Book contents
- Management of Complex Treatment-Resistant Psychotic Disorders
- Management of Complex Treatment-Resistant Psychotic Disorders
- Copyright page
- Contents
- Contributors
- Acknowledgements
- Abbreviations
- List of Icons
- Introduction
- Part I Treatment Strategies
- Part II Medication Reference Tables
- Appendices
- Index
- References
Part II - Medication Reference Tables
Published online by Cambridge University Press: 19 October 2021
Book contents
- Management of Complex Treatment-Resistant Psychotic Disorders
- Management of Complex Treatment-Resistant Psychotic Disorders
- Copyright page
- Contents
- Contributors
- Acknowledgements
- Abbreviations
- List of Icons
- Introduction
- Part I Treatment Strategies
- Part II Medication Reference Tables
- Appendices
- Index
- References
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Chapter
- Information
- Management of Complex Treatment-resistant Psychotic Disorders , pp. 103 - 486Publisher: Cambridge University PressPrint publication year: 2021
References
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Dahl, S. G. (1986). Plasma level monitoring of antipsychotic drugs. Clinical utility. Clin Pharmacokinet, 11, 36–61.CrossRefGoogle ScholarPubMed
Van Putten, T., Marder, S. R., Wirshing, W. C., et al. (1991). Neuroleptic plasma levels. Schizophr Bull, 17, 197–216.CrossRefGoogle ScholarPubMed
Yeung, P. K., Hubbard, J. W., Korchinski, E. D., et al. (1993). Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol, 45, 563–569.CrossRefGoogle ScholarPubMed
Otagiri, M., Maruyama, T., Imai, T., et al. (1987). A comparative study of the interaction of warfarin with human alpha 1-acid glycoprotein and human albumin. J Pharm Pharmacol, 39, 416–420.CrossRefGoogle ScholarPubMed
Castaneda-Hernandez, G., Bravo, G., Godfraind, T. (1991). Chlorpromazine treatment increases circulating digoxin like immunoreactivity in the rat. Proc West Pharmacol Soc, 34, 501–503.Google ScholarPubMed
Chetty, M., Miller, R., Moodley, S. V. (1994). Smoking and body weight influence the clearance of chlorpromazine. Eur J Clin Pharmacol, 46, 523–526.CrossRefGoogle ScholarPubMed
Yoshii, K., Kobayashi, K., Tsumuji, M., et al. (2000). Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci, 67, 175–184.CrossRefGoogle ScholarPubMed
Sunwoo, Y., Ryu, J., Jung, C., et al. (2004). Disposition of chlorpromazine in Korean healthy subjects with CYP2D6*10B mutation. Clin Pharmacol Ther, 75, P90.CrossRefGoogle Scholar
Gardiner, S. J., Begg, E. J. (2006). Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev, 58, 521–590.CrossRefGoogle ScholarPubMed
Wojcikowski, J., Boksa, J., Daniel, W. A. (2010). Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver – a comparison with other phenothiazines. Biochem Pharmacol, 80, 1252–1259.CrossRefGoogle ScholarPubMed
Raitasuo, V., Lehtovaara, R., Huttunen, M. O. (1994). Effect of switching carbamazepine to oxcarbazepine on the plasma levels of neuroleptics. A case report. Psychopharmacology (Berl), 116, 115–116.CrossRefGoogle ScholarPubMed
Curry, S. H., Davis, J. M., Janowsky, D. S., et al. (1970). Factors affecting chlorpromazine plasma levels in psychiatric patients. Arch Gen Psychiatry, 22, 209–215.CrossRefGoogle ScholarPubMed
Loga, S., Curry, S., Lader, M. (1975). Interactions of orphenadrine and phenobarbitone with chlorpromazine: plasma concentrations and effects in man. Br J Clin Pharmacol, 2, 197–208.CrossRefGoogle ScholarPubMed
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Midha, K. K., Hubbard, J. W., Marder, S. R., et al. (1994). Impact of clinical pharmacokinetics on neuroleptic therapy in patients with schizophrenia. J Psychiatry Neurosci, 19, 254–264.Google ScholarPubMed
Meyer, J. M. (2014). A rational approach to employing high plasma levels of antipsychotics for violence associated with schizophrenia: case vignettes. CNS Spectr, 19, 432–438.CrossRefGoogle ScholarPubMed
Ereshefsky, L., Saklad, S. R., Jann, M. W., et al. (1984). Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches. J Clin Psychiatry, 45, 50–59.Google ScholarPubMed
Jann, M. W., Ereshefsky, L., Saklad, S. R. (1985). Clinical pharmacokinetics of the depot antipsychotics. Clin Pharmacokinet, 10, 315–333.CrossRefGoogle ScholarPubMed
Midha, K. K., Hawes, E. M., Hubbard, J. W., et al. (1988). Variation in the single dose pharmacokinetics of fluphenazine in psychiatric patients. Psychopharmacology (Berl), 96, 206–211.CrossRefGoogle ScholarPubMed
Marder, S. R., Midha, K. K., Van Putten, T., et al. (1991). Plasma levels of fluphenazine in patients receiving fluphenazine decanoate. Relationship to clinical response. Br J Psychiatry, 158, 658–665.CrossRefGoogle ScholarPubMed
Koytchev, R., Alken, R. G., McKay, G., et al. (1996). Absolute bioavailability of oral immediate and slow release fluphenazine in healthy volunteers. Eur J Clin Pharmacol, 51, 183–187.CrossRefGoogle ScholarPubMed
Ereshefsky, L., Jann, M. W., Saklad, S. R., et al. (1985). Effects of smoking on fluphenazine clearance in psychiatric inpatients. Biol Psychiatry, 20, 329–332.CrossRefGoogle ScholarPubMed
