Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 3.116 Render date: 2022-08-11T03:38:03.999Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

References

Published online by Cambridge University Press:  11 August 2021

Alan Rubin
Affiliation:
University of California, Los Angeles
Chi Ma
Affiliation:
Caltech
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Meteorite Mineralogy , pp. 331 - 378
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Sakamoto, N., Krot, A. N., and Yurimoto, H. (2017) Occurrences, abundances, and compositional variations of cosmic symplectites in the Acfer 094 ungrouped carbonaceous chondrite. Geochemical Journal 51, 315.CrossRefGoogle Scholar
Abreu, N. M. (2016) Why is it so difficult to classify Renazzo-type (CR) carbonaceous chondrites? – Implications from TEM observations of matrices for the sequences of aqueous alteration. Geochimica et Cosmochimica Acta 194, 91122.CrossRefGoogle Scholar
Abreu, N. M. and Brearley, A. J. (2010) Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et Cosmochimica Acta 74, 11461171.CrossRefGoogle Scholar
Abron, A.-M. (2019) Building other worlds. Griffith Observer 83(4), 216.Google Scholar
Ackermand, D. and Raase, P. (1973) Die mineralogische Zusammensetzung des Meteoriten von Kiel. Contributions to Mineralogy and Petrology 39, 289300.CrossRefGoogle Scholar
Acquadro, J. J., MacPherson, G. J., Corrigan, C. M., and Lunning, N. G. (2019) Evidence for impact-induced shock melting in carbonaceous chondrites. Lunar and Planetary Science 50, Abstract #2529.Google Scholar
Afiattalab, F. and Wasson, J. T. (1980) Composition of the metal phases in ordinary chondrites: Implications regarding classification and metamorphism. Geochimica et Cosmochimica Acta 44, 431446.CrossRefGoogle Scholar
Agrell, S. O., Long, J. V. P., and Ogilvie, R. E. (1963) Nickel content of kamacite near the interface with taenite in iron meteorites. Nature 198, 749750.CrossRefGoogle Scholar
Akaiwa, H. (1966) Abundances of selenium, tellurium, and indium in meteorites. Journal of Geophysical Research 71, 19191923.CrossRefGoogle Scholar
Alexander, C. M. O’D., Hutchison, R. H., Graham, A. L., and Yabuki, H. (1987) Discovery of scapolite in the Bishunpur (LL3) chondritic meteorite. Mineralogical Magazine 51, 733735.CrossRefGoogle Scholar
Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. H. (1989) The microstructure of Semarkona and Bishunpur. Geochimica et Cosmochimica Acta, 53, 30453057.CrossRefGoogle Scholar
Alexander, C. M. O’D., Prombo, C. A., Swan, P. D., and Walker, R. M. (1991) SiC and Si3N4 in Qingzhen (EH3) (abstract). Lunar and Planetary Science 22, 56.Google Scholar
Alexander, C. M. O’D., Swan, P., and Prombo, C. A. (1994) Occurrence and implications of silicon nitride in enstatite chondrites. Meteoritics 29, 7985.CrossRefGoogle Scholar
Anand, M., Taylor, L. A., Nazarov, M. A., Shu, J., Mao, H.-K., and Hemley, R. J. (2004) Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proceedings of the National Academy of Sciences 101, 68476851.CrossRefGoogle ScholarPubMed
Anders, A. and Zinner, E. (1993) Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics 28, 490514.CrossRefGoogle Scholar
Andersen, C. A., Keil, K., and Mason, B. (1964) Silicon oxynitride: A meteoritic mineral. Science 146, 256257.CrossRefGoogle ScholarPubMed
Andersson, S. and Magnéli, A. (1956) Diskrete Titanoxydphasen im Zusammensetzungsbereich TiO1,75-TiO1,90Naturwissenschaften43495496.CrossRefGoogle Scholar
Andronicos, C. L., Bindi, L., Distler, V. V., Hollister, L. S., Lin, C., MacPherson, G. J., Steinhardt, P. J., and Yuduvskaya, M. (2018) Comment on “Compositon and origin of holotype Al–Cu–Zn minerals in relation to quasicrystals in the Khatyrka meteorite” by M. Ivanova et al. (2017). Meteoritics & Planetary Science 53, 24302440.CrossRefGoogle Scholar
Arimatsu, K., Tsumura, K., Usui, F., Shinnaka, Y., Ichikawa, K., Ootsubo, T., Kotani, T., Wada, T., Nagase, K., and Watanabe, J. (2019) A kilometre-sized Kuiper belt object discovered by stellar occulation using amateur telescopes. Nature Astronomy 3, 301306. https://doi.org/10.1038/s41550-018-0685-8.CrossRefGoogle Scholar
Armstrong, J. C., Wells, L. E., and Gonzalez, G. (2002) Rummaging through Earth’s attic for remains of ancient life. Icarus 160, 183196.CrossRefGoogle Scholar
Armstrong, J. T., Hutcheon, I. D., and Wasserburg, G. J. (1987) Zelda and company: Petrogenesis of sulfide-rich Fremdlinge and constraints on solar nebula processes. Geochimica et Cosmochimica Acta 51, 31553173.CrossRefGoogle Scholar
Asimow, P. D., Lin, C., Bindi, L., Ma, C., Tschauner, O., Hollister, L. S., Steinhardt, P. J. (2016) Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proceedings of the National Academy of Sciences 113, 70777081.CrossRefGoogle ScholarPubMed
Baecker, B., Rubin, A. E., and Wasson, J. T. (2017) Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et Cosmochimica Acta 211, 256279.CrossRefGoogle Scholar
Barber, D. J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochimica et Cosmochimica Acta 45, 945970.CrossRefGoogle Scholar
Barber, D. J., Beckett, J. R., Paque, J. M., and Stolper, E. (1994) A new titanium-bearing calcium aluminosilicate phase: II. Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminum-rich inclusions. Meteoritics 29, 682690.CrossRefGoogle Scholar
Barnatowicz, T. J., Messenger, S., Pravdivtseva, O., Swan, P., and Walter, R. M. (2003) Pristine presolar silicon carbide. Geochimica et Cosmochimica Acta 67, 46794691.CrossRefGoogle Scholar
Baziotis, I. P., Liu, Y., DeCarli, P. S., Melosh, H. J., McSween, H. Y., Bodnar, R. J. and Taylor, L. A. (2013) The Tissint martian meteorite as evidence for the largest impact excavation. Nature Communications 4, 17, Article 1404.CrossRefGoogle ScholarPubMed
Baziotis, I., Asimow, P. D., Hu, J., Ferrière, L.Ma, C., Cernok, A., Anand, M., and Topa, D. (2018) High pressure minerals in the Château-Renard (L6) ordinary chondrite: Implications for collisions on its parent bodyScientific Reports 8, 9851.CrossRefGoogle ScholarPubMed
Becker, R. H. and Pepin, R. O. (1984) Solar composition noble gases in the Washington County iron meteorite. Earth & Planetary Science Letters 70, 110.CrossRefGoogle Scholar
Bellucci, J. J., Nemchin, A. A., Grange, M., Robinson, K. L., Collins, G., Whitehouse, M. J., Snape, J. F., Norman, M. D., and Kring, D. A. (2019) Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth & Planetary Science Letters 510, 173185.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., and Love, S. G. (2000) A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body. Meteoritics & Planetary Science 35, 11271141.CrossRefGoogle Scholar
Berger, E., Lauretta, D. S., Zega, T. J., and Keller, L. P. (2016) Heterogeneous histories of Ni-bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais. Meteoritics & Planetary Science 51, 18131829.CrossRefGoogle Scholar
Berkley, J. L., Taylor, G. J., Keil, K., Harlow, G. E., and Prinz, M. (1980) The nature and origin of ureilites. Geochimica et Cosmochimica Acta 44, 15791597.CrossRefGoogle Scholar
Bermingham, K. R., Worsham, E. A., and Walker, R. J. (2018) New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth and Planetary Science Letters 487, 221229.CrossRefGoogle ScholarPubMed
Bernatowicz, T. J., Amari, S., Zinner, E. K., and Lewis, R. S. (1991) Interstellar grains within interstellar grains. Astrophysical Journal 373, L73L76.CrossRefGoogle Scholar
Bernatowicz, T. J., Cowsik, R., Gibbons, P. C., Lodders, K., Fegley, B., Amari, S., and Lewis, R. S. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophysical Journal 472, 760782.CrossRefGoogle Scholar
Bevan, A. W. R., Bevan, J. C., and Francis, J. G. (1977) Amphibole in the Mayo Belwa meteorite: First occurrence in an enstatite achondrite. Mineralogical Magazine 41, 531534.CrossRefGoogle Scholar
Bevan, A. W. R., Kinder, J., and Axon, H. J. (1981) Complex shock-induced Fe–Ni–S–Cr–C melts in the Haig (IIIA) iron meteorite. Meteoritics 16, 261267.CrossRefGoogle Scholar
Bevan, A. W. R., Downes, P. J., Henry, D. A., Verrall, M., and Haines, P. W. (2019) The Gove relict iron meteorite from Arnhem Land, Northern Territory, Australia. Meteoritics & Planetary Science 54, 17101719.CrossRefGoogle Scholar
Bhandari, N., Shah, V. B., and Wasson, J. T. (1980) The Parsa enstatite chondrite. Meteoritics 15, 225233.CrossRefGoogle Scholar
Bindi, L. and Steinhardt, P. J. (2018) How impossible crystals came to Earth: A short history. Rocks and Minerals 93, 5057.CrossRefGoogle Scholar
Bindi, L. and Xie, X. (2018): Shenzhuangite, NiFeS2, the Ni-analogue of chalcopyrite from the Suizhou L6 chondrite. European Journal of Mineralogy 30, 165169.CrossRefGoogle Scholar
Bindi, L. and Xie, X. (2019) Hiroseite, IMA 2019–019. CNMNC Newsletter No. 50, June-July 2019, page 617; Mineralogical Magazine 83, 615620 https://doi.org/ 10.1180/mgm.2019.46.Google Scholar
Bindi, L., Steinhardt, P. J., Yao, N., and Lu, P. J. (2009) Natural quasicrystals. Science 324, 13061309.CrossRefGoogle ScholarPubMed
Bindi, L., Steinhardt, P. J., Yao, N., and Lu, P. J. (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. American Mineralogist 96, 928931.CrossRefGoogle Scholar
Bindi, L., Yao, N., Lin, C., Hollister, L.S., MacPherson, G.J., Poirier, G.R., Andronicos, C.L., Distler, V.V., Eddy, M.P., Kostin, A., Kryachko, V., Steinhardt, W.M., Yudovskaya, M. (2014) Steinhardtite, a new body-centered-cubic allotropic form of aluminum from the Khatyrka CV3 carbonaceous chondrite. American Mineralogist 99, 24332436.CrossRefGoogle Scholar
Bindi, L.,Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M. P., Kostin, A. Kryachko, V., MacPherson, G. J., Steinhardt, W. M., Yudovskaya, M., and Steinhardt, P. J. (2015) Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. American Mineralogist 100, 23402343.CrossRefGoogle Scholar
Bindi, L., Lin, C., Ma, C., and Steinhardt, P. J. (2016) Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Scientific Reports 6, 38117.CrossRefGoogle ScholarPubMed
Bindi, L., Chen, M. and Xie, X. (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Scientific Reports 7, 42674.CrossRefGoogle ScholarPubMed
Bindi, L., Pham, J., and Steinhardt, P. J. (2018) Previously unknown quasicrystal periodic approximant found in space. Scientific Reports 8, 16271.CrossRefGoogle ScholarPubMed
Bindi, L., Brenker, F. E., Nestola, F., Koth, T. E., Prior, D. J., Lilly, K., Krot, A. N., Bizzarro, M, and Xie, X. (2019) Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites. American Mineralogist 104, 775778.CrossRefGoogle Scholar
Binns, R. (1967) Stony meteorites bearing maskelynite. Nature 213, 11111112.CrossRefGoogle Scholar
Binzel, R. P. (2001) Forging the fourth link between planetary worlds: Vesta and the HEDs. Meteoritics & Planetary Science 36,479480.CrossRefGoogle Scholar
Binzel, R. P. and Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science 260, 186191.CrossRefGoogle ScholarPubMed
Bischoff, A. and Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48, 693709.CrossRefGoogle Scholar
Bischoff, A. and Palme, H. (1987) Composition and mineralogy of refractory metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite. Geochimica et Cosmochimica Acta 51, 27332748.CrossRefGoogle Scholar
Bischoff, A., Palme, H., Schultz, L., Weber, D., Weber, H. W., and Spettel, B. (1993) Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH 85085 and relationship to CR chondrites. Geochimica et Cosmochimica Acta 57, 26312648.CrossRefGoogle Scholar
Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherer, P., Loeken, T., Bland, P., Clayton, R. N., Mayeda, T. K., Herpers, U., Meltzow, B., Michel, R., and Dittrich-Hannen, B. (1994) Acfer 217-A new member of the Rumuruti chondrite group (R). Meteoritics 29, 264274.CrossRefGoogle Scholar
Bischoff, A., Scott, E. R. D., Metzler, K., and Goodrich, C. A. (2006) Nature and origins of meteoritic breccias. In Meteorites and the Early Solar System II, Tucscon: University of Arizona Press, 679712.CrossRefGoogle Scholar
