Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-01T20:02:12.718Z Has data issue: false hasContentIssue false

Chapter 18 - Trust and Lesion Evidence

Lessons from Neuropsychology on the Neuroanatomical Correlates of Trust

from Part V - Neuropathological Level of Trust

Published online by Cambridge University Press:  09 December 2021

Frank Krueger
Affiliation:
George Mason University, Virginia
Get access

Summary

Understanding when to trust and establishing judgments of trustworthiness are complex processes that are critical and essential for human life. Appropriate judgments in trustworthiness lead to the formation of cooperative, mutually beneficial relationships that facilitate personal success, a sense of achievement, increased well-being, and quality of life. The trust game is an economic decision-making game that was specifically designed to measure trust. It is an important and unique instrument, as it measures the entirety of the trust process. Research investigating brain activation during participation of the trust game has shown many brain regions and networks involved in the processes of trust. Whether some of these regions are necessary for various trust processes has been determined by studying trust game performances in individuals with lesions in specific trust-related brain areas. This chapter reviews lesion studies in patients with damage to the insula, amygdala, and prefrontal cortex, with a focus on how such patients perform on various aspects of the trust game and how the findings have informed our understanding of the neuroanatomical correlates of trust. Additionally, we review briefly some functional neuroimaging research on the involvement of the temporal parietal junction and ventral striatum in the trust process.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191(1), 4261. https://doi.org/10.1111/j.1749-6632.2010.05445.xGoogle Scholar
Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., & Damasio, A. R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433(7021), 6872. https://doi.org/10.1038/nature03086Google Scholar
Adolphs, R., Tranel, D., & Damasio, A. R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470474. https://doi.org/10.1038/30982Google Scholar
Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15(3), 396404. https://doi.org/10.1037/0894-4105.15.3.396Google Scholar
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669672. https://doi.org/10.1038/246170a0Google Scholar
Aimone, J. A., Houser, D., & Weber, B. (2014). Neural signatures of betrayal aversion: An fMRI study of trust. Proceedings of the Royal Society B: Biological Sciences, 281(1782), Article 20132127. https://doi.org/10.1098/rspb.2013.2127Google Scholar
Bar-on, R., Tranel, D., Denburg, N. L., & Bechara, A. (2003). Exploring the neurological substrate of emotional and social intelligence. Brain, 126(8), 17901800. https://doi.org/10.1093/brain/awg177Google Scholar
Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decisions. Games and Economic Behavior, 52, 336372. https://doi.org/10.1016/j.geb.2004.06.010Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition: International Journal of Cognitive Science, 50(1–3), 715. https://doi.org/10.1016/0010-0277(94)90018-3CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 21892202. https://doi.org/10.1093/brain/123.11.2189Google Scholar
Belfi, A. M., Koscik, T. R., & Tranel, D. (2015). Damage to the insula is associated with abnormal interpersonal trust. Neuropsychologia, 71, 165172. https://doi.org/10.1016/j.neuropsychologia.2015.04.003CrossRefGoogle Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate-based meta analysis. Human Brain Mapping, 38, 12331248. https://doi.org/10.1002/hbm.23451Google Scholar
Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior insula in social norm compliance and enforcement: Evidence from coordinate-based and functional connectivity meta-analyses. Neuroscience and Biobehavioral Reviews, 92, 378389. https://doi.org/10.1016/j.neubiorev.2018.06.024Google Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10, 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Berntson, G. G., Norman, G. J., Bechara, A., Tranel, D., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological Science, 22(1), 8086. https://doi.org/10.1177/0956797610391097Google Scholar
Bossaerts, P. (2010). Risk and risk prediction error signals in anterior insula. Brain Structure and Function, 214(5–6), 645653. https://doi.org/10.1007/s00429Google Scholar
Brooks, J. C., Nurmikko, T. J., Bimson, W. E., Singh, K. D., & Roberts, N. (2002). fMRI of thermal pain: Effects of stimulus laterality and attention. NeuroImage, 15(2), 293301. https://doi.org/10.1006/nimg.2001.0974CrossRefGoogle ScholarPubMed
Buchanan, T. W., Tranel, D., & Adolphs, R. (2009). The human amygdala in social functioning. In Whalen, P. W. & Phelps, L. (Eds.), The human amygdala (pp. 289320). Oxford University Press.Google Scholar
Bunge, S. A., Wallis, J. D., Parker, A., et al. (2005). Neural circuitry underlying rule use in humans and nonhuman primates. Journal of Neuroscience, 25(45), 1034710350. https://doi.org/10.1523/JNEUROSCI.2937-05.2005Google Scholar
Caramazza, A. (1992). Is cognitive neuropsychology possible? Journal of Cognitive Neuroscience, 4(1), 8095. https://doi.org/10.1162/jocn.1992.4.1.80Google Scholar
Cheng, X., Zheng, L., Li, L., Zheng, Y., Guo, X., & Yang, G. (2017). Anterior insula signals inequalities in a modified Ultimatum Game. Neuroscience, 348, 126134. https://doi.org/10.1016/j.neuroscience.2017.02.023Google Scholar
Clark, L., Bechara, A., Damasio, H., Aitken, M. R., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex on risky decision making. Brain, 131(5), 13111322. https://doi.org/10.1093/brain/awn066Google Scholar
Craig, A. D. (2002). Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655666. https://doi.org/10.1016/S0959-4388(03)00090-4Google Scholar
Craig, A. D., Chen, K., Bandy, D., & Reiman, E. M. (2000). Thermosensory activation of insular cortex. Natural Neuroscience, 3(2), 184190. https://doi.org/10.1038/72131Google Scholar
Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron, 29(2), 537545. https://doi.org/10.1016/S0896-6273(01)00225-2Google Scholar
Crone, E. A. (2013). Considerations of fairness in the adolescent brain. Child Development Perspectives, 7(2), 97103. https://doi.org/10.1111/cdep.12022Google Scholar
D’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. NeuroImage, 47(4), 19291939. https://doi.org/10.1016/j.neuroimage.2009.04.096Google Scholar
Damasio, A. R. (1996). The somatic marker hypothesis and the possible function of the prefrontal cortex. Philosophical Transactions of the Royal Society B, 351(1346), 14131420. https://doi.org/10.1098/rstb.1996.0125Google Scholar
Damasio, A. R., Grabowski, T. J., Bechara, A., et al. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3(10), 10491056. https://doi.org/doi.org/10.1038/79871CrossRefGoogle ScholarPubMed
Damasio, A. R., Tranel, D., & Damasio, H. (1991). Somatic markers and guidance of behavior. In Levin, H. S., Eisenberg, H., & Benton, A. (Eds.), Frontal lobe function and dysfunction (pp. 217228). Oxford University Press.Google Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 24(8), 17421752. https://doi.org/10.1162/jocn_a_00233Google Scholar
Dumontheil, I., Apperly, I. A., & Blakemore, S.-J. (2010). Online usage of theory of mind continues to develop in late adolescence. Developmental Science, 13(2), 331338. https://doi.org/10.1111/j.1467-7687.2009.00888.xGoogle Scholar
Editors of The New England Journal of Medicine. (2020). Dying in a leadership vacuum. The New England Journal of Medicine, 383(15), 14791480. https://doi.org/10.1056/NEJMe2029812Google Scholar