Jann, M. W., Fidone, G. S., Hernandez, J. M., et al. (1989). Clinical implications of increased antipsychotic plasma concentrations upon anticonvulsant cessation. Psychiatry Res, 28, 153–159.CrossRefGoogle ScholarPubMed
Goff, D. C., Midha, K. K., Sarid-Segal, O., et al. (1995). A placebo-controlled trial of fluoxetine added to neuroleptic in patients with schizophrenia. Psychopharmacology (Berl), 117, 417–423.CrossRefGoogle ScholarPubMed
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Van Putten, T., Marder, S. R., Wirshing, W. C., et al. (1991). Neuroleptic plasma levels. Schizophr Bull, 17, 197–216.CrossRefGoogle ScholarPubMed
Wei, F. C., Jann, M. W., Lin, H. N., et al. (1996). A practical loading dose method for converting schizophrenic patients from oral to depot haloperidol therapy. J Clin Psychiatry, 57, 298–302.Google ScholarPubMed
Kapur, S., Zipursky, R., Roy, P., et al. (1997). The relationship between D2 receptor occupancy and plasma levels on low dose oral haloperidol: a PET study. Psychopharmacology (Berl), 131, 148–152.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2014). A rational approach to employing high plasma levels of antipsychotics for violence associated with schizophrenia: case vignettes. CNS Spectr, 19, 432–438.CrossRefGoogle ScholarPubMed
Chang, W. H., Juang, D. J., Lin, S. K., et al. (1995). Disposition of haloperidol and reduced haloperidol plasma levels after single dose haloperidol decanoate administration. Human Psychopharmacol, 10, 47–51.CrossRefGoogle Scholar
Wei, F. C., Jann, M. W., Lin, H. N., et al. (1996). A practical loading dose method for converting schizophrenic patients from oral to depot haloperidol therapy. J Clin Psychiatry, 57, 298–302.Google Scholar
Meyer, J. M. (2019). Monitoring and improving antipsychotic adherence in outpatient forensic diversion programs. CNS Spectr, doi: 10.1017/S1092852919000865CrossRefGoogle Scholar
Kudo, S., Ishizaki, T. (1999). Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet, 37, 435–456.Google Scholar
Suzuki, A., Otani, K., Mihara, K., et al. (1997). Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics, 7, 415–418.CrossRefGoogle ScholarPubMed
Panagiotidis, G., Arthur, H. W., Lindh, J. D., et al. (2007). Depot haloperidol treatment in outpatients with schizophrenia on monotherapy: impact of CYP2D6 polymorphism on pharmacokinetics and treatment outcome. Ther Drug Monit, 29, 417–422.CrossRefGoogle ScholarPubMed
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Simpson, G. M., Cooper, T. B., Lee, J. H., et al. (1978). Clinical and plasma level characteristics of intramuscular and oral loxapine. Psychopharmacology (Berl), 56, 225–232.CrossRefGoogle ScholarPubMed
Kapur, S., Zipursky, R. B., Jones, C., et al. (1996). The D2 receptor occupancy profile of loxapine determined using PET. Neuropsychopharmacol, 15, 562–566.CrossRefGoogle ScholarPubMed
Kapur, S., Zipursky, R., Remington, G., et al. (1997). PET evidence that loxapine is an equipotent blocker of 5-HT2 and D2 receptors: implications for the therapeutics of schizophrenia. Am J Psychiatry, 154, 1525–1529.CrossRefGoogle ScholarPubMed
Alexza Pharmaceuticals Inc. (2011). Adasuve (loxapine) inhalation powder NDA 022549 – Psychopharmacologic Drug Advisory Committee briefing document, December 12, 2011. Food and Drug Administration.Google Scholar
Luo, J. P., Vashishtha, S. C., Hawes, E. M., et al. (2011). In vitro identification of the human cytochrome p450 enzymes involved in the oxidative metabolism of loxapine. Biopharm Drug Dispos, 32, 398–407.CrossRefGoogle ScholarPubMed
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Van Putten, T., Marder, S. R., Wirshing, W. C., et al. (1991). Neuroleptic plasma levels. Schizophr Bull, 17, 197–216.Google Scholar
Patteet, L., Morrens, M., Maudens, K. E., et al. (2012). Therapeutic drug monitoring of common antipsychotics. Ther Drug Monit, 34, 629–651.CrossRefGoogle ScholarPubMed
Ozdemir, V., Naranjo, C. A., Herrmann, N., et al. (1997). Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther, 62, 334–347.CrossRefGoogle ScholarPubMed
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Kim, D. Y., Hollister, L. E. (1984). Drug-refractory chronic schizophrenics: doses and plasma concentrations of thiothixene. J Clin Psychopharmacol, 4, 32–35.CrossRefGoogle ScholarPubMed
Mavroidis, M. L., Kanter, D. R., Hirschowitz, J., et al. (1984). Clinical relevance of thiothixene plasma levels. J Clin Psychopharmacol, 4, 155–157.CrossRefGoogle ScholarPubMed
Guthrie, S. K., Hariharan, M., Kumar, A. A., et al. (1997). The effect of paroxetine on thiothixene pharmacokinetics. J Clin Pharm Ther, 22, 221–226.CrossRefGoogle ScholarPubMed
Ereshefsky, L., Saklad, S. R., Watanabe, M. D., et al. (1991). Thiothixene pharmacokinetic interactions: a study of hepatic enzyme inducers, clearance inhibitors, and demographic variables. J Clin Psychopharmacol, 11, 296–301.CrossRefGoogle ScholarPubMed
References
Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279–302.Google Scholar
Janicak, P. G., Javaid, J. I., Sharma, R. P., et al. (1989). Trifluoperazine plasma levels and clinical response. J Clin Psychopharmacol, 9, 340–346.CrossRefGoogle ScholarPubMed