Bischoff, A., Vogel, N., and Roszjar, J. (2011) The Rumuruti chondrite group. Chemie der Erde – Geochemistry 71, 101133.CrossRefGoogle Scholar
Bland, P. A., Howard, L. E., Prior, D. J., Wheeler, J., Hough, R. M., and Dyl, K. A. (2011) Earliest rock fabric formed in the solar system preserved in a chondrule rim. Nature Geoscience 4, 244247.CrossRefGoogle Scholar
Bloss, F. D. (1971) Crystallography and Crystal Chemistry: An Introduction, New York: Holt, Rinehart and Winston, 545 pp.Google Scholar
Blum, J. D., Wasserburg, G. J., Hutcheon, I. D., Beckett, J. R., and Stolper, E. M. (1988) ‘Domestic’ origin of opaque assemblages in refractory inclusions in meteorites. Nature 331, 405409.CrossRefGoogle Scholar
Blum, J. D., Wasserburg, G. J., Hutcheon, I. D., Beckett, J. R., and Stolper, E. M. (1989) Origin of opaque assemblages in CV3 meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta 53, 543556.CrossRefGoogle Scholar
Boesenberg, J. S. and Hewins, R. H. (2010) An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochimica et Cosmochimica Acta, 74, 19231941.CrossRefGoogle Scholar
Boesenberg, J. S., Prinz, M., Weisberg, M. K., Davis, A. M., Clayton, R. N., Mayeda, T. K., and Wasson, J. T. (1995) Pyroxene pallasites: A new pallasite grouplet (abstract). Meteoritics 30, 488489.Google Scholar
Boesenberg, J. S., Davis, A. M., Prinz, M., Weisberg, M. K., Clayton, R. N., and Mayeda, T. K. (2000) The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple. Meteoritics & Planetary Science 35, 757769.CrossRefGoogle Scholar
Boesenberg, J. S., Mayne, R. G., Humayun, M., Silver, A. P., Greenwood, R. C., and Franchi, I. A. (2016) Pyroxene-plagioclase pallasite Northwest Africa 10019: Where does it belong? Lunar and Planetary Science 47, Abstract #2297.Google Scholar
Boesenberg, J. S., Humayun, M., and Van Niekerk, D. (2017) Zinder: The first mantle sample from the IIIF iron parent body. Lunar and Planetary Science, 48, Abstract #2319.Google Scholar
Boesenberg, J. S., Humayun, M., Windmill, R., Greenwood, R. C., and Franchi, I. A. (2018) Sericho: A new main group pallasite with two types of chromite. Lunar and Planetary Science 49, Abstract#1556.Google Scholar
Bogard, D. D. and Johnson, P. (1983) Martian gases in an Antarctic meteorite. Science 221, 651654.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015) Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science 50, 11971216.CrossRefGoogle ScholarPubMed
Boynton, W. V. (1975) Fractionation in the solar nebula: Condensation of yttrium and the rare earth elements. Geochimica et Cosmochimica Acta 39, 569584.CrossRefGoogle Scholar
Bradley, J. P. (2005) Interplanetary dust particles. In Treatise on Geochemistry, Volume 1: Meteorites, Comets and Planets, ed. Davis, A. M. Amsterdam: Elsevier, pp. 689711.Google Scholar
Bradley, J. P., Harvey, R. P., and McSween, H. Y. (1997) No ‘nanofossils’ in martian meteorite. Nature 390, 454.CrossRefGoogle ScholarPubMed
Brearley, A. J. (1989) Nature and origin of matrix in the unique type 3 chondrite, Kakangari. Geochimica et Cosmochimica Acta 53, 23952411.CrossRefGoogle Scholar
Brearley, A. J. (1990) Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history. Geochimica et Cosmochimica Acta 54, 831850.CrossRefGoogle Scholar
Brearley, A. J. (1991) Mineralogical and chemical studies of matrix in the Adelaide meteorite, a unique carbonaceous chondrite with affinities to ALH A77307 (CO3) (abstract). Lunar and Planetary Science 22, 133134.Google Scholar
Brearley, A. J. (1993a) Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta 57, 15211550.CrossRefGoogle Scholar
Brearley, A. J. (1993b) Occurrence and possible significance of rare Ti oxides (Magneli phases) in carbonaceous chondrite matrices. Meteoritics 28, 590595.CrossRefGoogle Scholar
Brearley, A. J. (1995) Aqueous alteration and brecciation in Bells, an unusual, saponite-bearing, CM chondrite. Geochimica et Cosmochimica Acta 59, 22912317.CrossRefGoogle Scholar
Brearley, A. J. (1996) Disordered biopyriboles in the Allende meteorite: First extraterrestrial occurrence. Geological Society of America Abstracts with Program 28, A103.Google Scholar
Brearley, A. J. (1997) Phyllosilicates in the matrix of the unique carbonaceous chondrite, LEW 85332 and possible implications for the aqueous alteration of CI chondrites. Meteoritics & Planetary Science 32, 377388.CrossRefGoogle Scholar
Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y. Tucson: University of Arizona Press, pp. 587624.CrossRefGoogle Scholar
Brearley, A. J. and Jones, R. H. (1998) Chondritic meteorites. In Planetary Materials, Reviews in Mineralogy & Geochemistry, Vol. 36, ed. Papike, J. J. Washington, DC: Mineralogical Society of America, pp. 3-1–3-398.Google Scholar
Breen, J. P., Rubin, A. E., and Wasson, J. T. (2016) Variations in impact effects among IIIE iron meteorites. Meteoritics & Planetary Science 51, 16111631.CrossRefGoogle Scholar
Brigham, C. A., Yabuki, H., Ouyang, Z., Murrell, M. T., El Goresy, A., and Burnett, D. S. (1986) Silica-bearing chondrules and clasts in ordinary chondrites. Geochimica et Cosmochimica Acta 50, 16551666.CrossRefGoogle Scholar
Britvin, S. N., Kolomensky, V. D., Boldyreva, M. M., Bogdanova, A. N., Kretser, Y. L., Boldyreva, O. N., and Rudashesky, N. S. (1999) Nickelphosphide (Ni,Fe)3P, the nickel analog of schreibersite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva 128, 6472.Google Scholar
Britvin, S. N., Guo, X. Y., Kolomensky, V. D., Boldyreva, M. M., Kretser, Y. L., and Yagovkina, M. A. (2001) Cronusite, Ca0.2(H2O)2CrS2, a new mineral from the Norton County enstatite achondrite. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva 130, 2936.Google Scholar
Britvin, S. N., Rudashevsky, N. S., Krivovichev, S. V., Burns, P. C., and Polekhovsky, Y. S. (2002) Allabogdanite,(Fe, Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure. American Mineralogist 87, 12451249.CrossRefGoogle Scholar
Britvin, S. N., Bogdanova, A. N., Boldyreva, M. M., and Aksenova, G. Y. (2008) Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure. American Mineralogist 93, 902909.CrossRefGoogle Scholar
Britvin, S. N., Krivovichev, S. V., and Armbruster, T. (2016) Ferromerrillite, Ca9NaFe2+ (PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite–tuite transformation in shergottites. European Journal of Mineralogy 28, 125136.CrossRefGoogle Scholar
Britvin, S. N., Galuskina, I. O., Vlasenko, N. S., Vereshchagin, O.S., Bocharov, V. N., Krzhizhanovskaya, M. G., Shilovskikh, V. V., Galuskin, E. V., Vapnik, Y., and Obolonskaya, E. V. (2020a) Keplerite, IMA 2019-108, CNMNC Newsletter No. 54, page 277; European Journal of Mineralogy 32, 275283.Google Scholar
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S., Krivovichev, S. V., Krzhizhanovskaya, M. G., Vereshchagin, O. S., Shilovskikh, V. V., and Vlasenko, N. S. (2020b) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P-Ni2P). American Mineralogist 105, 428436.CrossRefGoogle Scholar
Brown, P. G., Revelle, D. O., Tagliaferri, E., and Hildebrand, A. R. (2002) An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteoritics & Planetary Science 37, 661675.CrossRefGoogle Scholar
Brownlee, D. (2014) The Stardust mission: Analyzing samples from the edge of the solar system. Annual Review of Earth and Planetary Science 42, 179205.CrossRefGoogle Scholar
Brownlee, D. E. and Rajan, R. S. (1973) Micrometeorite craters discovered on chondrule-like objects from Kapoeta meteorite. Science 182, 13411344.CrossRefGoogle ScholarPubMed
Buchwald, V. F. (1975) Handbook of Iron Meteorites. BerkeleyUniversity of California Press, 1,418 pp.Google Scholar
Buchwald, V. F. (1977) The mineralogy of iron meteorites. Philosophical Transactions of the Royal Society of London A 286, 453491.Google Scholar
Buchwald, V. F. (1989) Mineralogi og Reaktionsmodeller ved Korrosion of Jordfundne Jergenstande (Meteoritter og Oldsager), Lyngby, Denmark: Technical University of Denmark.Google Scholar
Buchwald, V. F. and Clarke, R. S. (1988) Akaganeite, not lawrencite, corrodes Antarctic iron meteorites (abstract). Meteoritics 23, 261.Google Scholar
Buchwald, V. F. and Clarke, R. S. (1989) Corrosion of Fe-Ni alloys by Cl-containing akaganeite (beta-FeOOH): The Antarctic meteorite case. American Mineralogist 74, 656667.Google Scholar
Buchwald, V. F. and Scott, E. R. D. (1971) First nitride (CrN) in iron meteorites. Nature 233, 113114.Google Scholar
Buddhue, J. D. (1957) The Oxidation and Weathering of Meteorites. Albuquerque: University of New Mexico, 161 pp.Google Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., Fischer-Gödde, M., Kruijer, T. S., and Kleine, T. (2016) Molybendum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., and Kleine, T. (2017) The distinct genetics of carbonaceous and non-carbonaceous meteorites inferred from molybdenum isotopes. 80th Annual Meeting of the Meteoritical Society, Abstract #6271.Google Scholar
Budde, G., Kruijer, T. S., and Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 28430C4.CrossRefGoogle Scholar
Bunch, T. E., Keil, K., and Olsen, E. (1970) Mineralogy and petrology of silicate inclusions in iron meteorites. Contributions to Mineralogy and Petrology 25, 297340.CrossRefGoogle Scholar
Bunch, T., Wittke, J., and Irving, A. (2014) The Al Haggounia “fossil or paleo” meteorite problem, accessed July 3, 2020, www.cefns.nau.edu/geology/naml/Meteorite/Al_Haggounia.html.Google Scholar
Burbine, T. H. (2014) Asteroids. In Treatise on Geochemistry, eds. Holland, H. and Turekian, K. San Diego: Elsevier Pergamon, pp. 365415.CrossRefGoogle Scholar
Burbine, T. H. (2017) Asteroids: Astronomical and Geological Bodies. Cambridge: Cambridge University Press, 367 pp.CrossRefGoogle Scholar
Burbine, T. H., Buchanan, P. C., Binzel, R. P., Bus, S. J., Hiroi, T., Hinrichs, J. L., Meibom, A., and McCoy, T. J. (2001) Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences. Meteoritics & Planetary Science 36, 761781.CrossRefGoogle Scholar
Burgess, K. D. and Stroud, R. M. (2020) Space weathering of three Itokawa grains and presence of cubanite. Lunar and Planetary Science 51, Abstract#1133.Google Scholar
Burke, J. G. (1986) Cosmic Debris: Meteorites in History. Berkeley: University of California Press, 445 pp.CrossRefGoogle Scholar
Burton, A. S., Glavin, D. P., Elsila, J. E., Dworkin, J. P., Jenniskens, P., and Yin, Q.-Z. (2014) The amino acid composition of the Sutter’s Mill CM2 carbonaceous chondrite. Meteoritics & Planetary Science 49, 20742086.CrossRefGoogle Scholar
Buseck, P. R. (1968) Mackinawite, pentlandite and native copper from the Newport pallasite. Mineralogical Magazine 36, 717725.CrossRefGoogle Scholar
Buseck, P. R. (1977) Pallasite meteorites—mineralogy, petrology and geochemistry. Geochimoca et Cosmochimica Acta 41, 711740.CrossRefGoogle Scholar
Buseck, P. R. and Hua, X. (1993) Matrices of carbonaceous chondrite meteorites. Annual Review of Earth & Planetary Sciences 21, 255305.CrossRefGoogle Scholar
Cable, M. L., Vu, T. H., Maynard-Casely, H. E., Malaska, M., Choukroun, M., and Hodyss, R. (2020) Evidence for a new Titan molecular mineral: A co-crystal between acetylene and acetonitrile. Lunar and Planetary Science 51, Abstract #1769.Google Scholar
Caillet Komorowski, C., El Goresy, A., Miyahara, M., Boudouma, O., and Ma, C. (2012) Discovery of Hg–Cu-bearing metal-sulfide assemblages in a primitive H-3 chondrite: Towards a new insight in early solar system processes. Earth and Planetary Science Letters 349–350, 261271.CrossRefGoogle Scholar
Cameron, A. G. W. and Ward, W. (1976) The origin of the Moon (abstract). Lunar Science 7, 120122.Google Scholar
Campbell, A. J., Humayun, M., and Weisberg, M. K. (2002) Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba. Geochimica et Cosmochimica Acta 66, 647660.CrossRefGoogle Scholar
Campbell, A. J. and Humayun, M. (2005) Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta 69, 47334744.CrossRefGoogle Scholar