Eisenberg, N., Cumberland, A., Guthrie, I. K., Murphy, B. C., & Shepard, S. A. (2005). Age changes in prosocial responding and moral reasoning in adolescence and early adulthood. Journal of Research on Adolescence, 15(3), 235260. https://doi.org/10.1111/j.1532-7795.2005.00095.xGoogle Scholar
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302(5643), 290292. https://doi.org/10.1126/science.1089134CrossRefGoogle ScholarPubMed
Feinstein, J., Adolphs, R., & Tranel, D. (2016). A tale of survival from the world of patient SM. In Amaral, D. G. & Adolphs, R. (Eds.), Living without an amygdala (pp. 138). The Guilford Press.Google Scholar
Fett, A. K. J., Gromann, P. M., Giampietro, V., Shergill, S. S., & Krabbendam, L. (2014). Default distrust? An fMRI investigation of the neural development of trust and cooperation. Social Cognitive and Affective Neuroscience, 9(4), 395402. https://doi.org/10.1093/scan/nss144Google Scholar
Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society B, 358(1431), 459473. https://doi.org/10.1098/rstb.2002.1218Google Scholar
Gabay, A. S., Kempton, M. J., Gilleen, J., & Mehta, M. A. (2019). MDMA increases cooperation and recruitment of social brain areas when playing trustworthy players in an iterated prisoner’s dilemma. Journal of Neuroscience, 39(2), 307320. https://doi.org/10.1523/JNEUROSCI.1276-18.2018Google Scholar
Guth, W., Schmittberger, R., & Schwarze, B. (1982). An experimental analysis of ultimatum bargaining. Journal of Economic Behavior and Organization, 3(4), 367388. https://doi.org/10.1016/0167-2681(82)90011-7Google Scholar
Haas, B. W., Ishak, A., Anderson, I. W., & Filkowski, M. M. (2015). The tendency to trust is reflected in human brain structure. NeuroImage, 107, 175181. https://doi.org/10.1016/j.neuroimage.2014.11.060Google Scholar
Houser, D., Schunk, D., & Winter, J. (2010). Distinguishing trust from risk: An anatomy of the investment game. Journal of Economic Behavior and Organization, 74(1–2), 7281. https://doi.org/10.1016/j.jebo.2010.01.002Google Scholar
Kang, Y., Williams, L. E., Clark, M. S., Gray, J. R., & Bargh, J. A. (2011). Physical temperature effects on trust behavior: The role of insula. Social Cognitive and Affective Neuroscience, 6(4), 507515. https://doi.org/10.1093/scan/nsq077Google Scholar
Kennedy, D. P., Gläscher, J., Tyszka, J. M., & Adolphs, R. (2009). Personal space regulation by the human amygdala. Nature Neuroscience, 12, 12261227. https://doi.org/10.1038/nn.2381Google Scholar
Killgore, W. D., Schwab, Z. J., Tkachernko, O., et al. (2013). Emotional intelligence correlates with functional responses to dynamic changes in facial trustworthiness. Social Neuroscience, 8(4), 334346. https://doi.org/10.1080/17470919.2013.807300Google Scholar
King-Casas, B., Sharp, C., Lomax-Bream, L., Lohrenz, T., Fonagy, P., & Montague, P. R. (2008). The rupture and repair of cooperation in borderline personality disorder. Science, 321(5890), 806810. https://doi.org/10.1126/science.1156902Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062CrossRefGoogle Scholar
Kluver, H., & Bucy, P. C. (1937). “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. American Journal of Physiology, 119, 352353.Google Scholar
Kluver, H., & Bucy, P. C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology & Psychiatry, 42, 979997. https://doi.org/10.1001/archneuropsych.193902270240017001Google Scholar
Koenigs, M., & Tranel, D. (2006). Pseudopsychopathy: A perspective from cognitive neuroscience. In Zald, D. H. & Rauch, S. L. (Eds.), The orbitofrontal cortex (pp. 597619). Oxford University Press.Google Scholar
Koscik, T. R., & Tranel, D. (2011). The human amygdala is necessary for developing and expressing normal interpersonal trust. Neuropsychologia, 49(4), 602611. https://doi.org/10.1016/j.neuropsychologia.2010.09.023Google Scholar