Midha, K. K., Korchinski, E. D., Verbeeck, R. K., et al. (1983). Kinetics of oral trifluoperazine disposition in man. Br J Clin Pharmacol, 15, 380–382.CrossRefGoogle ScholarPubMed
Midha, K. K., Hawes, E. M., Hubbard, J. W., et al. (1988). A pharmacokinetic study of trifluoperazine in two ethnic populations. Psychopharmacology (Berl), 95, 333–338.CrossRefGoogle ScholarPubMed
Nicholson, S. D. (1992). Extra pyramidal side effects associated with paroxetine. West Engl Med J, 107, 90–91.Google Scholar
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Asenapine Protocol. Sacramento, California.Google Scholar
Bishara, D., Taylor, D. (2008). Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs, 68, 2269–2292.CrossRefGoogle ScholarPubMed
Vieta, E., Sanchez-Moreno, J. (2008). Acute and long-term treatment of mania. Dialogues Clin Neurosci, 10, 165–179.Google Scholar
Friberg, L. E., de Greef, R., Kerbusch, T., et al. (2009). Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia. Clin Pharmacol Ther, 86, 84–91.CrossRefGoogle ScholarPubMed
References
Jazz Pharmaceuticals Inc. Fazaclo Package Insert. Palo Alto, California.Google Scholar
Meyer, J. M. (2019). The Clozapine Handbook: Stahl’s Handbooks. New York: Cambridge University Press.CrossRefGoogle Scholar
Remington, G., Agid, O., Foussias, G., et al. (2013). Clozapine and therapeutic drug monitoring: is there sufficient evidence for an upper threshold? Psychopharmacology (Berl), 225, 505–518.CrossRefGoogle ScholarPubMed
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Clozapine Protocol. Sacramento, California.Google Scholar
De Berardis, D., Rapini, G., Olivieri, L., et al. (2018). Safety of antipsychotics for the treatment of schizophrenia: a focus on the adverse effects of clozapine. Ther Adv Drug Saf, 9, 237–256.Google Scholar
Maguire, G. A. (2002). Comprehensive understanding of schizophrenia and its treatment. Am J Health Syst Pharm, 59, S4–11.CrossRefGoogle ScholarPubMed
Solmi, M., Murru, A., Pacchiarotti, I., et al. (2017). Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag, 13, 757–777.CrossRefGoogle ScholarPubMed
Jin, H., Meyer, J. M., Jeste, D. V. (2002). Phenomenology of and risk factors for new-onset diabetes mellitus and diabetic ketoacidosis associated with atypical antipsychotics: an analysis of 45 published cases. Ann Clin Psychiatry, 14, 59–64.Google Scholar
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Obes Res, 12, 362–368.CrossRefGoogle Scholar
Howland, R. H. (2010). Potential adverse effects of discontinuing psychotropic drugs. J Psychosoc Nurs Ment Health Serv, 48, 11–14.Google ScholarPubMed
Lally, J., Malik, S., Krivoy, A., et al. (2017). The use of granulocyte colony-stimulating factor in clozapine rechallenge: a systematic review. J Clin Psychopharmacol, 37, 600–604.CrossRefGoogle ScholarPubMed
Lally, J., Malik, S., Whiskey, E., et al. (2017). Clozapine-associated agranulocytosis treatment with granulocyte colony-stimulating factor/granulocyte-macrophage colony-stimulating factor: a systematic review. J Clin Psychopharmacol, 37, 441–446.CrossRefGoogle ScholarPubMed
Andres, E., Zimmer, J., Mecili, M., et al. (2011). Clinical presentation and management of drug-induced agranulocytosis. Expert Rev Hematol, 4, 143–151.Google Scholar
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Iloperidone Protocol. Sacramento, California.Google Scholar
Stahl, S. M. (2002). Antipsychotic Agents, 2nd ed. New York: Cambridge University Press.Google Scholar
Kane, J. M., Lauriello, J., Laska, E., et al. (2008). Long-term efficacy and safety of iloperidone: results from 3 clinical trials for the treatment of schizophrenia. J Clin Psychopharmacol, 28, S29–35.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Obes Res, 12, 362–368.CrossRefGoogle Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Asenapine Protocol. Sacramento, California.Google Scholar
References
Intra-cellular Therapies, I. (2019). Caplyta (Lumateperone) Package Insert. Towson, Maryland.Google Scholar
Lexicomp. Lumateperone: Drug Information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209500s000lbl.pdfGoogle Scholar
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Obes Res, 12, 362–368.Google Scholar
Marder, S. R., Essock, S. M., Miller, A. L., et al. (2004). Physical health monitoring of patients with schizophrenia. Am J Psychiatry, 161, 1334–1349.CrossRefGoogle ScholarPubMed
References
Sunovion Pharmaceuticals Inc. Latuda (Lurasidone) Package Insert. Fort Lee, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Lurasidone Protocol. Sacramento, California.Google Scholar
Nakamura, M., Ogasa, M., Guarino, J., et al. (2009). Lurasidone in the treatment of acute schizophrenia: a double-blind, placebo-controlled trial. J Clin Psychiatry, 70, 829–836.Google Scholar
Cucchiaro, J., P. A., et al. (2010). Safety of lurasidone: pooled analysis of five placebo-controlled trials in patients with schizophrenia. New Orleans, LA: American Psychiatric Association.Google Scholar
Solmi, M., Murru, A., Pacchiarotti, I., et al. (2017). Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther Clin Risk Manag, 13, 757–777.CrossRefGoogle ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Obes Res, 12, 362–368.CrossRefGoogle Scholar