Campins, H., Hargrove, K., Pinilla-Alonso, N., Howell, E. S., Kelley, M. S., Licandro, J., Mothé-Diniz, T., Fernández, Y., and Ziffer, J. (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 13201321.CrossRefGoogle ScholarPubMed
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotopic compositions of the Earth and Moon. Nature Geoscience 13, 270274. https://doi.org/10.1038/s41561-020-0550-0.CrossRefGoogle Scholar
Canup, R. M. (2012) Forming a Moon with an Earth-like composition via a giant impact. Science 338, 10521055.CrossRefGoogle Scholar
Carter, N. L., Raleigh, C. B., and DeCarli, P. S. (1968) Deformation of olivine in stony meteorites. Journal of Geophysical Research 73, 54395461.CrossRefGoogle Scholar
Cartwright, J. A., Ott, U., Herrmann, S., and Agee, C. B. (2014) Modern atmospheric signatures in 4.4 Ga martian meteorite NWA 7034. Earth and Planetary Science Letters 400, 7787.CrossRefGoogle Scholar
Castle, N. and Herd, C. D. K. (2018) Experimental investigation into the effects of oxidation during petrogenesis of the Tissint meteorite. Meteoritics & Planetary Science 53, 13411363.CrossRefGoogle Scholar
Chabot, N. L. and Haack, H. (2006) Evolution of asteroidal cores. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y. Tucson: University of Arizona Press, pp. 747771.CrossRefGoogle Scholar
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., Fries, M., Ito, M., Steele, A., Rahman, Z., Nakato, A., Kilcoyne, A. L. D., Suga, H., Takahashi, Y., Takeichi, Y., and Mase, K. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances 4, eaao3521. https://doi: 10.1126/sciadv.aao3521.CrossRefGoogle ScholarPubMed
Chao, E. C. T., Fahey, J. J., Littler, J., and Milton, D. J. (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research 67, 419421.CrossRefGoogle Scholar
Chaumard, N., Devouard, B., Delbo, M., Provost, A., and Zanda, B. (2012) Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites. Icarus 220, 6573.CrossRefGoogle Scholar
Chen, D.-L., Zhang, A.-C., Pang, R.-L., Chen, J.-N., and Li, Y. (2019) Shock-induced phase transformation of anorthitic plagioclase in the eucrite meteorite Northwest Africa 2650. Meteoritics & Planetary Science 54, 15481562.CrossRefGoogle Scholar
Chen, M., Sharp, T. G., El Goresy, A., Wopenka, B., and Xie, X. (1996) The majorite-pyrope-magnesiowustite assemblage: Constraints on the history of shock veins in chondrites. Science 271, 15701573.CrossRefGoogle Scholar
Chen, M., Shu, J., and Mao, H. K. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin 53, 33413345.Google Scholar
Chennaoui-Aoudjehane, H., Jambon, A., Rjimati, E., Jull, A. J. T., and Leclerc-Giscard, M. D. (2009) The Late Quaternary fall at Al Haggounia (Morocco): The 14C evidence. Meteoritics & Planetary Science 44, A100.Google Scholar
Chizmadia, L., Rubin, A. E., and Wasson, J. T. (2002) Mineralogy and petrology of amoeboid olivine inclusions: Evidence for CO3 parent-body aqueous alteration. Meteoritics & Planetary Science 37, 17811796.CrossRefGoogle Scholar
Choe, W. H., Huber, H., Rubin, A. E., Kallemeyn, G. W., and Wasson, J. T. (2010) Compositions and taxonomy of 15 unusual carbonaceous chondrites. Meteoritics & Planetary Science 45, 531554.CrossRefGoogle Scholar
Christiansen, E. H. and Hamblin, K. (2014) Dynamic Earth: An Introduction to Physical Geology. Burlington, MA: Jones and Bartlett, 838 pp.Google Scholar
Christophe Michel-Levy, M. (1976) La matrice noire et blanche de la chondrite de Tieschitz (H3). Earth and Planetary Science Letters 30, 143150.CrossRefGoogle Scholar
Chukanov, N., Pekov, I., Levitskaya, L., and Zadov, A. (2009) Droninoite, Ni3Fe3+ 2Cl (OH)8· 2H2O, a new hydrotalcite-group mineral species from the weathered Dronino meteorite. Geology of Ore Deposits 51, 767773.CrossRefGoogle Scholar
Cintala, M. (1981) The Mercurian regolith: An evaluation of impact glass production by micrometeoroid impact. Lunar and Planetary Science XII, 141143.Google Scholar
Clarke, R.S. and Scott, E. R. D. (1980) Tetrataenite–ordered FeNi, a new mineral in meteorites. American Mineralogist 65, 624630.Google Scholar
Clarke, R. S., Buchwald, V. F., and Olsen, E. (1990) Anomalous ataxite from Mount Howe, Antarctica. Meteoritics 25, 354.Google Scholar
Clayton, D. D. and Nittler, L. R. (2004) Astrophysics with presolar stardust. Annual Review of Astronomy & Astrophysics 42, 3978.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991) Oxygen isotope studies of ordinary chondrites. Geochimica et Cosmochimica Acta 55, 23172337.CrossRefGoogle Scholar
Cloutis, E. A., Binzel, R. P., and Gaffey, M. J. (2014) Establishing asteroid-meteorite links. Elements 10, 2530.CrossRefGoogle Scholar
Comelli, D., D’Orazio, M., Folco, L., El-Halwagy, M., Frizzi, T., Alberti, R., Capogrosso, V., Elnaggar, A., Hassan, H., Nevin, A., Porcelli, F., Rashed, M. G., and Valentini, G. (2016) The meteoritic origin of Tutankhamun’s iron dagger blade. Meteoritics & Planetary Science 51, 13011309.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., and Ivanova, M. A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C., Zipfel, J., Grossman, J. N., Folco, L., Smith, C., Jones, R. H., Righter, K., Zolensky, M., Russell, S. S., and Benedix, G. K. (2006) The Meteoritical Bulletin, No. 90, 2006 September. Meteoritics & Planetary Science Archives 41, 13831418.CrossRefGoogle Scholar
Consolmagno, G. J. and Drake, M. J. (1977) Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta 41, 12711282.CrossRefGoogle Scholar
Consolmagno, G. J., Macke, R. J., Rochette, P., Britt, D. T., and Gattacceca, J. (2006) Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers. Meteoritics & Planetary Science 41, 331342.CrossRefGoogle Scholar
Corrigan, C. M., Rumble, D., Ash, R. D., McDonough, W. F., Honesto, J., and Walker, R. J. (2005) The Tishomingo iron: Relationship to IVB irons, CR clan chondrites and angrites and implications for the origin of volatile-depleted iron meteorites. Lunar and Planetary Science 36, Abstract #2062.Google Scholar
Croat, T. K., Berg, T., Bernatowicz, T., Groopman, E., and Jadhav, M. (2013) Refractory metal nuggets within presolar graphite: First condensates from a circumstellar environment. Meteoritics & Planetary Science 48, 686699.CrossRefGoogle Scholar
Crotts, A. (2014) The New Moon: Water, Exploration and Future Habitation. Cambridge, UK: Cambridge University Press, 522 pp.CrossRefGoogle Scholar
Cruikshank, D. P., Tholen, D. J., Hartmann, W. K., Bell, J. H., and Brown, R. H. (1991) Three basaltic Earth-approaching asteroids and the source of basaltic meteorites. Icarus 89, 113.CrossRefGoogle Scholar
Daly, L., Bland, P. A., Dyl, K. A., Forman, L. V., Evans, K. A., Trimby, P. W., Moody, S., Yang, L., Liu, H., Ringer, S. P., Ryan, C. G., and Saunders, M. (2017) In situ analysis of refractory metal nuggets in carbonaceous chondrites. Geochimica et Cosmochimica Acta 216, 6181.CrossRefGoogle Scholar
Davis, A. M. (1991) Ultrarefractory inclusions and the nature of the group II REE fractionation (abstract). Meteoritics 26, 330.Google Scholar
Davis, A. M., Zhang, J., Greber, N. D., Hu, J., Tissot, F. L. H., and Dauphas, N. (2018) Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal processing and gas-dust decoupling in the protoplanetary disk. Geochimica et Cosmochimica Acta 221, 275295.CrossRefGoogle Scholar
Delaney, J. S., Prinz, M., and Takeda, H. (1984) The polymict eucrites. Proceedings Lunar and Planetary Science Conference, 15, C251C288. https://doi.org/10.1029/JB089iS01p0C251.Google Scholar
DeMeo, F. E., Polishook, D., Carry, B., Burt, B. J., Hsieh, H. H., Binzel, R. P., Moskovitz, N. A., and Burbine, T. H. (2019) Olivine-dominated A-type asteroids in the main belt: Distribution, abundance and relation to families. Icarus 322, 1330.CrossRefGoogle Scholar
Demidova, S. I., Merle, R., Kenny, G. G., Nemchin, A. A., Whitehouse, M. J., Brandstätter, F., and Ntaflos, Th. (2020) Possible LL chondrite projectile in Luna-16 soil samples. Lunar and Planetary Science 51, Abstract#1368.Google Scholar
Dobrică, E. and Brearley, A. J. (2014) Widespread hydrothermal alteration minerals in the fine‐grained matrices of the Tieschitz unequilibrated ordinary chondrite. Meteoritics & Planetary Science 49, 13231349.CrossRefGoogle Scholar
Dobrică, E. and Brearley, A. J. (2020) Amorphous silicates in the matrix of Semarkona: The first evidence for the localized preservation of pristine matrix materials in the most unequilibrated ordinary chondrites. Meteoritics & Planetary Science 55, 120. https://doi.org/ 10.1111/maps.13458.CrossRefGoogle Scholar
Dodd, R. T. (1981) Meteorites: A Petrologic-Chemical Synthesis. New York: Cambridge, 368 pp.Google Scholar
Dodd, R. T. and Jarosewich, E. (1979) Incipient melting in and shock classification of L-group chondrites. Earth and Planetary Science Letters 44, 335340.CrossRefGoogle Scholar
Dodd, R. T. and Jarosewich, E. (1982) The composition of incipient shock melts in L6 chondrites. Earth and Planetary Science Letters 59, 355363.CrossRefGoogle Scholar
Dodd, R. T., Van Schmus, W. R., and Marvin, U. B. (1965) Merrihueite, a new alkali-ferromagnesian silicate from the Mezö-Madaras chondrite. Science 149, 972974.CrossRefGoogle ScholarPubMed
Dodd, R. T., Van Schmus, W. R., and Marvin, U. B. (1966) Significance of iron-rich silicate in the Mezö-Madaras chondrite. American Mineralogist 51, 11771191.Google Scholar
Dodd, R. T., Van Schmus, W. R., and Koffman, D. M. (1967) A survey of the unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta 31, 921951.CrossRefGoogle Scholar
Dones, H., Zahnle, K. J., and Alvarellos, J. L. (2018) Asteroids and meteorites from Venus? Only the Earth goddess knows (abstract). American Astronomical Society, Division on Dynamical Astronomy Meeting #49, i.d. 102.02. https://ui.adsabs.harvard.edu/#abs/2018DDA....4910202D/abstractGoogle Scholar
Donohue, P. H., Huss, G. R., and Nagashima, K. (2019) Manganese-chromium systematics of calcite in the CM chondrites QUE 93005 and MET 01070 determined using a new matrix-matched standard. Lunar and Planetary Science 50, Abstract #1949.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., Krot, A. N., Wakita, S., Ciesla, F. J., and Hutcheon, I. D. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications 6, 110. https://doi.org/ 10.1038/ncomms8444.CrossRefGoogle ScholarPubMed
Dunn, T. L. and Gross, J. (2017) Reclassification of Hart and Northwest Africa 6047: Criteria for distinguishing between CV and CK3 chondrites. Meteoritics & Planetary Science 52, 24122423.Google Scholar
Dunn, T. L., Gross, J., Ivanova, M. A., Runyon, S. E., and Bruck, A. M. (2016) Magnetite in the unequilibrated CK chondrites: Implications for metamorphism and new insights into the relationship between the CV and CK chondrites. Meteoritics & Planetary Science 51, 17011720.CrossRefGoogle Scholar
Dunn, T. L., Battifarano, O. K., Gross, J., and O’Hara, E. J. (2018) Characterization of matrix material in Northwest Africa 5343: Weathering and thermal metamorphism of the least equilibrated CK chondrite. Meteoritics & Planetary Science 53, 21652180.CrossRefGoogle Scholar
Dye, S. T., Huang, Y., Lekic, V., McDonough, W. F., and Šrámek, O. (2015) Geo-neutrinos and Earth models. Physics Procedia 61, 310318.CrossRefGoogle Scholar
Ebata, S., Nagashima, K., Itoh, S., Kobayashi, S., Sakamoto, N., Fagan, T. J., and Yurimoto, H. (2006) Presolar silicate grains in enstatite chondrites. Lunar and Planetary Science 37, Abstract#1619.Google Scholar
Ebata, S., Fagan, T. J., and Yurimoto, H. (2007) Identification of silicate and carbonaceous presolar grains in the type 3 enstatite chondrite ALHA81189 (abstract). Meteoritics & Planetary Science 42, A38.Google Scholar
Ebel, D. S. and Grossman, L. (2000) Condensation in dust enriched systems. Geochimica et Cosmochimica Acta 64, 339366.CrossRefGoogle Scholar
El Goresy, A. (1976) Opaque oxide minerals in meteorites. In Oxide Minerals, ed. Rumble, D. Blacksburg, Virginia: Mineralogical Society of America, Southern Printing Company, pp. EG47EG72.Google Scholar
