S. (1995). Investigation of a null mutation of the CNTF gene in familial amyotrophic lateral sclerosis. J. Neurol. Sci., 132, 126–8CrossRefGoogle ScholarPubMed
Parboosingh, J. S., Meininger, V., McKenna-Yasek, D., Brown, R. H. Jr. & Rouleau, G. A. (1999). Deletions causing spinal muscular atrophy do not predispose to amyotrophic lateral sclerosis. Archives of Neurology, 56, 710–12CrossRefGoogle Scholar
Parboosingh, J. S., Rouleau, G. A., Meninger, V., McKenna Yasek, D., Brown, R. H. Jr. & Figlewicz, D. A. (1995). Absence of mutations in the Mn superoxide dismutase or catalase genes in familial amyotrophic lateral sclerosis. Neuromuscul. Disord., 5, 7–10CrossRefGoogle ScholarPubMed
Parekh-Olmedo, H., Krainc, D. & Kmiec, E. B. (2002). Targeted gene repair and its application to neurodegenerative disorders. Neuron, 33, 495–8CrossRefGoogle ScholarPubMed
Parton, M. J., Broom, W., Andersen, P. M.et al. (2002). D90A-SOD1 mediated amyotrophic lateral sclerosis: a single founder for all cases with evidence for a Cis-acting disease modifier in the recessive haplotype. Hum. Mutat., 20, 473CrossRefGoogle ScholarPubMed
Puls, I., Jonnakuty, C., LaMonte, B. H.et al. (2003). Mutant dynactin in motor neuron disease. Nat. Genet., 33, 455–6CrossRefGoogle ScholarPubMed
Radunovic, A. & Leigh, P. N. (1996). Cu/Zn superoxide dismutase gene mutations in amyotrophic lateral sclerosis: Correlation between genotype and clinical features. J. Neurol. Neurosurg. Psychiatr., 61, 565–72CrossRefGoogle ScholarPubMed
Rezania, K., Yan, J., Dellefave, L.et al. (2003). A rare Cu/Zn superoxide dismutase mutation causing familial amyotrophic lateral sclerosis with variable age of onset, incomplete penetrance and a sensory neuropathy. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 4, 162–6CrossRefGoogle Scholar
Ro, L. S., Lai, S. L., Chen, C. M. & Chen, S. T. (2003). Deleted 4977-bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospital-based case-control study. Muscle Nerve, 28, 737–43CrossRefGoogle ScholarPubMed
Rooke, K., Figlewicz, D. A., Han, F. Y. & Rouleau, G. A. (1996). Analysis of the KSP repeat of the neurofilament heavy subunit in familial amyotrophic lateral sclerosis. Neurology, 46, 789–90CrossRefGoogle Scholar
Rosen, D. R. (2004). A shared chromosome-21 haplotype among amyotrophic lateral sclerosis families with the A4V SOD1 mutation. Clin. Genet., 66, 247–50CrossRefGoogle ScholarPubMed
Rosen, D. R., Siddique, T., Patterson, D.et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis [published erratum appears in Nature 1993 Jul 22;364(6435):362] [see comments]. Nature, 362, 59–62CrossRefGoogle Scholar
Rosso, S. M. & Swieten, J. C. (2002). New developments in frontotemporal dementia and parkinsonism linked to chromosome 17. Curr. Opin. Neurol., 15, 423–8CrossRefGoogle ScholarPubMed
Ruddy, D. M., Parton, M. J., Al-Chalabi, A.et al. (2003). Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am. J. Hum. Genet., 73, 390–6CrossRefGoogle ScholarPubMed
Sapp, P. C., Hosler, B. A., McKenna-Yasek, D.et al. (2003). Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am. J. Hum. Genet., 73, 397–403CrossRefGoogle ScholarPubMed
Siddique, T., Figlewicz, D. A., Pericak Vance, M. A.et al. (1991). Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity [published errata appear in N Engl J Med 1991 Jul 4;325(1):71 and 1991 Aug 15;325(7):524] [see comments]. N. Engl. J. Med., 324, 1381–4CrossRefGoogle Scholar
Siddique, T., Hong, S., Brooks, B.et al. (1998a). X-linked dominant locus for late-onset familial amyotrophic lateral sclerosis. Am. J. Hum. Genet.Google Scholar
Siddique, T., Pericak-Vance, M. A., Caliendo, J.et al. (1998b). Lack of association between apolipoprotein E genotype and sporadic amyotrophic lateral sclerosis. Neurogenetics, 1, 213–16CrossRefGoogle Scholar
Takahashi, R. (1995). Deficiency of human ciliary neurotrophic factor (CNTF) is not causally related to amyotrophic lateral sclerosis (ALS). Clin. Neurol., 35, 1543–5Google Scholar
Takahashi, R., Yokoji, H., Misawa, H., Hayashi, M., Hu, J. & Deguchi, T. (1994). A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat. Genet., 7, 79–84CrossRefGoogle Scholar
Tandan, R., Robison, S. H., Munzer, J. S. & Bradley, W. G. (1987). Deficient DNA repair in amyotrophic lateral sclerosis cells. J. Neurol. Sci., 79, 189–203CrossRefGoogle ScholarPubMed
Tomblyn, M., Kasarskis, E. J., Xu, Y. & St Clair, D. K. (1998). Distribution of MnSOD polymorphisms in sporadic ALS patients. J. Mol. Neurosci., 10, 65–6CrossRefGoogle ScholarPubMed
Tomkins, J., Banner, S. J., McDermott, C. J. & Shaw, P. J. (2001). Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis. NeuroReport, 12, 2319–22CrossRefGoogle ScholarPubMed
Tomkins, J., Dempster, S., Banner, S. J., Cookson, M. R. & Shaw, P. J. (2000). Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS). NeuroReport, 11, 1695–7CrossRefGoogle Scholar
Tomkins, J., Usher, P., Slade, J. Y.et al. (1998). Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). NeuroReport, 9, 3967–70CrossRefGoogle Scholar
Landeghem, G. F., Tabatabaie, P., Beckman, G., Beckman, L. & Andersen, P. M. (1999). Manganese-containing superoxide dismutase signal sequence polymorphism associated with sporadic motor neuron disease. Eur. J. Neurol., 6, 639–44CrossRefGoogle ScholarPubMed
Veldink, J. H., Berg, L. H., Cobben, J. M.et al. (2001). Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology, 56, 749–52CrossRefGoogle ScholarPubMed
Xiang, Y., Cole-Strauss, A., Yoon, K., Gryn, J. & Kmiec, E. B. (1997). Targeted gene conversion in a mammalian CD34+-enriched cell population using a chimeric RNA/DNA oligonucleotide. J. Mol. Med., 75, 829–35CrossRefGoogle Scholar
Yang, Y., Hentati, A., Deng, H. X.et al. (2001). The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet., 29, 160–5CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×