Marder, S. R., Essock, S. M., Miller, A. L., et al. (2004). Physical health monitoring of patients with schizophrenia. Am J Psychiatry, 161, 1334–1349.CrossRefGoogle ScholarPubMed
References
Janowsky, D. S., Barnhill, L. J.. Davis, J. M. (2003). Olanzapine for self-injurious, aggressive, and disruptive behaviors in intellectually disabled adults: a retrospective, open-label, naturalistic trial. J Clin Psychiatry, 64, 1258–1265.CrossRefGoogle ScholarPubMed
Keck, P. E. Jr. (2005). The role of second-generation antipsychotic monotherapy in the rapid control of acute bipolar mania. J Clin Psychiatry, 66 Suppl. 3, 5–11.Google ScholarPubMed
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Olanzapine Protocol. Sacramento, California.Google Scholar
Eli Lilly and Company. (2019). Zyprexa Package Insert. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020592s051,021086s030,021253s036lbl.pdf (last accessed November 7, 2020).Google Scholar
Eli Lilly and Company. (2019). Zyprexa Relprevv Package Insert. Indianapolis, Indiana.Google Scholar
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google Scholar
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Obes Res, 12, 362–368.CrossRefGoogle Scholar
Callaghan, J. T., Bergstrom, R. F., Ptak, L. R., et al. (1999). Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet, 37, 177–193.Google Scholar
Baker, R. W., Kinon, B. J., Maguire, G. A., et al. (2003). Effectiveness of rapid initial dose escalation of up to forty milligrams per day of oral olanzapine in acute agitation. J Clin Psychopharmacol, 23, 342–348.CrossRefGoogle ScholarPubMed
Botts, S., Littrell, R., de Leon, J. (2004). Variables associated with high olanzapine dosing in a state hospital. J Clin Psychiatry, 65, 1138–1143.Google Scholar
References
Janssen Pharmaceuticals Inc. (2019). Invega Sustenna Package Insert. Titusville, New Jersey.Google Scholar
Janssen Pharmaceuticals Inc. (2019). Invega Trinza Package Insert. Titusville, New Jersey.Google Scholar
Kane, J., Canas, F., Kramer, M., et al. (2007). Treatment of schizophrenia with paliperidone extended-release tablets: a 6-week placebo-controlled trial. Schizophr Res, 90, 147–161.Google Scholar
Kramer, M., Simpson, G., Maciulis, V., et al. (2007). Paliperidone extended-release tablets for prevention of symptom recurrence in patients with schizophrenia: a randomized, double-blind, placebo-controlled study. J Clin Psychopharmacol, 27, 6–14.Google Scholar
Meltzer, H. Y., Bobo, W. V., Nuamah, I. F., et al. (2008). Efficacy and tolerability of oral paliperidone extended-release tablets in the treatment of acute schizophrenia: pooled data from three 6-week, placebo-controlled studies. J Clin Psychiatry, 69, 817–829.CrossRefGoogle ScholarPubMed
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Paliperidone Protocol. Sacramento, California.Google Scholar
Nasrallah, H. A. (2008). Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry, 13, 27–35.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care, 27, 596–601.CrossRefGoogle Scholar
References
AstraZeneca Pharmaceuticals LP. (2020). Seroquel Package Insert. Wilmington, Delaware.Google Scholar
AstraZeneca Pharmaceuticals LP. (2020). Seroquel XR Package Insert. Wilmington, Delaware.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Quetiapine Protocol. Sacramento, California.Google Scholar
DeVane, C. L., Nemeroff, C. B. (2001). Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet, 40, 509–522.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care, 27, 596–601.CrossRefGoogle Scholar
Citrome, L. (2017). Activating and sedating adverse effects of second-generation antipsychotics in the treatment of schizophrenia and major depressive disorder: absolute risk increase and number needed to harm. J Clin Psychopharmacol, 37, 138–147.Google Scholar
References
Janssen Pharmaceuticals Inc. (2020). Risperdal Package Insert. Titusville, New Jersey.Google Scholar
Janssen Pharmaceuticals Inc. (2020). Risperdal M-tab Package Insert. Titusville, New Jersey.Google Scholar
Janssen Pharmaceuticals Inc. (2020). Risperdal Consta Package Insert. Titusville, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Risperidone Protocol. Sacramento, California.Google Scholar
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google Scholar
Haddad, P. M., Anderson, I. M. (2002). Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs, 62, 1649–1671.CrossRefGoogle ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Obes Res, 12, 362–368.CrossRefGoogle Scholar
Jin, H., Meyer, J. M., Jeste, D. V. (2002). Phenomenology of and risk factors for new-onset diabetes mellitus and diabetic ketoacidosis associated with atypical antipsychotics: an analysis of 45 published cases. Ann Clin Psychiatry, 14, 59–64.CrossRefGoogle ScholarPubMed