El Goresy, A. and Ottemann, J. (1966) Gentnerite, Cu8Fe3Cr11S18, a new mineral from the Odessa meteorite. Zeitschrift für Naturforschung 21, 11601161.CrossRefGoogle Scholar
El Goresy, A., Nagel, K., Dominik, B., and Ramdohr, P. (1977) Fremdlinge: Potential presolar material in Ca-Al-rich inclusions of Allende. Meteoritics 12, 215216.Google Scholar
El Goresy, A., Nagel, K., and Ramdohr, P. (1978) Fremdlinge and their noble relatives. Proceedings Lunar and Planetary Science Conference 9, 12791303.Google Scholar
El Goresy, A., Wopenka, B., Chen, M., Weinbruch, S., and Sharp, T. (1997) Evidence for two different shock induced high-pressure events and alkali-vapor metasomatisme in Peace River and Tenham (L6) chondrites Lunar and Planetary Science 28, Abstract#1044.Google Scholar
El Goresy, A., Yabuki, H., Ehlers, K., Woolum, D., and Pernicka, E. (1988) Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites 1, 65101.Google Scholar
El Goresy, A., Dera, P., Sharp, T. G., Prewitt, C. T., Chen, M., Dubrovinsky, L., Wopenka, B., Boctor, N. Z., and Hemley, R. J. (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy 20, 523528.CrossRefGoogle Scholar
El Goresy, A., Boyer, M., and Miyahara, M. (2011) Almahata Sitta MS-17 EL-3 chondrite fragment: Contrasting oldhamite assemblages in chondrules and matrix and significant oldhamite REE-patterns. Meteoritics & Planetary Science 46, A63, Abstract#5079.Google Scholar
El Goresy, A., Lin, Y., Miyahara, M., Gannoun, A., Boyet, M., Ohtani, E., Gillet, P., Trieloff, M., Simionovici, A., Feng, L., and Lenelle, L. (2017) Origin of EL3 chondrites evidence for variable C/O ratios during their course of formation – A state of the art scrutiny. Meteoritics & Planetary Science 52, 781806.CrossRefGoogle Scholar
Emel’yanenko, V. V., Naroenkov, S. A., Jenniskens, P., and Popova, O. P. (2014) The orbit and dynamical evolution of the Chelyabinsk object. Meteoritics & Planetary Science 49, 21692174.CrossRefGoogle Scholar
Endress, M. and Bischoff, A. (1996) Carbonates in CI chondrites: Clues to parent body evolution. Geochimica et Cosmochimica Acta 60 489507.CrossRefGoogle ScholarPubMed
Endreß, M., Keil, K., Bischoff, A., Spettel, B., Clayton, R. N., and Mayeda, T. K. (1994) Origin of dark clasts in the Acfer/El Djouf 001 CR2 chondrite. Meteoritics 29, 2640.CrossRefGoogle Scholar
Eugster, O. (2003) Cosmic-ray exposure ages of meteorites and lunar rocks and their significance. Geochemistry 63, 330.CrossRefGoogle Scholar
Fagan, T. J., Scott, E. R. D., Keil, K., Cooney, T. F., and Sharma, S. K. (2000) Formation of feldspathic and metallic melts by shock in enstatite chondrite Reckling Peak A80259. Meteoritics & Planetary Science 35, 319329.CrossRefGoogle Scholar
Farrington, O. C. (1915) Meteorites. Published by the author. Chicago, 233 pp.Google Scholar
Faust, G. T., Fahey, J. J., Mason, B. H., and Dwornik, E. J. (1973) The disintegration of the Wolf Creek meteorite and the formation of pecoraite, the nickel analog of clinochrysotile. United States Geological Survey Professional Paper 384-C, 107135.Google Scholar
Fegley, B., Treiman, A. H., and Sharpton, V. L. (1992) Venus surface mineralogy: Observational and theoretical constraints. Proceedings of Lunar and Planetary Science 22, 319.Google Scholar
Feldman, W. C., Maurice, S., Lawrence, D. J., Little, R. C., Lawson, S. L., Gasnault, O., Wiens, R. C., Barraclough, B. L., Elphic, R. C., Prettyman, T. H., Steinberg, J. T., and Binder, A. B. (2001) Evidence for water ice near the lunar poles. Journal of Geophysical Research 106 (E10), 2323123251.CrossRefGoogle Scholar
Fesenkov, V. G. (1958) Progress in meteoritics (in Russian) Meteoritika 16, 510.Google Scholar
Filacchione, G., Capaccioni, F., Ciarniello, M., Raponi, A., Rinaldi, G., Cristina De Sanctis, M., Bockelèe-Morvan, D., Erard, S., Arnold, G., Mennella, V., Formisano, M., Longobardo, A., and Mottola, S. (2020) An orbital water-ice cycle on comet 67P from colour changes. Nature 578, 4952.CrossRefGoogle ScholarPubMed
Flight, W. (1887) A Chapter in the History of Meteorites. London: Dulau and Co.Google Scholar
Floran, R. J., Prinz, M., Hlava, P. F., Keil, K., Nehru, C. E., and Hinthorne, J. R. (1978) The Chassigny meteorite: A cumulate dunite with hydrous amphibole-bearing melt inclusions. Geochimica et Cosmochimica Acta 42, 12131229.CrossRefGoogle Scholar
Fodor, R. V. and Keil, K. (1975) Implications of poikilitic textures in LL-group chondrites. Meteoritics 10, 325339.CrossRefGoogle Scholar
Fodor, R. V. and Keil, K. (1976) Carbonaceous and non-carbonaceous lithic fragments in the Plainview, Texas chondrite: Origin and history. Geochimica et Cosmochimica Acta 40, 177189.CrossRefGoogle Scholar
Fodor, R. V. and Keil, K. (1978) Catalog of Lithic Fragments in LL-Group Chondrites. Special Publication of the University of New Mexico. Albuquerque: Dept. of Geology & Institute of Meteoritics, University of New Mexico, pp. 138.Google Scholar
Fogel, R. A. (1997) On the significance of diopside and oldhamite in enstatite chondrites and aubrites. Meteoritics & Planetary Science 32, 577591.CrossRefGoogle Scholar
Foley, C. N., Nittler, L. R., McCoy, T. J., Lim, L. F., Brown, M. R. M., Starr, R. D., and Trombka, J. I. (2006) Minor element evidence that asteroid 433 Eros is a space-weathered ordinary chondrite parent body. Icarus 184, 338343.CrossRefGoogle Scholar
Franza, A. and Pratesi, G. (2020) Julius Obsequen’s book, Liber Prodigiorum, A Roman era record of meteorite falls, fireballs, and other celestial phenomena. Meteoritics & Planetary Science 55, 1697–1708 https://doi.org/10.1111/maps.13525.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., Biltz, A. E., Corbett, B. M., Iotzov, I. V., Khan, W. S., and Wolman, M. D. (2015) Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie der Erde – Geochemistry 75, 419443.CrossRefGoogle Scholar
Fritz, J., Greshake, A., Klementova, M., Wirth, R., Palatinus, L., Assis Fernandes, V., Böttger, U., and Ferrière, L. (2019) Donwilhelmsite, IMA 2018-113. CNMNC Newsletter No. 47, February 2019, page 145; Mineralogical Magazine 83, 143147.Google Scholar
Fritz, J., Greshanke, A., Klementova, M., Wirth, R., Palatinus, L., Trønnes, R. G., Fernandes, V. A., Böttger, U., and Ferrière, L. (2020) Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. American Mineralogist 105, 17041711.CrossRefGoogle Scholar
Frondel, J. W. (1975) Lunar Mineralogy. New York: Wiley.Google Scholar
Fuchs, L. H. (1966a) Djerfisherite, alkali copper-iron sulfide: A new mineral from enstatite chondrites. Science 153, 166167.CrossRefGoogle ScholarPubMed
Fuchs, L. H. (1966b) Roedderite, a new mineral from the Indarch meteorite. American Mineralogist 51, 949955.Google Scholar
Fuchs, L. H. (1969) The Phosphate Mineralogy of Meteorites. The Netherlands: Reidel, Dordrecht.CrossRefGoogle Scholar
Fuchs, L. H. (1971) Occurrence of wollastonite, rhonite, and andradite in the Allende meteorite. American Mineralogist 56, 20532068.Google Scholar
Fuchs, L. H. and Olsen, E. (1965) The occurrence of chlorapatite in the Mount Stirling octahedrite (abstract). Transactions of the American Geophysical Union 46, 122.Google Scholar
Fuchs, L. H., Olsen, E., and Henderson, E. P. (1967) On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochimica et Cosmochimica Acta 31, 17111719.CrossRefGoogle Scholar
Fuchs, L. H., Olsen, E., and Jensen, K.J. (1973) Mineralogy, mineral-chemistry, and composition of the Murchsion (C2) meteorite. Smithsonian Contributions to the Earth Sciences 10, 139.CrossRefGoogle Scholar
Fujimaki, H., Matsu-ura, M., Sunagawa, I., and Aoki, K. (1981) Chemical compositions of chondrules and matrices in the ALH-77015 chondrite (L3). Proceedings of the Symposium on Antarctic Meteorites 6, 161–174.Google Scholar
Fujiya, W., Hoppe, P., Zinner, E., Pignatari, M., and Herwig, F. (2013) Evidence for radiogenic sulfur-32 in Type AB presolar silicon carbide grains. The Astrophysical Journal Letters 776, L29, 6 pp.CrossRefGoogle Scholar
Garvie, L. A. J., Németh, P., and Buseck, P. R. (2011) Diamond, bucky-diamond, graphite-diamond, Al-silicate, and stishovite in the Gujba CB chondrite. 74th Annual Meeting of the Meteoritical Society, held August 8–12, 2011, in London, UK Abstract #5227. Published in Meteoritics and Planetary Science Supplement.Google Scholar
Garvie, L. A. J., Knauth, L. P., and Morris, M. A. (2017) Sedimentary laminations in the Isheyevo (CH/CBb) carbonaceous chondrite formed by gentle impact-plume sweep-up. Icarus 292, 3647.CrossRefGoogle ScholarPubMed
Garvie, L. A. J., Ma, C., Ray, S., Domanik, K., Wittmann, A., and Wadhwa, M. (2021a) Carletonmooreite, Ni3Si, a new silicide from the Norton County, aubrite meteorite. American Mineralogist 106, in press. DOI:10.2138/am-2021-7645Google Scholar
Garvie, L. A. L., Ma, C., and Wittmann, A. (2021b) Location and speciation of germanium in the Butler and Northwest Africa 859 ungrouped iron meteorites. Lunar and Planetary Science 52, Abstract #2398.Google Scholar
Geiger, T. and Bischoff, A. (1989) Mineralogy of metamorphosed carbonaceous chondrites (abstract). Meteoritics 24, 269270.Google Scholar
Geiger, T. and Bischoff, A. (1990) Exsolution of spinel and ilmenite in magnetites from type 4-5 carbonaceous chondrites--indications for metamorphic processes (abstract). Lunar and Planetary Science 21, 409410.Google Scholar
Geiger, T. and Bischoff, A. (1995) Formation of opaque minerals in CK chondrites. Planetary and Space Science 43, 485498.CrossRefGoogle Scholar
Genge, M. J. and Grady, M. M. (1999) The fusion crust of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteoritics & Planetary Science, 34, 341356.CrossRefGoogle Scholar
George, J., Waraquiers, D., Di Stefano, D., Petretto, G., Rignanese, G.-M., and Hautier, G. (2020) The limited predictive power of the Pauling rules. Angewandte Chemie 132, 76397645. https://doi.org/10.1002/ange.202000829.CrossRefGoogle Scholar
Gettens, R. J., Clarke, R. S. Jr. and Chase, W. T. (1971) Two early Chinese bronze weapons with meteoritic iron blades. Freer Gallery of Art, Washington, DC, Occasional Papers, 4, No. 1.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y., and Rubin, A. (2006) Asteroidal heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II eds. Lauretta, D., Leshin, L. A., and McSween, H. Y. Tucson: University of Arizona Press, pp. 555566.CrossRefGoogle Scholar
Gillet, P., Chen, M., Dubrovinsky, L., and El Goresy, A. (2000) Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287, 16331636.CrossRefGoogle ScholarPubMed
Gilmore, M., Treiman, A., Helbert, J., and Smrekar, S. (2017) Venus surface composition constrained by observation and experiment. Space Science Reviews 212, 15111540.CrossRefGoogle Scholar
Gladman, B. and Coffey, J. (2009) Mercurian impact ejecta: Meteorites and mantle. Meteoritics & Planetary Science 44, 285291.CrossRefGoogle Scholar
Gladman, B. J., Burns, J. A., Duncan, M., Lee, P., and Levison, H. F. (1996) The exchange of impact ejecta between terrestrial planets. Science 271, 13871392.CrossRefGoogle Scholar
Glass, B. P., Liu, S., and Leavens, P. B. (2002) Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. American Mineralogist 87, 562565.CrossRefGoogle Scholar
Goldstein, J. I. and Michael, J. R. (2006) The formation of plessite in meteoritic metal. Meteoritics & Planetary Science 41, 553570.CrossRefGoogle Scholar
Gomes, C. B. and Keil, K. (1980) Brazilian Stone Meteorites. Albuquerque: University of New Mexico Press, 162 pp.Google Scholar
Gooding, J. L. (1981) Mineralogical aspects of terrestrial weathering effects in chondrites from Allan Hills, Antarctica. Proceedings of the Lunar and Planetary Science Conference 12B, 11051122.Google Scholar
Gooding, J. L. (1992) Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites. Icarus 99, 2841.CrossRefGoogle Scholar
Gooding, J. L. and Keil, K. (1981) Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation. Meteoritics 16, 1743.CrossRefGoogle Scholar
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E. (1991) Aqueous alteration of the Nakhla meteorite. Meteoritics & Planetary Science 26, 135143.CrossRefGoogle Scholar