Krawitz, A., Fukunaga, R., & Brown, J. W. (2010). Anterior insula activity predicts the influence of positively framed messages on decision making. Cognitive, Affective, & Behavioral Neuroscience, 10, 392405. https://doi.org/10.3758/CABN.10.3.392Google Scholar
Kross, E., Egner, T., Ochsner, K., Hirsch, J., & Downey, G. (2007). Neural dynamics of rejection sensitivity. Journal of Cognitive Neuroscience, 19(6), 945956. https://doi.org/10.1162/jocn.2007.19.945Google Scholar
Krueger, F., Grafman, J., & McCabe, K. (2008). The neural correlates of the economic game playing. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 38593874. https://doi.org/10.1098/rstb.2008.0165Google Scholar
LaBar, K. S., LeDoux, J. E., Spencer, D. D., & Phelps, E. A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. Journal of Neuroscience, 15(10), 68466855. https://doi.org/10.1523/JNEUROSCI.15-10-06846.1995Google Scholar
Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214(5–6), 579591. https://doi.org/10.1007/s00429-010-0251-3Google Scholar
Levin, I. P., & Hart, S. S. (2003). Risk preference in young children: Early evidence of individual differences in reaction to potential gains and losses. Journal of Behavioral Decision Making, 16(5), 397413. https://doi.org/10.1002/bdm.453Google Scholar
Levin, I. P., Weller, J. A., Pederson, A., & Harshman, L. (2007). Age-related differences in adaptive decision making: Sensitivity to expected value in risky choice. Judgment and Decision Making, 2(4), 225233.Google Scholar
Machado, C. J., Kazama, A. M., & Bachevalier, J. (2009). Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion, 9(2), 147163. https://doi.org/10.1037/a0014539Google Scholar
Mason, W. A., Capitanio, J. P., Machado, C. J., Mendoza, S. P., & Amaral, D. G. (2006). Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): Generality and individual consistency of effects. Emotion, 6(1), 7381. https://doi.org/10.1037/1528-3542.6.1.73Google Scholar
Meletti, S., Cantalupo, G., Santoro, F., et al. (2014). Temporal lobe epilepsy and emotion recognition without amygdala: A case study of Urbach-Wiethe disease and review of the literature. Epileptic Disorders, 16(4), 518527. https://doi.org/10.1684/epd.2014.0696Google Scholar
Moretto, G., Sellitt, M., & di Pellegrino, G. (2013). Investment and repayment in a trust game after ventromedial prefrontal damage. Frontiers in Human Neuroscience, 7, 110. https://doi.org/10.3389/fnhum.2013.00593Google Scholar
Moulton, E. A., Keaser, M. I., Gullapalli, R. P., & Greenspan, J. D. (2005). Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. Journal of Neurophysiology, 93(4), 21832193. https://doi.org/10.1152.jn.01025.2004Google Scholar
Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., & Mauguiere, F. (2002). Representation of pain and somatic sensation in the human insula: A study of response to direct electrical cortical stimulation. Cerebral Cortex, 12(4), 376385. https://doi.org/10.1093/crecor/12.4.376Google Scholar
Pfeifer, J. H., Lieberman, M. D., & Dapretto, M. (2007). “I know you but what am I?!”: Neural bases of self- and social knowledge retrieval in children and adults. Journal of Cognitive Neuroscience, 19(8), 13231337. https://doi.org/10.1162/jocn.2007.19.8.1323Google Scholar
Phillips, M. L., Young, A. W., Senior, C., et al. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389, 495498. https://doi.org/10.1038/39051Google Scholar
Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience, 28(11), 27452752. https://doi.org/10.1523/JNEUROSCI.4268-07.2008Google Scholar
Reber, J., & Tranel, D. (2019). Frontal lobe syndromes. In Grafman, J. & D’Esposito, M. (Eds.), The frontal lobes (handbook of clinical neurology) (pp. 147164). Elsevier.Google Scholar
Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision making. Annual Review of Psychology, 62, 2348. https://doi.org/10.1146/annurev.psych.121208.131647Google Scholar
Said, C. P., Baron, S. G., & Todorov, A. (2009). Nonlinear amygdala response of face trustworthiness: Contributions of high and low spatial frequency information. Journal of Cognitive Neuroscience, 21(3), 519528. https://doi.org/10.1162/jocn.2009.21041CrossRefGoogle ScholarPubMed
Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision making in the ultimatum game. Science, 300(5626), 17551758. https://doi.org/1126/science.1082976Google Scholar
Singer, T., Kiebel, S. J., Winston, J. S., Dolan, R. J., & Firth, C. D. (2004). Brain responses to the acquired moral status of faces. Neuron, 41(4), 653662. https://doi.org/10.1016/S0896-6273(04)00014-5CrossRefGoogle Scholar
Singer, T., Seymour, B., O’Doherty, J. P., et al. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439, 466469. https://doi.org/10.1038/nature04271Google Scholar
Steinbeis, N., Bernhardt, B. C., & Singer, T. (2012). Impulse control and underlying functions in the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior. Neuron, 73(5), 10401051. https://doi.org/10.10.16/j.neuron.2011.12.027Google Scholar
Thornton, H. B., Nel, D., Thornton, D., Van Honk, J., Baker, G. A., & Stein, D. J. (2008). The neuropsychiatry and neuropsychology of lipoid proteinosis. Journal of Neuropsychiatry and Clinical Neurosciences, 20(1), 8692. https://doi.org/10.1176/jnp.2008.20.1.86Google Scholar
Todorov, A. (2008). Evaluating faces on trustworthiness: An extension of systems for recognition of emotions signaling approach/avoidance behaviors. Annals of the New York Academy of Sciences, 1124(1), 208224. https://doi.org/10.1196/annals.1440.012Google Scholar
Todorov, A., Baron, S. G., & Oosterhof, N. N. (2008). Evaluating face trustworthiness: A model based approach. Social Cognitive and Affective Neuroscience, 3(2), 119127. https://doi.org/10.1093/scan/nsn009Google Scholar
Tranel, D., & Hyman, B. T. (1990). Neuropsychological correlates of bilateral amygdala damage. Archives of Neurology, 47(3), 349355. https://doi.org/10.1001/archneur.1990.00530030131029Google Scholar
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A. R. B., & Crone, E. A. (2009). What motivates repayment? Neural correlates of reciprocity in the Trust Game. Social Cognitive and Affective Neuroscience, 4(3), 294304. https://doi.org/10.1093/scan/nsp009Google Scholar
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A. R. B., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22(1), 6070. https://doi.org/10.1177/0956797610391102Google Scholar
Weller, J. A., Levin, I. P., & Bechara, A. (2009). Do individual differences in Iowa Gambling Task performance predict adaptive decision making for risky gains and losses? Journal of Clinical and Experimental Neuropsychology, 32(2), 141150. https://doi.org/10.1080/13803390902881926Google Scholar
Weller, J. A., Levin, I. P., Shiv, B., & Bechara, A. (2007). Neural correlates of adaptive decision making for risky gains and losses. Psychological Science, 18(11), 958964. https://doi.org/10.1111/j.1467-9280.2007.02009.xGoogle Scholar
Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The truth about false belief. Child Development, 72(3), 655684. https://doi.org/10.1111/1467-8624.00304Google Scholar
Winston, J. S., Strange, B. A., O’Doherty, J. P., & Dolan, R. J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 5, 277283. https://doi.org/10.1038/nn816Google Scholar
Xue, G., Lu, Z., Levin, I. P., & Bechara, A. (2010). The impact of prior risk experiences on subsequent risky decision making: The role of the insula. NeuroImage, 50(2), 709716. https://doi.org/10.1016/j.neuroimage.2009.12.097Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×