Marder, S. R., Essock, S. M., Miller, A. L., et al. (2004). Physical health monitoring of patients with schizophrenia. Am J Psychiatry, 161, 1334–1349.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2017). Converting oral to long-acting injectable antipsychotics: a guide for the perplexed. CNS Spectr, 22, 14–28.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2018). Converting oral to long-acting injectable antipsychotics: a guide for the perplexed – CORRIGENDUM. CNS Spectr, 23, 186.CrossRefGoogle ScholarPubMed
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Paliperidone Protocol. Sacramento, California.Google Scholar
Huhn, M., Nikolakopoulou, A., Schneider-Thoma, J., et al. (2019). Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet, 394, 939–951.CrossRefGoogle ScholarPubMed
Leucht, S., Crippa, A., Siafis, S., et al. (2020). Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia. Am J Psychiatry, 177, 342–353.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google Scholar
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care, 27, 596–601.CrossRefGoogle Scholar
Aronow, W. S., Shamliyan, T. A. (2018). Effects of atypical antipsychotic drugs on QT interval in patients with mental disorders. Ann Transl Med, 6, 147.CrossRefGoogle ScholarPubMed
Beach, S. R., Celano, C. M., Sugrue, A. M., et al. (2018). QT prolongation, Torsades de Pointes, and psychotropic medications: a 5-year update. Psychosomatics, 59, 105–122.CrossRefGoogle ScholarPubMed
Pillinger, T., McCutcheon, R. A., Vano, L., et al. (2020). Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis. Lancet Psychiatry, 7, 64–77.CrossRefGoogle ScholarPubMed
References
Otsuka USA Pharmaceutical Inc. (2017). Abilify Maintena Package Insert. Rockville, Maryland.Google Scholar
Otsuka USA Pharmaceutical Inc. (2020). Abilify MyCite Package Insert. Rockville, Maryland.Google Scholar
de la Iglesia-Larrad, J. I., Barral, C., Casado-Espada, N. M., et al. (2019). Benzodiazepine abuse, misuse, dependence, and withdrawal among schizophrenic patients: a review of the literature. Psychiatry Res, 284, 112660.CrossRefGoogle ScholarPubMed
Romeo, B., Blecha, L., Locatelli, K., et al. (2018). Meta-analysis and review of dopamine agonists in acute episodes of mood disorder: efficacy and safety. J Psychopharmacol, 32, 385–396.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Aripiprazole Protocol. Sacramento, California.Google Scholar
Leucht, S., Crippa, A., Siafis, S., et al. (2020). Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia. Am J Psychiatry, 177, 342–353.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care, 27, 596–601.CrossRefGoogle Scholar
Marder, S. R., Essock, S. M., Miller, A. L., et al. (2004). Physical health monitoring of patients with schizophrenia. Am J Psychiatry, 161, 1334–1349.Google Scholar
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Brexpiprazole Protocol. Sacramento, California.Google Scholar
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google ScholarPubMed
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care, 27, 596–601.CrossRefGoogle Scholar
Marder, S. R., Essock, S. M., Miller, A. L., et al. (2004). Physical health monitoring of patients with schizophrenia. Am J Psychiatry, 161, 1334–1349.CrossRefGoogle ScholarPubMed
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Ziprasidone Protocol. Sacramento, California.Google Scholar
Leucht, S., Crippa, A., Siafis, S., et al. (2020). Dose-response meta-analysis of antipsychotic drugs for acute schizophrenia. Am J Psychiatry, 177, 342–353.CrossRefGoogle ScholarPubMed
Cutler, A. J., Durgam, S., Wang, Y., et al. (2018). Evaluation of the long-term safety and tolerability of cariprazine in patients with schizophrenia: results from a 1-year open-label study. CNS Spectr, 23, 39–50.CrossRefGoogle ScholarPubMed
Azorin, J. M., Simon, N. (2019). Dopamine receptor partial agonists for the treatment of bipolar disorder. Drugs, 79, 1657–1677.CrossRefGoogle ScholarPubMed
Earley, W., Burgess, M. V., Rekeda, L., et al. (2019). Cariprazine treatment of bipolar depression: a randomized double-blind placebo-controlled phase 3 study. Am J Psychiatry, 176, 439–448.CrossRefGoogle ScholarPubMed
Chakrabarty, T., Keramatian, K., Yatham, L. N. (2020). Treatment of mixed features in bipolar disorder: an updated view. Curr Psychiatry Rep, 22, 15.Google Scholar
Meyer, J. M. (2001). Effects of atypical antipsychotics on weight and serum lipid levels. J Clin Psychiatry, 62 Suppl. 27, 27–34; discussion 40–41.Google Scholar
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, et al. (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care, 27, 596–601.CrossRefGoogle Scholar
Marder, S. R., Essock, S. M., Miller, A. L., et al. (2004). Physical health monitoring of patients with schizophrenia. Am J Psychiatry, 161, 1334–1349.Google Scholar
References
Blanchet, P. J., Metman, L. V., Chase, T. N. (2003). Renaissance of amantadine in the treatment of Parkinson’s disease. Adv Neurol, 91, 251–257.Google Scholar
da Silva-Junior, F. P., Braga-Neto, P., Sueli Monte, F., et al. (2005). Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism Relat Disord, 11, 449–452.CrossRefGoogle ScholarPubMed
Citrome, L. (2016). Emerging pharmacological therapies in schizophrenia: what’s new, what’s different, what’s next? CNS Spectr, 21, 1–12.CrossRefGoogle Scholar