Goodrich, C. A. (1992) Ureilites: A critical review. Meteoritics 27, 327352.CrossRefGoogle Scholar
Goodrich, C. A., Keil, K., Berkley, J. L., Laul, J. C., Smith, M. R., Wacker, J. F., Clayton, R. N., and Mayeda, T. K. (1987) Roosevelt County 027: A low-shock ureilite with interstitial silicates and high noble-gas concentration. Meteoritics 22, 191218.CrossRefGoogle Scholar
Goodrich, C. A., Scott, E. R. D., and Fioretti, A. M. (2004) Ureilitic breccias: Clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Chemie der Erde – Geochemistry 64, 283327.CrossRefGoogle Scholar
Goodrich, C. A., Van Orman, J. A., and Wilson, L. (2007) Fractional melting and smelting on the ureilite parent body. Geochimica et Cosmochimia Acta 71, 28762895.CrossRefGoogle Scholar
Goodrich, C. A., Hartmann, W. K., O’Brien, D. P., Weidenschilling, S. J., Wilson, L., Michel, P., and Jutzi, M. (2015) Origin and history of ureilitic material in the solar system: The view from asteroid 2008 TC3 and the Almahata Sitta meteorite. Meteoritics & Planetary Science 50, 782809.CrossRefGoogle Scholar
Goodrich, C. A., Kita, N. T., Yin, Q.-Z., Sanborn, M. E., Williams, C. D., Nakashima, D., Lane, M. D., and Boyle, S. (2017) Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochimica et Cosmochimia Acta 203, 381403.CrossRefGoogle ScholarPubMed
Goodrich, C. A., Nestola, F., Jakubek, R., Erickson, T., Fries, M., Fioretti, A. M., Ross, D. K., and Brenker, F. E. (2020) The origin of diamonds in ureilites. Lunar and Planetary Science 51, Abstract#1411.Google Scholar
Goreva, J. S.Ma, C., and Rossman, G. R. (2001) Fibrous nanoinclusions in massive rose quartz: The source of rose colorationAmerican Mineralogist 86, 466472.CrossRefGoogle Scholar
Gradie, J. and Tedesco, E. (1982) Compositional structure of the asteroid belt. Science 216, 14051407.CrossRefGoogle ScholarPubMed
Grady, M. M. (2000) Catalogue of Meteorites, 5th ed. Cambridge, UK: Cambridge University Press, 689 pp.Google Scholar
Grady, M. M., Pratesi, G., and Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge, UK: Cambridge University Press, 373 pp.Google Scholar
Grazier, K. R., Castillo-Rogez, J. C., and Horner, J. (2018) It’s complicated: A big data approach to exploring planetesimal evolution in the presence of Jovian planets. Astronomical Journal 156, 232s (19 pp).CrossRefGoogle Scholar
Greenland, L. (1965) The abundances of selenium, tellurium, silver, palladiumm, cadmium, and zinc in chondritic meteorites. Geochimica et Cosmochimica Acta 31, 849860.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017) Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies. Chemie der Erde – Geochemistry 77, 143.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., and Franchi, I. A. (2020) Linking asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta 277, 377406. https://doi.org/10.1016/j.gca.2020.02.004.CrossRefGoogle Scholar
Greshake, A. (1997) The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta 61, 437452.CrossRefGoogle ScholarPubMed
Greshake, A. and Bischoff, A. (1996) Chromium-bearing phases in Orgueil (CI): Discovery of magnesiochromite (MgCr2O4), ureyite (NaCrSi2O6), and chromium-oxide (Cr2O3) (abstract). Lunar and Planetary Science 27, 461462.Google Scholar
Greshake, A., Bischoff, A., and Putnis, A. (1996a) Pure CaO, MgO (periclase), TiO2 (rutile), and Al2O3 (corundum) in Ca,Al-rich inclusions from carbonaceous chondrites (abstract). Lunar and Planetary Science 27, 463464.Google Scholar
Greshake, A., Bischoff, A., Putnis, A., and Palme, H. (1996b) Corundum, rutile, periclase, and CaO in Ca,Al-rich inclusions from carbonaceous chondrites. Science 272, 13161318.CrossRefGoogle ScholarPubMed
Grew, E. S., Yates, M. G., Beane, R. J., Floss, C., and Gerbi, C. (2010) Chopinite-sarcopside solid solution,[(Mg, Fe) 3□](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites. American Mineralogist 95, 260272.CrossRefGoogle Scholar
Grossman, J. N. and Brearley, A. J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science 40, 87122.CrossRefGoogle Scholar
Grossman, J. N. and Rubin, A. E. (1986) The origin of chondrules and clasts bearing calcic plagioclase in ordinary chondrites (abstract). Lunar and Planetary Science 17, 293294.Google Scholar
Grossman, J. N. and Wasson, J. T. (1985) The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta 49, 925939.CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. M. O’D., and Brearley, A. J. (2000) Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics & Planetary Science 35, 467486.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Rambaldi, E. R., Rajan, R. S., and Wasson, J. T. (1985) Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochimica et Cosmochimica Acta 49, 17811795.CrossRefGoogle Scholar
Gyngard, F., Amari, S., Jadhav, M., Zinner, E., and Lewis, R. S. (2006) Carbon, nitrogen, and silicon isotopic ratios in KJG presolar SiC grains from Murchison. Lunar and Planetary Science Conference 37, Abstract #2194.Google Scholar
Gyngard, F., Ávila, J. N., Ireland, T. R., and Zinner, E. (2014) More interstellar exposure ages of large presolar SiC grains from the Murchison meteorite. Lunar and Planetary Science 45, Abstract #2348Google Scholar
Gyngard, F., Jadhav, M., Nittler, L. R., Stroud, R. M., and Zinner, E. (2018) Bonanza: An extremely large dust grain from a supernova. Geochimica et Cosmochimica Acta 221, 6086.CrossRefGoogle Scholar
Haba, M. K., Wotzlaw, J.-F., Lai, Y.-J., Yamaguchi, A., Schönbächler, M. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collisionNature Geoscience 12510515.CrossRefGoogle Scholar
Haggerty, S. E. (1972) An enstatite chondrite from Hadley Rille (absract). In The Apollo 15 Lunar Samples, eds. Chamberlain, J. W. and Watkins, C. Houston, Texas: Lunar Science Institute, pp. 8587.Google Scholar
Harries, D. and Langenhorst, F. (2018) Carbide-metal assemblages in a sample returned from asteroid 25143 Itokawa: Evidence for methane-rich fluids during metamorphism. Geochimica et Cosmochimica Acta 222, 5373.CrossRefGoogle Scholar
Haines, E. L., Gancarz, A. J., Albee, A. L., and Wasserburg, G. J. (1972) The uranium distribution in lunar soils and rocks 12013 and 14310. Lunar and Planetary Science Conference, Vol. 3, Abstract#1127, p. 350.Google Scholar
Hallis, L. J., Anand, M., Greenwood, R. C., Miller, M. F., Franchi, I. A., and Russell, S. S. (2010) The oxygen isotope composition, petrology and geochemistry of mare basalts: Evidence for large-scale compositional variation in the lunar mantle. Geochimica et Cosmochimica Acta 74, 68856899.CrossRefGoogle Scholar
Hamilton, V. E., Simon, A. A., Christensen, P. R., Reuter, D. C., Clark, B. E., Barucci, M. A., Bowles, N. E., Boynton, W. V., Brucato, J. R., Cloutis, E. A., Connolly, H. C., Donaldson Hanna, K. L., Emery, J. P., Enos, H. L., Fornasier, S., Haberle, C. W., Hanna, R. D., Howell, E. S., Kaplan, H. H., Keller, L. P., Lantz, C., Li, J.-Y., Lim, L. F., McCoy, T. J., Merlin, F., Nolan, M. C., Praet, A., Rozitis, B., Sandford, S. A., Schrader, D. L., Thomas, C. A., Zou, X,-D., Lauretta, D. S., and the OSIRIS-REx Team (2019) Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy 3, 332340.CrossRefGoogle ScholarPubMed
Hansen, M. (1958) Constitution of Binary Alloys. New York: McGraw-Hill, 1,305 pp.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research: Planets 106, 1003910073.CrossRefGoogle Scholar
Harju, E. R., Rubin, A. E., Choi, B.-G., Ahn, I., Ziegler, K., and Wasson, J. T. (2014) Progressive aqueous alteration of CR carbonaceous chondrites. Geochimica et Cosmochimica Acta 139, 267292.CrossRefGoogle Scholar
Hartmann, W. K. and Davis, D. R. (1975) Satellite-sized planetesimals and lunar origin. Icarus 24, 504515.CrossRefGoogle Scholar
Hartmann, W. K., Forte, A., and Sabyr, A. (2018) Comment on “Chelyabinsk, Zond IV, and a possible first-century fireball of historical importance.” Meteoritics & Planetary Science 53, 21812192.CrossRefGoogle Scholar
Hassanzadeh, J., Rubin, A. E., and Wasson, J. T. (1990) Compositions of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups. Geochimica et Cosmochimica Acta 54, 31973208.CrossRefGoogle Scholar
Hazen, R. M. and Morrison, S. M. (2020) An evolutionary system of mineralogy, Part I: Stellar mineralogy (>13 to 4.6 Ga). American Mineralogist 105, 627651. https://doi.org/10.2138/am-2020-7173.CrossRefGoogle Scholar
Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy, T. J., Sverjensky, D. A., and Yang, H. (2008) Mineral evolution. American Mineralogist 93, 16931720.CrossRefGoogle Scholar
Heck, P. R., Greer, J., Kööp, L., Trappitsch, R., Gyngard, F., Busemann, H., Maden, C., Ávila, J. N., Davis, A. M., and Wieler, R. (2020) Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proceedings of the National Academy of Sciences 17, 18841889. pnas.org/cgi/doi/10.1073/pnas.1904573117.CrossRefGoogle Scholar
Heiken, G., Vaniman, D., and French, B. M., eds. (1991) Lunar Sourcebook: A User’s Guide to the Moon. Cambridge, UK: Cambridge University Press, 736 pp.Google Scholar
Herbst, E. (1995) Chemistry in the interstellar medium. Annual Review of Physical Chemistry 46, 2754.CrossRefGoogle Scholar
Herndon, J. M. and Rudee, M. L. (1978) Thermal history of the Abee enstatite chondrite. Earth and Planetary Science Letters 41, 101106.CrossRefGoogle Scholar
Hewins, R. H., Jones, R. H., and Scott, E. R. D., eds. (1996) Chondrules and the Protoplanetary Disk. Cambridge, UK: Cambridge University Press, 360 pp.Google Scholar
Hewins, R. H., Condie, C., Morris, M., Richardson, M. L. A., Ouellette, N., and Metcalf, M. (2018) Thermal history of CBb chondrules and cooling rate distributions of ejecta plumes. Astrophysical Journal Letters 855, L17, 7 pp.CrossRefGoogle ScholarPubMed
Hey, M. H. (1973) Mineral analysis and analysts. Mineralogical Magazine 39, 424.CrossRefGoogle Scholar
Heymann, D. (1967) On the origin of hypersthene chondrites: Ages and shock effects of black chondrites. Icarus 6, 189221.CrossRefGoogle Scholar
Hibaya, Y., Archer, G. J., Tanaka, R., Sanborn, M. E., Sato, Y., Iizuka, T., Ozawa, K., Walker, R. J., Yamaguchi, A., Yin, Q.-Z., Nakamura, T., and Irving, A. J. (2019) The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochimica et Cosmochimica Acta 245, 597627.CrossRefGoogle Scholar
Hicks, L. J., MacArthur, J. L., Bridges, J. C., Price, M. C., Wickham-Eade, J. E., Burchell, M. J., Hansford, G. M., Butterworth, A. L., Gurman, S. J., and Baker, S. H. (2017) Magnetite in comet Wild 2: Evidence for parent body aqueous alteration. Meteoritics & Planetary Science 52, 20752096.CrossRefGoogle Scholar
Hilton, C. D., Bermingham, K. R., Ash, R. D., Walker, R. J., and McCoy, T. J. (2018) Genetics, age, and crystallization sequence of the South Byron Trio and the potential relation to the Milton pallasite. Lunar and Planetary Science 49, Abstract #1186.Google Scholar
Hiyagon, H., Sugiura, N., Kita, N. T., Kimura, M., Morishita, Y., and Takehana, Y. (2016) Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances. Geochimica et Cosmochimica Acta 186, 3248.CrossRefGoogle Scholar
Hollister, L. S., Bindi, L., Yao, N., Poirier, G. R., Andronicos, C. L., MacPherson, G. J., Lin, C., Distler, V. V., Eddy, M. P., Kostin, A., Kryachko, V., Steinhardt, W. M., Yudovskaya, M., Eiler, J. M., Guan, Y., Clarke, J. J., and Steinhardt P, J. (2014) Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nature Communications 5, 4040.CrossRefGoogle ScholarPubMed
Hoppe, P., Fujiya, W., and Zinner, E. (2012) Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust. The Astrophysical Journal Letters 745, L26, 5 pp.CrossRefGoogle Scholar
Hoppe, P., Lodders, K., and Fujiya, W. (2015) Sulfur in presolar silicon carbide grains from asymptotic giant branch stars. Meteoritics & Planetary Science 50, 11221138.CrossRefGoogle Scholar
Hörz, F., Grieve, R., Heiken, G., Spudis, P., and Binde, R. A. (1991) Lunar surface processes. In Lunar Sourcebook: A User’s Guide to the Moon, eds. Heiken, G. H., Vaniman, D. T., and French, B. M. Cambridge: Cambridge University Press, pp. 61120.Google Scholar