Duwe, S. (2017). Influenza viruses – antiviral therapy and resistance. GMS Infect Dis, 5, Doc04.Google Scholar
Yang, T. T., Wang, L., Deng, X. Y., et al. (2017). Pharmacological treatments for fatigue in patients with multiple sclerosis: a systematic review and meta-analysis. J Neurol Sci, 380, 256–261.CrossRefGoogle ScholarPubMed
Zheng, W., Wang, S., Ungvari, G. S., et al. (2017). Amantadine for antipsychotic-related weight gain: meta-analysis of randomized placebo-controlled trials. J Clin Psychopharmacol, 37, 341–346.Google Scholar
Elkurd, M. T., Bahroo, L. B., Pahwa, R. (2018). The role of extended-release amantadine for the treatment of dyskinesia in Parkinson’s disease patients. Neurodegener Dis Manag, 8, 73–80.Google Scholar
Hirjak, D., Kubera, K. M., Bienentreu, S., et al. (2019). Antipsychotic-induced motor symptoms in schizophrenic psychoses – Part 1: dystonia, akathisia und parkinsonism. Nervenarzt, 90, 1–11.CrossRefGoogle ScholarPubMed
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261–309.CrossRefGoogle ScholarPubMed
Musharrafieh, R., Ma, C., Wang, J. (2020). Discovery of M2 channel blockers targeting the drug-resistant double mutants M2-S31 N/L26I and M2-S31 N/V27A from the influenza A viruses. Eur J Pharm Sci, 141, 105124.Google Scholar
PubChem. (2020). Amantadine, CID = 2130. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/amantadine (last accessed November 27, 2020).Google Scholar
Paik, J., Keam, S. J. (2018). Amantadine extended-release (GOCOVRI): a review in levodopa-induced dyskinesia in Parkinson’s disease. CNS Drugs, 32, 797–806.Google Scholar
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315–329.CrossRefGoogle ScholarPubMed
Lin, C. C., Ondo, W. G. (2018). Non-VMAT2 inhibitor treatments for the treatment of tardive dyskinesia. J Neurol Sci, 389, 48–54.CrossRefGoogle ScholarPubMed
Pahwa, R., Tanner, C. M., Hauser, R. A., et al. (2015). Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord, 30, 788–795.Google Scholar
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 1055–1069.CrossRefGoogle ScholarPubMed
Dubaz, O. M., Wu, S., Cubillos, F., et al. (2019). Changes in prescribing practices of dopaminergic medications in individuals with Parkinson’s disease by expert care centers from 2010 to 2017: The Parkinson’s Foundation Quality Improvement Initiative. Mov Disord Clin Pract, 6, 687–692.Google Scholar
Aoki, F. Y., Sitar, D. S. (1988). Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet, 14, 35–51.Google Scholar
Perez-Lloret, S., Rascol, O. (2018). Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J Neural Transm (Vienna), 125, 1237–1250.Google Scholar
References
Szafranski, T., Gmurkowski, K. (1999). Clozapine withdrawal. A review. Psychiatr Pol, 33, 51–67.Google Scholar
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 1055–1069.Google Scholar
Thenganatt, M. A., Jankovic, J. (2014). Treatment of dystonia. Neurotherapeutics, 11, 139–152.CrossRefGoogle ScholarPubMed
Sridharan, K., Sivaramakrishnan, G. (2018). Pharmacological interventions for treating sialorrhea associated with neurological disorders: a mixed treatment network meta-analysis of randomized controlled trials. J Clin Neurosci, 51, 12–17.Google Scholar
Orayj, K., Lane, E. (2019). Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis, 2019, 9237181.Google Scholar
PubChem. (2020). Benztropine, CID = 238053. Retrieved April 21, 2020.Google Scholar
Modell, J. G., Tandon, R., Beresford, T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol, 9, 347–351.Google Scholar
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261–309.CrossRefGoogle ScholarPubMed
Green, A. J. (2014). The best basic science paper in MS in 2013: antimuscarinic therapies in remyelination. Mult Scler, 20, 1814–1816.CrossRefGoogle ScholarPubMed
Robottom, B. J., Weiner, W. J., Factor, S. A. (2011). Movement disorders emergencies. Part 1: Hypokinetic disorders. Arch Neurol, 68, 567–572.Google ScholarPubMed
Rajan, S., Kaas, B., Moukheiber, E. (2019). Movement disorders emergencies. Semin Neurol, 39, 125–136.Google Scholar
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315–329.Google Scholar
Barbe, A. G. (2018). Medication-induced xerostomia and hyposalivation in the elderly: culprits, complications, and management. Drugs Aging, 35, 877–885.CrossRefGoogle ScholarPubMed
Andre, L., Gallini, A., Montastruc, F., et al. (2019). Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review. Eur J Clin Pharmacol, 75, 1631–1644.CrossRefGoogle ScholarPubMed
Ogino, S., Miyamoto, S., Miyake, N., et al. (2014). Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci, 68, 37–49.CrossRefGoogle ScholarPubMed
Kopala, L. C. (1996). Spontaneous and drug-induced movement disorders in schizophrenia. Acta Psychiatr Scand Suppl, 389, 12–17.Google Scholar
Gao, K., Kemp, D. E., Ganocy, S. J., et al. (2008). Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol, 28, 203–209.Google Scholar
Lupu, A. M., Clinebell, K., Gannon, J. M., et al. (2017). Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry, 78, e1270–e1275.CrossRefGoogle ScholarPubMed
Close, S. P., Elliott, P. J., Hayes, A. G., et al. (1990). Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology (Berl), 102, 295–300.Google Scholar
Meyer, S., Meyer, O., Kressig, R. W. (2010). Drug-induced delirium. Ther Umsch, 67, 79–83.CrossRefGoogle ScholarPubMed
Onder, G., Liperoti, R., Foebel, A., et al. (2013). Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc, 14, 450 e7–12.CrossRefGoogle ScholarPubMed
Robles Bayon, A., Gude Sampedro, F. (2014). Inappropriate treatments for patients with cognitive decline. Neurologia, 29, 523–532.Google Scholar
Ueki, T., Nakashima, M. (2019). Relationship between constipation and medication. J UOEH, 41, 145–151.CrossRefGoogle ScholarPubMed
References
Szafranski, T., Gmurkowski, K. (1999). Clozapine withdrawal. A review. Psychiatr Pol, 33, 51–67.Google ScholarPubMed
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 1055–1069.CrossRefGoogle ScholarPubMed
Thenganatt, M. A., Jankovic, J. (2014). Treatment of dystonia. Neurotherapeutics, 11, 139–152.CrossRefGoogle ScholarPubMed
Stahl, S. M. (2017). Diphenhydramine. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 217–219.Google Scholar
Orayj, K., Lane, E. (2019). Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis, 2019, 9237181.Google Scholar
Shirley, D. W., Sterrett, J., Haga, N., et al. (2020). The therapeutic versatility of antihistamines: a comprehensive review. Nurse Pract, 45, 8–21.CrossRefGoogle ScholarPubMed
Modell, J. G., Tandon, R., Beresford, T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol, 9, 347–351.Google Scholar
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261–309.Google Scholar
Robottom, B. J., Weiner, W. J., Factor, S. A. (2011). Movement disorders emergencies. Part 1: hypokinetic disorders. Arch Neurol, 68, 567–572.Google Scholar
Rajan, S., Kaas, B., Moukheiber, E. (2019). Movement disorders emergencies. Semin Neurol, 39, 125–136.Google Scholar
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315–329.Google Scholar
Barbe, A. G. (2018). Medication-induced xerostomia and hyposalivation in the elderly: culprits, complications, and management. Drugs Aging, 35, 877–885.Google Scholar
Andre, L., Gallini, A., Montastruc, F., et al. (2019). Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review. Eur J Clin Pharmacol, 75, 1631–1644.CrossRefGoogle ScholarPubMed
Ogino, S., Miyamoto, S., Miyake, N., et al. (2014). Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci, 68, 37–49.Google Scholar
Kopala, L. C. (1996). Spontaneous and drug-induced movement disorders in schizophrenia. Acta Psychiatr Scand Suppl, 389, 12–17.Google Scholar
Gao, K., Kemp, D. E., Ganocy, S. J., et al. (2008). Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol, 28, 203–209.CrossRefGoogle ScholarPubMed
Lupu, A. M., Clinebell, K., Gannon, J. M., et al. (2017). Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry, 78, e1270–e1275.Google Scholar
Paton, D. M., Webster, D. R. (1985). Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines). Clin Pharmacokinet, 10, 477–497.Google Scholar
Close, S. P., Elliott, P. J., Hayes, A. G., et al. (1990). Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology (Berl), 102, 295–300.Google Scholar
Meyer, S., Meyer, O., Kressig, R. W. (2010). Drug-induced delirium. Ther Umsch, 67, 79–83.Google Scholar
Onder, G., Liperoti, R., Foebel, A., et al. (2013). Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc, 14(6), 450 e7–12.Google Scholar
Robles Bayon, A., Gude Sampedro, F. (2014). Inappropriate treatments for patients with cognitive decline. Neurologia, 29, 523–532.Google Scholar
Ueki, T., Nakashima, M. (2019). Relationship between constipation and medication. J UOEH, 41, 145–151.Google Scholar
References
Szafranski, T., Gmurkowski, K. (1999). Clozapine withdrawal. A review. Psychiatr Pol, 33, 51–67.Google Scholar
Faulkner, M. A. (2014). Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf, 13, 1055–1069.Google Scholar
Thenganatt, M. A., Jankovic, J. (2014). Treatment of dystonia. Neurotherapeutics, 11, 139–152.Google Scholar
Orayj, K., Lane, E. (2019). Patterns and determinants of prescribing for Parkinson’s disease: a systematic literature review. Parkinsons Dis, 2019, 9237181.Google Scholar
PubChem. (2020). Trihexyphenidyl, CID = 5572. Retrieved April 21, 2020.Google Scholar
Modell, J. G., Tandon, R., Beresford, T. P. (1989). Dopaminergic activity of the antimuscarinic antiparkinsonian agents. J Clin Psychopharmacol, 9, 347–351.Google Scholar
Deleu, D., Northway, M. G., Hanssens, Y. (2002). Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet, 41, 261–309.CrossRefGoogle ScholarPubMed
Robottom, B. J., Weiner, W. J., Factor, S. A. (2011). Movement disorders emergencies. Part 1: hypokinetic disorders. Arch Neurol, 68, 567–572.Google Scholar
Rajan, S., Kaas, B., Moukheiber, E. (2019). Movement disorders emergencies. Semin Neurol, 39, 125–136.Google Scholar
Mazzucchi, S., Frosini, D., Bonuccelli, U., et al. (2015). Current treatment and future prospects of dopa-induced dyskinesias. Drugs Today (Barc), 51, 315–329.Google Scholar
Barbe, A. G. (2018). Medication-induced xerostomia and hyposalivation in the elderly: culprits, complications, and management. Drugs Aging, 35, 877–885.Google Scholar