Hu, J., Asimow, P. D., and Ma, C. (2019) First shock synthesis of khatyrkite, stolperite and a newly-found natural quasicrystal: Implications for the impact origin of quasicrystals from the Khatyrka meteorite. Lunar and Planetary Science 50, Abstract #3126.Google Scholar
Hua, X., Eisenhour, D. D., and Buseck, P. R. (1995) Cobalt-rich, nickel-poor metal (wairauite) in the Ningqiang carbonaceous chondrite. Meteoritics 30, 106109.CrossRefGoogle Scholar
Hunt, A. C., Benedix, G. K., Hammond, S. J., Bland, P. A., Rehkämper, M., Kreissig, K., and Strekopytov, (2017) A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition. Geochimica et Cosmochimica Acta 199, 1330.CrossRefGoogle Scholar
Hurlbut, C. S. and Klein, C. (1977) Manual of Mineralogy, 19th ed., New York: Wiley, 532 pp.Google Scholar
Huss, G. R. (1990) Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature 347, 159162.CrossRefGoogle Scholar
Huss, G. R., Keil, K., and Taylor, G. J. (1981) The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites. Geochimica et Cosmochimica Acta 45, 3351.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. Meteorites and the Early Solar System II. Tucson: University of Arizona Press, 567586.CrossRefGoogle Scholar
Hutchison, R. (1982) Meteorites – Evidence for the interrelationships of materials in the solar system of 4.55 Ga ago. Physics of the Earth and Planetary Interiors 29, 199208.CrossRefGoogle Scholar
Hutchison, R. (2004) Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press, 506 pp.Google Scholar
Hutchison, R. and Bevan, A. W. R. (1983) Conditions and time of chondrule accretion. In Chondrules and Their Origins, ed. King, E. A. Houston: Lunar and Planetary Institute, pp. 162179.Google Scholar
Hutchison, R., Alexander, C. M. O’D., and Bridges, J. C. (1998) Elemental redistribution in Tieschitz and the origin of white matrix. Meteoritics & Planetary Science 33, 11691179.CrossRefGoogle Scholar
Hwang, S. L., Shen, P., Chu, H. T., Chui, T. F., Varela, M. E., and Iizuka, Y. (2014) Kuratite (IMA 2013-109): The “unknown” Fe-Al-Ti silicate from the angrite D’Orbigny Lunar and Planetary Science 45, Abstract #1818.Google Scholar
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Varela, M. E., and Iizuka, Y. (2016a) Matyhite, IMA 2015-121. CNMNC Newsletter No. 31, June 2016, page 692. Mineralogical Magazine 80, 691697.Google Scholar
Hwang, S. L., Shen, P., Chu, H. T. Y., Varela, T. F. M.E. and Iizu, . (2016b) Tsangpoite: The unknown calcium silico phosphate phase in the angrite D’Orbigny. Lunar and Planetery Science 47, Abstract #1466.Google Scholar
Imae, N., Kimura, M., Yamaguchi, A., and Kojima, H. (2019) Primordial, thermal, and shock features of ordinary chondrites: Emulating bulk X-ray diffraction using in-plane rotation of polished thin sections. Meteoritics & Planetary Science 54, 919937.CrossRefGoogle Scholar
Ireland, T. R. and Fegley, B. (2000) The solar system’s earliest chemistry: Systematics of refractory inclusions. International Geology Review 42, 865894.CrossRefGoogle Scholar
Ireland, T. R. and Wlotzka, F. (1992) The oldest zircons in the solar system. Earth and Planetary Science Letters 109, 110.CrossRefGoogle Scholar
Irving, A. J., Kuehner, S. M., Bunch, T. E., Ziegler, K., Chen, G., Herd, C. D. K., Conrey, R. M., and Ralew, S. (2013) Ungrouped mafic achondrite Northwest Africa 7325: A reduced, iron poor cumulate olivine gabbro from a differentiated planetary body. Lunar and Planetary Science 44, Abstract #2164.Google Scholar
Isa, J., Rubin, A. E., and Wasson, J. T. (2014) R-chondrite bulk-chemical compositions and diverse oxides: Implications for parent-body processes. Geochimica et Cosmochimica Acta 124, 131151.CrossRefGoogle Scholar
Isa, J., Ma, C., and Rubin, A. E. (2016) Joegoldsteinite: A new sulfide mineral (MnCr2S4) from the Social Circle IVA iron meteorite. American Mineralogist 101, 12171221.CrossRefGoogle Scholar
Ishii, H. A., Krot, A. N., and Bradley, J. P. (2010) Discovery, mineral paragenesis, and origin of wadalite in a meteorite. American Mineralogist 95, 440448.CrossRefGoogle Scholar
Itoh, S., Russell, S. S., and Yurimoto, H. (2007) Oxygen and magnesium isotopic compositions of amoeboid olivine aggregates from the Semarkona LL3.0 chondrite. Meteoritics & Planetary Science 42, 12411247.CrossRefGoogle Scholar
Ivanov, A. V., Zolensky, M. E., Saito, A., Ohsumi, K., Yang, V., Kononkova, N. N., and Mikouchi, T. (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. American Mineralogist 85, 10821086.CrossRefGoogle Scholar
Ivanov, A. V., Kononkova, N. N., Zolensky, M. E., Migdisova, L. F., and Stroganov, I. A. (2001) The Kaidun meteorite: A large albite crystal-fragment of an alkaline rock. Lunar and Planetary Science 32, Abstract #1080.Google Scholar
Ivanova, M. A., Kononkova, N. N., Franchi, I. A., Verchovsky, A. B., Korochantseva, E. V., Trieloff, M., and Brandstaetter, F. (2006) Isheyevo meteorite: Genetic link between CH and CB chondrites? Lunar and Planetary Science 37, Abstract #1100.Google Scholar
Ivanova, M. A., Lorenz, C. A., Ma, C., and Ivanov, A. V. (2016) The Kaidun breccia material variety: New clasts and updated hypothesis on a space trawl origin. Meteoritics and Planetary Science 51, Abstract #6100.Google Scholar
Ivanova, M. A., Lorenz, C. A., Borisovskiy, S. E., Burmistrov, A. A., Korost, D. V., Korochantsev, A. V., Logunova, M. N., Shornikov, S. I., and Petaev, M. I. (2017) Composition and origin of holotype Al-Cu-Zn minerals in relation to quasicrystals in the Khatyrka meteorite. Meteoritics & Planetary Science 52, 869883.CrossRefGoogle Scholar
Ivanova, M. A., Lorenz, C. A., Humayun, M., Richter, K., Corrigan, C. M., Franchi, I. A., Verchovsky, A. B., Korochantseva, E. V., Kozlov, V. V., Teplyakova, S. N., Kononkova, N. N., and Korochantsev, A. V. (2019a) Properties of a new grouplet of G metal-rich chondrites. 82nd Annual Meeting of the Meteoritical Society, held July 7–12, 2019, Sapporo, Japan. Abstract #6143.Google Scholar
Ivanova, M. A.Ma, C., Lorenz, C. A., Franchi, I. A., Kononkova, N. N. (2019b) A new unusual bencubbinite (CBa), Sierra Gorda 013, with unique V-rich sulfidesMeteoritics & Planetary Science 54, Abstract #6149.Google Scholar
Izawa, M. R. M., Flemming, R. L., Banerjee, N. R., and McCausland, P. J. A. (2011) Micro-X-ray diffraction assessment of shock stage in enstatite chondrites. Meteoritics & Planetary Science 46, 638651.CrossRefGoogle Scholar
Jabeen, I., Ali, A., Banerjee, N. R., Osinski, G. R., Ralew, S., and DeBoer, S. (2014) Oxygen isotope compositions of mineral separates from NWA 7325 suggest a planetary (Mercury?) origin. Lunar and Planetary Science 45, Abstract #2215.Google Scholar
Jacquet, E., Piani, L., and Weisberg, M. K. (2018) Chondrules in enstatite chondrites. In Chondrules: Records of Protoplanetary Disk Processes, eds. Russell, S. S., Connolly, H. C., and Krot, A. N. Cambridge, UK: Cambridge University Press, pp. 175195; 450 pp.CrossRefGoogle Scholar
Jambon, A. and Zimmerman, J. L. (1990) Water in oceanic basalts: Evidence for dehydration of recycled crust. Earth and Planetary Science Letters 101, 323331.CrossRefGoogle Scholar
Jarosewich, E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323337.CrossRefGoogle Scholar
Jeffreys, H. (1924) The Earth, Its Origin, History, and Physical Constitution. Cambridge, UK: Cambridge University Press.Google Scholar
Jeffreys, H. (1929) The Future of the Earth. New York: Norton and Company.Google Scholar
Jenniskens, P., Shaddad, M. H., Numan, D., Elsir, S., Kudoda, A. M.,  Zolensky, M. E., Le, L., Robinson, G. A., Friedrich, J. M., Rumble, D., Steele, A., Chesley, S. R., Fitzsimmons, A., Duddy, S., Hsieh, H. H., Ramsay, G., Brown, P. G., Edwards, W. N., Tagliaferri, E., Boslough, M. B., Spalding, R. E., Dantowitz, R., Kozubal, M., Pravec, P., Borovicka, J., Charvat, Z., Vaubaillon, J., Kuiper, J., Albers, J., Bishope, J. L., Mancinelli, R. L., Sandford, S. A., Milam, S. N., Nuevo, M., and Worden, S. P. (2009) The impact and recovery of asteroid 2008 TC3. Nature 458, 485488.CrossRefGoogle Scholar
Jewitt, D. and Luu, J. (1993) Discovery of the candidate Kuiper Belt object 1992 QB1. Nature 362, 730732.CrossRefGoogle Scholar
Jin, Z. and Bose, M. (2019) New clues to ancient water on Itokawa. Science Advances 5, eaav8106.CrossRefGoogle ScholarPubMed
Johnson, C. A. and Skinner, B. J. (2003) Geochemistry of the Furnace Magnetite Bed, Franklin, New Jersey, and the relationship between stratiform oxide ores and stratiform zinc oxide-silicate ores in the New Jersey Highlands. Economic Geology 98, 837854.Google Scholar
Johnson, J. E., Scrymgour, J. M., Jarosewich, E., and Mason, B. (1977) Brachina meteorite – a chassignite from South Australia. Records of the South Australia Museum 17, 309319.Google Scholar
Johnson, M. C., Rutherford, M. J., and Hess, P.C. (1991) Chassigny petrogenesis: Melt compositions, intensive parameters, and water contents of martian(?) magmas. Geochimica et Cosmochimica Acta 55, 349366.CrossRefGoogle Scholar
Jones, R. H., Mccubbin, F. M., and Guan, Y. (2016) Phosphate minerals in the H-group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia. American Mineralogist 101, 24522467.CrossRefGoogle Scholar
Kallemeyn, G. W. and Rubin, A. E. (1995) Coolidge and Loongana 001: Members of a new carbonaceous chondrite grouplet. Meteoritics 30, 2027.CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E., Wang, D., and Wasson, J. T. (1989) Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochimica et Cosmochimica Acta 53, 27472767.CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1991) The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta 55, 881892.CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1996) The compositional classification of chondrites: VII. The R chondrite group. Geochimica et Cosmochimica Acta 60, 22432256.CrossRefGoogle Scholar
Komatsu, M., Fagan, T. J., Krot, A. N., Nagashima, K., Petaev, M. I., Kimura, M., and Yamaguchi, A. (2018) First evidence for silica condensation within the solar protoplanetary disk. Proceedings of the National Academy of Sciences 115, 74977502. https://doi.org/10.1073/pnas.1722265115CrossRefGoogle ScholarPubMed
Karwowski, L. and Muszyński, A. (2008) Multimineral inclusions in the Morasko coarse octahedrite. Meteoritics & Planetary Science 43, A71A71.Google Scholar
Karwowski, Ł., Kusz, J., Muszyński, A., Kryza, R., Sitarz, M., and Galuskin, E. V. (2015) Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineralogical Magazine 79, 387398.CrossRefGoogle Scholar
Karwowski, Ł., Kryza, R., Muszyński, A., Kusz, J., Helios, K., Drożdżewski, P., and Galuskin, E. V. (2016) Czochralskiite, Na4Ca3Mg(PO4)4, a second new mineral from the Morasko IAB-MG iron meteorite (Poland). European Journal of Mineralogy 28, 969977.CrossRefGoogle Scholar
Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research 73, 69456976.CrossRefGoogle Scholar
Keil, K. (1982) Composition and origin of chondritic breccias. In Workshop on Lunar Breccias and Soils and Their Meteoritic Analogs, eds. Taylor, G. J. and Wilkening, L. L. LPI Technical Report 82-02. Houston: Lunar and Planetary Institute, pp. 6583.Google Scholar
Keil, K. (1989) Enstatite meteorites and their parent bodies. Meteoritics & Planetary Science 24, 195208.CrossRefGoogle Scholar
Keil, K. (2007) Occurrence and origin of keilite,(Fe> 0.5, Mg< 0.5) S, in enstatite chondrite impact-melt rocks and impact-melt breccias. Chemie der Erde – Geochemistry 67, 3754.CrossRefGoogle Scholar
Keil, K. (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde – Geochemistry 70, 295317.CrossRefGoogle Scholar
Keil, K. (2012) Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde – Geochemistry 72, 191218.CrossRefGoogle Scholar
Keil, K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde – Geochemistry 74, 311329.CrossRefGoogle Scholar
Keil, K. and Brett, R. (1974) Heideite, (Fe,Cr)1+x(Ti,Fe)2S4, a new mineral in the Bustee enstatite achondrite. American Mineralogist 59, 465470.Google Scholar
Keil, K. and McCoy, T. J. (2018) Acapulcoite-lodranite meteorites: Ultramafic asteroidal partial melt residues. Chemie der Erde – Geochemistry 78, 153203.CrossRefGoogle Scholar
Keil, K. and Snetsinger, K. G. (1967) Niningerite: A new meteoritic sulfide. Science 155, 451453.CrossRefGoogle ScholarPubMed
Keil, K., Berkley, J. L., and Fuchs L, H. (1982) Suessite, Fe3Si: A new mineral in the North Haig ureilite. American Mineralogist 67, 126131.Google Scholar
Keil, K., Ntaflos, Th., Taylor, G. J., Brearley, A. J., Newsom, H. E., and Romig, A. D. (1989) The Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta 53, 32913307.CrossRefGoogle Scholar
Kerridge, J. F. and Matthews, M. S. (1988) Meteorites and the Early Solar System. Tucson: University of Arizona Press, 1,269 pp.Google Scholar
Kerridge, J. F., MacKay, A. L., and Boynton, W. V. (1979) Magnetite in CI carbonaceous meteorites: Origin by aqueous activity on a planetesimal surface. Science 205, 395397.CrossRefGoogle ScholarPubMed
Killgore, K. and Killgore, M. (2002) Southwest Meteorite Collection: A Pictorial Catalog. Payson, Arizona: Southwest Meteorite Press, 201 pp.Google Scholar
Kim, H. Y., Choi, B.-G., and Rubin, A. E. (2009) Wüstite in the DOM 03238 magnetite-rich CO3.1 chondrite: Formation during atmospheric passage. Meteoritics & Planetary Science 44, A109.Google Scholar
Kimura, M. (1996) Meteorite minerals (in Japanese). Kobutsugaku Zassi 25, 4960.Google Scholar
Kimura, M. and El Goresy, A. (1989) Discovery of E-chondrite assemblages, SiC, and silica-bearing objects in ALH85085: Link between E- and C-chondrite (abstract). Meteoritics 24, 286.Google Scholar
Kimura, M. and Ikeda, Y. (1995) Anhydrous alteration of Allende chondrules in the solar nebula II: Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proceedings of the NIPR Symposium on Antarctic Meteorites 8, 123138.Google Scholar
Kimura, M., Tsuchiyama, A., Fukuoka, T., and Iimura, Y. (1992) Antarctic primitive achondrites, Yamato-74025, -75300, and -75305: Their mineralogy, thermal history, and the relevance to winonaite. Proceedings of the NIPR Symposium on Antarctic Meteorites 5, 165190.Google Scholar
Kimura, M., Weisberg, M., Lin, Y., Suzuki, A., Ohtani, E., and Okazaki, R. (2005) Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics & Planetary Science 40, 855868.CrossRefGoogle Scholar
Kimura, M., Mikouchi, T., Suzuki, A., Miyahara, M., Ohtani, E., and El Goresy, A. E. (2009) Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. American Mineralogist 94, 14791482.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2011) Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteoritics & Planetary Science 46, 431442.CrossRefGoogle Scholar
Kimura, M., Sugiura, N., Mikouchi, T., Hirajima, T., Hiyagon, H., and Takehana, Y. (2013) Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite. American Mineralogist 98, 387393.CrossRefGoogle Scholar
Kimura, M., Yamaguchi, A., and Miyahara, M. (2017) Shock-induced thermal history of an EH3 chondrite, Asuka 10164. Meteoritics & Planetary Science 52, 2435.CrossRefGoogle Scholar
Kimura, M., Sugiura, N., Yamaguchi, A., and Ichimura, K. (2020) The most primitive mesosiderite Northwest Africa 1878, subgroup 0. Meteoritics & Planetary Science 55. https://doi.org/10.1111/maps.13474.CrossRefGoogle Scholar
King, E. A., ed. (1983) Chondrules and their Origins. Houston: Lunar and Planetary Institute, 377 pp.Google Scholar
King, A. J., Bates, H. C., Krietsch, D., Busemann, H., Clay, P. L., Schofield, P. F., and Russell, S. S. (2019) The Yamato-type (CY) carbonaceous chondrite group: Analogues for the surface of asteroid Ryugu? Chemie der Erde – Geochemistry 79, 125531.CrossRefGoogle Scholar
Klein, C. and Dutrow, B. (2007) Manual of Mineral Science, 23rd ed., New York: Wiley, 716 pp.Google Scholar
Koefoed, P., Amelin, Y., Yin, Q.-Z., Wimpenny, J., Sanborn, M. C., Iizuka, T., and Irving, A. J. (2016) U–Pb and Al–Mg systematics of the ungrouped achondrite Northwest Africa 7325. Geochimica et Cosmochimica Acta 183, 3145.CrossRefGoogle Scholar
Korochantseva, E. V., Trieloff, M., Lorenz, C. A., Buykin, A. I., Ivanova, M. A., Schwartz, W. H., Hopp, J., and Jessberger, E. K. (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteoritics & Planetary Science 42, 113130.CrossRefGoogle Scholar
Kracher, A., Kurat, G., and Buchwald, V. F. (1977) Cape York: The extraordinary mineralogy of an ordinary iron meteorite and its implication for the genesis of all IIIAB irons. Geochemical Journal 11, 207217.CrossRefGoogle Scholar
Krot, A. N. (2016) Machiite, IMA 2016-067. CNMNC Newsletter No. 34, December 2016, page 1317; Mineralogical Magazine 80, 13151321.Google Scholar
Krot, A. N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics & Planetary Science 54, 16471691.CrossRefGoogle Scholar
Krot, A. N. and Keil, K. (2002) Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteoritics & Planetary Science 37, 91111.CrossRefGoogle Scholar
Krot, A. N. and Rubin, A. E. (1993) Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting. Lunar and Planetary Science 24, 827828.Google Scholar
Krot, A. N. and Rubin, A. E. (1994) Glass-rich chondrules in ordinary chondrites. Meteoritics 29, 697706.CrossRefGoogle Scholar
Krot, A. N. and Wasson, J. T. (1994) Silica-merrihueite/roedderite-bearing chondrules and clasts in ordinary chondrites: New occurrences and possible origin. Meteoritics 29 707718.CrossRefGoogle Scholar
Krot, A., Rubin, A. E., and Kononkova, N. N. (1993) First occurrence of pyrophanite (MnTiO3) and baddeleyite (ZrO2) in an ordinary chondrite. Meteoritics 28, 232239.CrossRefGoogle Scholar
Krot, A. N., Scott, E. R. D., and Zolensky, M. E. (1995) Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30, 748775.CrossRefGoogle Scholar
Krot, A. N., Rubin, A. E., Keil, K., and Wasson, J. T. (1997a) Microchondrules in ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta 61, 463473.CrossRefGoogle Scholar
Krot, A. N., Zolensky, M. E., Wasson, J. T., Scott, E. R. D., Keil, K., and Ohsumi, K. (1997b) Carbide-magnetite assemblages in type-3 ordinary chondrites. Geochimica et Cosmochimica Acta 61, 219237.CrossRefGoogle Scholar
Krot, A., Scott, E. R. D., and Zolensky, M. (1997c) Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics & Planetary Science 32, 3149.CrossRefGoogle Scholar
Krot, A. N., Brearley, A. J., Ulyanov, A. A., Biryukov, V. V., Swindle, T. D., Keil, K., Mittlefehldt, D. W., Scott, E. R. D., Clayton R, N., and Mayeda, T. K. (1999) Mineralogy, petrography, bulk chemical, iodine-xenon, and oxygen-isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka. Meteoritics & Planetary Science 34, 6789.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Meibom, A., and Keil, K. (2000a) In situ growth of Ca-rich rims around Allende dark inclusions. Geochemistry International 38, S351S368.Google Scholar
Krot, A. N., Meibom, A., and Keil, K. (2000b) A clast of Bali-like oxidized CV material in the reduced CV chondrite breccia Vigarano. Meteoritics & Planetary Science 35, 817825.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Ma, C., Nagashima, K., Davis, A. M., Beckett, J. R., Simon, S. B., Komatsu, M., Fagan, T. J., Brenker, F., Ivanova, M. A., and Bischoff, A. (2019) Mineralogy, petrography, and oxygen isotopic compositions of ultrarefractory inclusions from carbonaceous chondrites. Chemie der Erde – Geochemistry 79, https://doi.org/10.1016/j.chemer.2019.07.001.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., and Rossman, G. R. (2020) Machiite, Al2Ti3O9, a new oxide mineral from the Murchison carbonaceous chondrite: A new ultra-refractory phase from the solar nebula. American Mineralogist 105, 239243.CrossRefGoogle Scholar
KruijerT. S., Burkhardt, C., Budde, G., and Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences 114, 67126716.Google ScholarPubMed
Ksanda, C. J. and Henderson, E. P. (1939) Identification of diamond in the Canyon Diablo iron. American Mineralogist 24, 677680.Google Scholar
Kullerud, G. (1963) The Fe-Ni-S system. Carnegie Institute of Washington Yearbook 62, 175189.Google Scholar
Kurat, G., Brandstatter, H., Palme, H., and Michel-Levy, M. C. (1981) Rusty Ornans. Meteoritics 16, 343344.Google Scholar
Kurat, G., Varela, M. E., Zinner, E., and Brandstätter, F. (2010). The Tucson ungrouped iron meteorite and its relationship to chondrites. Meteoritics & Planetary Science 45, 19822006.CrossRefGoogle Scholar
Kyte, F. T. (1998) A meteorite from the Cretaceous/Tertiary boundary. Nature 396, 237239.CrossRefGoogle Scholar
Kyte, F. T. (2002) Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4.Deep Sea Research Part II: Topical Studies in Oceanography 49, 10631071.CrossRefGoogle Scholar
Le Guillou, C., Changela, H. G., and Brearley, A. J. (2015) Widespread oxidized and hydrated amorphous silicates in CR chondrites matrices: Implications for alteration conditions and H2 degassing of asteroids. Earth and Planetary Science Letters 420, 162173.CrossRefGoogle Scholar
Lee, M. R., Russell, S. S., Arden, J. W., and Pillinger, C. T. (1995) Nierite (Si3N4), a new mineral from ordinary and enstatite chondrites. Meteoritics 30, 387398.CrossRefGoogle Scholar
Lee, M. R., Lindgren, P., and Sofe, M. R. (2014) Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration. Geochimica et Cosmochimica Acta 144, 126156.CrossRefGoogle Scholar
Lee, M. R., Daly, L., Cohen, B. E., Hallis, L. J., Griffin, S., Trimby, P., Boyce, A., and Mark, D. F. (2018) Aqueous alteration of the Martian meteorite Northwest Africa 817: Probing fluid-rock interaction at the nakhlite launch site. Meteoritics & Planetary Science 53, 23952412.CrossRefGoogle Scholar
Lee, M. S., Rubin, A. E., and Wasson, J. T. (1992) Origin of metallic Fe-Ni in Renazzo and related chondrites. Geochimica et Cosmochimica Acta 56, 25212533.CrossRefGoogle Scholar
Lehner, S. W., Buseck, P. R., and McDonough, W. F. (2010) Origin of kamacite, schreibersite, and perryite in metal-sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteoritics & Planetary Science 45, 289303.CrossRefGoogle Scholar
Leitner, J., Vollmer, C., Harries, D., Kodolányi, J., Ott, U., and Hoppe, P. (2020) Investigation of nitrides in carbonaceous chondrites: A window to early solar nebula processes? Lunar and Planetary Science 52, Abstract#1937.Google Scholar
Levin, H. L. (1990) Contemporary Physical Geology, 3rd ed. Philadelphia: Saunders College Publishing, 623 pp.Google Scholar
Levine, D. and Steinhardt, P. J. (1984) Quasicrystals: A new class of ordered structures. Physical Review Letters 53, 923925.CrossRefGoogle Scholar
Lewis, J. A. and Jones, R. H. (2016) Phosphate and feldspar mineralogy of equilibrated L chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteoritics & Planetary Science 51, 18861913.CrossRefGoogle Scholar
Lewis, J. A. and Jones, R. H. (2019) Primary feldspar in the Semarkona LL3.00 chondrite: Constraints on chondrule formation and secondary alteration. Meteoritics & Planetary Science 54, 7289.CrossRefGoogle Scholar
Li, S., Lucey, P. G., Milliken, R. E., Hayne, P. O., Fisher, E., Williams, J.-P., Hurley, D. M., and Elphic, R. C. (2018) Direct evidence of surface exposed water ice in the lunar polar regions. Proceedings of the National Academy of Sciences 115, 89078912.CrossRefGoogle ScholarPubMed
Lim, L. F. and Nittler, L. R. (2009) Elemental composition of 433 Eros: New calibration of the NEAR-Shoemaker XRS data. Icarus 200, 129146.CrossRefGoogle Scholar
Lin, C., Hollister, L. S., MacPherson, G. J., Bindi, L., Ma, C., Andronicos, C. L., and Steinhardt, P. J. (2017) Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Scientific Reports 7, 114, Article #1637.Google ScholarPubMed
Lin, Y. and Kimura, M. (1996) Discovery of complex titanium oxide associations in a plagioclase-olivine inclusion (POI) in the Ningqiang carbonaceous chondrite (abstract). Lunar and Planetary Science 27, 755756.Google Scholar
Lin, Y. and Kimura, M. (1997) Titanium-rich oxide-bearing plagioclase-olivine inclusions in the unusual Ningqiang carbonaceous chondrite. Antarctic Meteorite Research 10, 227248.Google Scholar
Lin, Y., El Goresy, A., Boyer, M., Feng, L., Zhang, J., and Hao, J. (2011) Earliest solid condensates consisting of the assemblage oldhamite, sinoite, graphite and excess 36S in lawrencite from Almahata Sitta MS-17 EL3 chondrite. Workshop on Formation of the First Solids in the Solar System, Abstract #9040.Google Scholar
Lindgren, P., Hanna, R. D., Dobson, K. J., Tomkinson, T., and Lee, M. R. (2015) The paradox between low shock-stage and evidence of compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts. Geochimica et Cosmochimica Acta 148, 159178.CrossRefGoogle Scholar
Lindstrom, M. M., ed. (1990) New Meteorites. Antarctic Meteorite Newsletter 13, 924.Google Scholar
Litasov, K. D. and Podgornykh, N. M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. Journal of Raman Spectroscopy 48, 15181527.CrossRefGoogle Scholar
Liu, N., Nittler, L. R., Pignatari, M., Alexander, C. M. O’D., and Wang, J. (2017) Stellar origin of 15N-rich presolar SiC grains of Type AB: Supernovae with explosive hydrogen burning. The Astrophysical Journal Letters 842, L1, 8 pp.CrossRefGoogle Scholar
Liu, Y.Ma, C., Beckett, J. R., Chen, Y., and Guan, Y. (2016) Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust. Earth and Planetary Science Letters 451, 251262.CrossRefGoogle Scholar
Lock, S. J., Stewart, S. T., Petaev, M. I., Leinhardt, Z., Mace, M. T., Jacobsen, S. B., and Cuk, M. (2018) The origin of the Moon within a terrestrial synestria. Journal of Geophysical Research: Planets 123, 910951.Google Scholar
Lodders, K. and Amari, S. (2005) Presolar grains from meteorites: Remnants from the early times of the solar system. Chemie der Erde – Geochemistry 65, 93166.CrossRefGoogle Scholar
Loeffler, M. J., Dukes, C. A., Chang, W. Y., McFadden, L. A., and Baragiola, R. A. (2008) Laboratory simulations of sulfur depletion at Eros. Icarus 195, 622629.CrossRefGoogle Scholar
Lomax, B. A., Conti, M., Khan, N., Bennett, N. S., Ganin, A. Y., and Symes, M. D. (2020) Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith. Planetary and Space Science 180, 104748. https://doi.org/10.1016./j.pss.2019.104748.CrossRefGoogle Scholar
Lorenz, C. A., Nazarov, M. A., Brandstaetter, F., and Ntaflos, T. (2010) Metasomatic alterations of olivine inclusions in the Budulan mesosiderite. Petrology 18, 461470.CrossRefGoogle Scholar
Lorenz, R. and Mitton, J. (2008) Titan Unveiled: Saturn’s Mysterious Moon Exlpored. Princeton, NJ: Princeton University Press, 264 pp.Google Scholar
Love, S. G. and Keil, K. (1995) Recognizing mercurian meteorites. Meteoritics 30, 269278.CrossRefGoogle Scholar
Lovering, J. F., Wark, D. A., and Sewell, D. K. B. (1979) Refractory oxide, titanate, niobate and silicate accessory mineralogy of some type B Ca-Al inclusions in the Allende meteorite (abstract). Lunar and Planetary Science 10, 745746.Google Scholar
Lunning, N. G., Corrigan, C. M., McSween, H. Y., Tenner, T. J., Kita, N. T., and Bodnar, R. J. (2016) CV and CM chondrite impact melts. Geochimica et Cosmochimica Acta 189, 338358.CrossRefGoogle Scholar
Lunning, N. G., Bischoff, A., Gross, J., Patzek, M., Corrigan, C. M., and McCoy, T. J. (2020) Insights into the formation of silica-rich achondrites from impact melts in Rumuruti-type chondrites. Meteoritics & Planetary Science 55, 130148.CrossRefGoogle Scholar
Lyons, R. J., Bowling, T. J., Ciesla, F. J., Davison, T. M., and Collins, G. S. (2019) The effects of impacts on the cooling rates of iron meteorites. Meteoritics & Planetary Science 54, 16041618.CrossRefGoogle Scholar
Ma, C. (2010) Hibonite-(Fe),(Fe, Mg)Al12O19, a new alteration mineral from the Allende meteorite. American Mineralogist 95, 188191.CrossRefGoogle Scholar
Ma, C. (2011) Discovery of meteoritic lakargiite (CaZrO3), a new ultra-refractory mineral from the Acer 094 carbonaceous chondrite. Meteoritics & Planetary Science, 46 (S1), A144.Google Scholar
Ma, C. (2012) Discovery of meteoritic eringaite, Ca3(Sc,Y,Ti)2Si3O12, the first solar garnet? Meteoritics & Planetary Science, 47 (S1), A256.Google Scholar
Ma, C. (2015) Nanomineralogy of meteorites by advanced electron microscopy: Discovering new minerals and new materials from the early solar system. Microscopy and Microanalysis 21, 23532354.CrossRefGoogle Scholar
Ma, C. (2018a) A closer look at shock meteorites: Discovery of new high-pressure minerals. American Mineralogist 103, 15211522.CrossRefGoogle Scholar
Ma, C. (2018b) Discovery of meteoritic baghdadite, Ca3(Zr,Ti)Si2O9, in Allende: The first solar silicate with structurally essential zirconium? Meteoritics & Planetary Science, 53 (S1), Abstract #6358.Google Scholar
Ma, C. (2019) Discovery of kaitianite, Ti3+2Ti4+O5, in Allende: A new refractory mineral from the solar nebulaMeteoritics & Planetary Science 54 (S1), Abstract #6098.Google Scholar
Ma, C. (2020) Discovery of meteoritic calzirtite in Leoville: A new ultrarefractory phase from the solar nebula. Goldschmidt, Abstract #1674. DOI: 10.46427/gold2020.1674CrossRefGoogle Scholar
Ma, C. (2021) Zolenskyite, IMA 2010-070. CNMNC Newsletter 59, European Journal oif Mineralogy 32.Google Scholar
Ma, C. and Beckett, J. R. (2016a) Burnettite, CaVAlSiO6, and paqueite, Ca3TiSi2(Al2Ti)O14, two new minerals from Allende: Clues to the evolution of a V-rich Ca-Al-rich inclusion. Lunar and Planetary Science 47, Abstract#1595.Google Scholar
Ma, C. and Beckett, J. R. (2016b) Majindeite, Mg2Mo3O8, a new mineral from the Allende meteorite and a witness to post-crystallization oxidation of a Ca-Al-rich refractory inclusion. American Mineralogist 101, 11611170.CrossRefGoogle Scholar
Ma, C. and Beckett, J. R (2018) Nuwaite (Ni6GeS2) and butianite (Ni6SnS2), two new minerals from the Allende meteorite: Alteration products in the early solar systemAmerican Mineralogist 103, 19181924.CrossRefGoogle Scholar
Ma, C. and Beckett, J. R. (2020) Kaitianite, Ti3+2Ti4+O5, a new titanium oxide mineral from Allende. Meteoritics & Planetary Science, early view. DOI: https://doi.org/10.1111/maps.13576.Google Scholar
Ma, C. and Krot, A. N. (2014Hutcheonite, Ca3Ti2(SiAl2)O12, a new garnet mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist 99, 667670.CrossRefGoogle Scholar
Ma, C. and Krot, A. N. (2018) Adrianite, Ca12(Al4Mg3Si7)O32Cl6, a new Cl-rich silicate mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. American Mineralogist 103, 13291334.CrossRefGoogle Scholar
Ma, C. and Liu, Y. (2019a) Discovery of a zinc-rich mineral on the surface of lunar orange pyroclastic beadsAmerican Mineralogist 104, 447452.CrossRefGoogle Scholar
Ma, C. and Liu, Y. (2019b) Nanomineralogy of lunar orange beads: Discovery of a Zinc-rich mineral (probably gordaite), derived from volcanic vapor condensates on the MoonLunar and Planetary Science 50, Abstract #1463.Google Scholar
Ma, C. and Prakapenka, V. (2018) Tschaunerite, IMA 2017-032a. CNMNC Newsletter No. 46, December 2018, page 1378; Mineralogical Magazine 82, 13691379.Google Scholar
Ma, C. and Rossman, G. R. (2006) Low voltage FESEM of geological materialsMicroscopy Today 14 (1), 2022.CrossRefGoogle Scholar
Ma, C. and Rossman, G. R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende Meteorite. Geochimica et Cosmochimica Acta 72, A577.Google Scholar
Ma, C. and Rossman, G. R. (2009a) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist 94, 841844.CrossRefGoogle Scholar
Ma, C. and Rossman, G. R. (2009b) Davisite, CaScAlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist 94, 845848.CrossRefGoogle Scholar
Ma, C. and Rossman, G. R. (2009c) Grossmanite, CaTi3+AlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist 94, 14911494.CrossRefGoogle Scholar
Ma, C. and Rubin, A. E. (2019) Edscottite, Fe5C2, a new iron carbide mineral from the Ni-rich Wedderburn IAB iron meteoriteAmerican Mineralogist 104, 13511355.CrossRefGoogle Scholar
Ma, C. and Tschauner, O. (2016) Discovery of tetragonal almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a new high-pressure mineral in Shergotty. Meteoritics & Planetary Science 51, Abstract#6124.Google Scholar
Ma, C. and Tschauner, O. (2017) Zagamiite, IMA 2015-022a. CNMNC Newsletter No. 36, April 2017, page 409. Mineralogical Magazine 81, 403409.Google Scholar
Ma, C. and Tschauner, O. (2018a) Feiite, IMA 2017-041a. CNMNC Newsletter No. 46, December 2018, page 1378; Mineralogical Magazine 82, 13691379.Google Scholar
Ma, C. and Tschauner, O. (2018b) Liuite, IMA 2017-042a. CNMNC Newsletter No. 46, December 2018, page 1378; Mineralogical Magazine 82, 13691379.Google Scholar
Ma, C., Goreva, J. S., and Rossman, G. R. (2002) Fibrous nanoinclusions in massive rose quartz: HRTEM and AEM investigationsAmerican Mineralogist 87, 269276.CrossRefGoogle Scholar
Ma, C., Simon, S. B., Rossman, G. R., and Grossman, L. (2009) Calcium Tschermak’s pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. American Mineralogist 94, 14831486.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2011a) Murchisite, Cr5S6, a new mineral from the Murchison meteorite. American Mineralogist 96, 19051908.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., Tschauner, O., and Rossman, G. R. (2011b) Thortveitite (Sc2Si2O7), the first solar silicate? Meteoritics & Planetary Science 46, A144.Google Scholar
Ma, C., Connolly, H. C., Beckett, J. R., Tschauner, O., Rossman, G. R., Kampf, A. R., Zega, T. J., Smith, S. A. S. and Schrader, D. L. (2011c) Brearleyite, Ca12Al14O32Cl2, a new alteration mineral from the NWA 1934 meteorite. American Mineralogist 96, 11991206.CrossRefGoogle Scholar
Ma, C., Kampf, A. R., Connolly, H. C., Beckett, J. R., Rossman, G. R., Smith, S. A. S. and Schrader, D. L. (2011d) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. American Mineralogist 96, 709715.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2012a) Buseckite, (Fe,Zn,Mn)S, a new mineral from the Zakłodzie meteoriteAmerican Mineralogist 97, 12261233.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2012b) Browneite, MnS, a new sphalerite-group mineral from the Zakłodzie meteoriteAmerican Mineralogist 97, 20562059.CrossRefGoogle Scholar
Ma, C., Tshauner, O., Beckett, J. R., Rossman, G. R., and Liu, W. (2012c) Panguite, (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD. American Mineralogist 97, 12191225.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., Connolly, H. C., and Rossman, G. R. (2013a) Discovery of meteoritic loveringite, Ca(Ti,Fe,Cr,Mg)21O38, in an Allende chondrule: Late-stage crystallization in a melt droplet. Lunar and Planetary Science 44, Abstract #1443.Google Scholar
Ma, C., Krot, A. N., and Bizzarro, M. (2013b) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. American Mineralogist 98, 13681371.CrossRefGoogle Scholar
Ma, C., Tschauner, O., Beckett, J. R., Rossman, G. R., and Liu, W. (2013c) Kangite, (Sc,Ti,Al,Zr,Mg,Ca, □)2O3, a new ultra-refractory scandia mineral from the Allende meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction. American Mineralogist 98, 870878.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2014a) Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo,Ru,Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. American Mineralogist 99, 654666.CrossRefGoogle Scholar
Ma, C., Beckett, J. R., and Rossman, G. R. (2014b) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. American Mineralogist 99, 198205.CrossRefGoogle Scholar
Ma, C., Krot, A. N., Beckett, J. R., Nagashima, K., and Tschauner, O. (2015a) Discovery of warkite, Ca2Sc6Al6O20, a new Sc-rich ultra-refractory mineral in Muchison and Vigarano. Meteoritics & Planetary Science 50, Abstract #5025.Google Scholar
Ma, C., Tschauner, O., Beckett, J. R., Liu, Y., Rossman, G. R., Zhuravlev, K., Prakapenka, V., Dera, P., and Taylor, L. A. (2015b) Tissintite, (Ca, Na,□)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth and Planetary Science Letters 422, 194205.CrossRefGoogle Scholar