Andre, L., Gallini, A., Montastruc, F., et al. (2019). Association between anticholinergic (atropinic) drug exposure and cognitive function in longitudinal studies among individuals over 50 years old: a systematic review. Eur J Clin Pharmacol, 75, 1631–1644.Google Scholar
Ogino, S., Miyamoto, S., Miyake, N., et al. (2014). Benefits and limits of anticholinergic use in schizophrenia: focusing on its effect on cognitive function. Psychiatry Clin Neurosci, 68, 37–49.Google Scholar
Kopala, L. C. (1996). Spontaneous and drug-induced movement disorders in schizophrenia. Acta Psychiatr Scand Suppl, 389, 12–17.Google Scholar
Gao, K., Kemp, D. E., Ganocy, S. J., et al. (2008). Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol, 28, 203–209.Google Scholar
Lupu, A. M., Clinebell, K., Gannon, J. M., et al. (2017). Reducing anticholinergic medication burden in patients with psychotic or bipolar disorders. J Clin Psychiatry, 78, e1270–e1275.Google Scholar
Close, S. P., Elliott, P. J., Hayes, A. G., et al. (1990). Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson’s disease. Psychopharmacology (Berl), 102, 295–300.Google Scholar
Meyer, S., Meyer, O., Kressig, R. W. (2010). Drug-induced delirium. Ther Umsch, 67, 79–83.Google Scholar
Onder, G., Liperoti, R., Foebel, A., et al. (2013). Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc, 14(6), 450 e7–12.Google Scholar
Robles Bayon, A., Gude Sampedro, F. (2014). Inappropriate treatments for patients with cognitive decline. Neurologia, 29, 523–532.Google Scholar
Ueki, T., Nakashima, M. (2019). Relationship between constipation and medication. J UOEH, 41, 145–151.Google Scholar
References
Novartis Pharmaceutical Corporation. (2007). Tegretol-XR Package Insert. East Hanover, New Jersey.Google Scholar
Teva Pharmaceuticals USA Inc. (2018). Epitol Package Insert. North Wales, Pennsylvania.Google Scholar
Novartis Pharmaceutical Corporation. (2020). Tegretol Package Insert. East Hanover, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Carbamazepine Protocol. Sacramento, California.Google Scholar
Capule, F., Tragulpiankit, P., Mahasirimongkol, S., et al. (2020). Association of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis with the HLA-B75 serotype or HLA-B*15:21 allele in Filipino patients. Pharmacogenomics J, 20, 533–541.Google Scholar
Soria, A., Bernier, C., Veyrac, G., et al. (2020). Drug reaction with eosinophilia and systemic symptoms may occur within 2 weeks of drug exposure: a retrospective study. J Am Acad Dermatol, 82, 606–611.CrossRefGoogle ScholarPubMed
Birnbaum, A. K., Meador, K. J., Karanam, A., et al. (2020). Antiepileptic drug exposure in infants of breastfeeding mothers with epilepsy. JAMA Neurol, 77, 441–450.Google Scholar
References
GlaxoSmithKline LLC. (2009). Lamictal Package Insert. Research Triangle Park, North Carolina.Google Scholar
GlaxoSmithKline LLC. (2019). Lamictal XR Package Insert. Research Triangle Park, North Carolina.Google Scholar
Sills, G. J., Rogawski, M. A. (2020). Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 168, 107966.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Lamotrigine Protocol. Sacramento, California.Google Scholar
Li, Y., Zhang, F., Xu, Y., et al. (2018). Pharmacokinetics, safety, and tolerability of lamotrigine chewable/dispersible tablet following repeat-dose administration in healthy Chinese volunteers. Clin Pharmacol Drug Dev, 7, 627–633.Google Scholar
Nevitt, S. J., Tudur Smith, C., Weston, J., et al. (2018). Lamotrigine versus carbamazepine monotherapy for epilepsy: an individual participant data review. Cochrane Database Syst Rev, 6, CD001031.Google Scholar
Tawhari, I., Tawhari, F., Aljuaid, M. (2018). Lamotrigine-induced drug reaction with eosinophilia and systemic symptoms (DRESS) during primary Epstein-Barr virus (EBV) infection. BMJ Case Rep, 2018, 2018, brc2017222416.Google ScholarPubMed
Vazquez, M., Maldonado, C., Guevara, N., et al. (2018). Lamotrigine-valproic acid interaction leading to Stevens-Johnson syndrome. Case Rep Med, 2018, 5371854.Google Scholar
Oya, K., Sakuma, K., Esumi, S., et al. (2019). Efficacy and safety of lithium and lamotrigine for the maintenance treatment of clinically stable patients with bipolar disorder: a systematic review and meta-analysis of double-blind, randomized, placebo-controlled trials with an enrichment design. Neuropsychopharmacol Rep, 39, 241–246.Google Scholar
Panebianco, M., Bresnahan, R., Ramaratnam, S., et al. (2020). Lamotrigine add-on therapy for drug-resistant focal epilepsy. Cochrane Database Syst Rev, 3, CD001909.Google ScholarPubMed
Pensel, M. C., Nass, R. D., Tauboll, E., et al. (2020). Prevention of sudden unexpected death in epilepsy: current status and future perspectives. Expert Rev Neurother, 20, 497–508.Google Scholar
Stephen, L. J., Brodie, M. J. (2020). Pharmacological management of the genetic generalised epilepsies in adolescents and adults. CNS Drugs, 34, 147–161.Google Scholar
References
ANI Pharmaceuticals Inc. Lithobid Package Insert. Baudette, Minnesota.Google Scholar
Calabrese, J. R., Shelton, M. D., Rapport, D. J., et al. (2005). A 20-month, double-blind, maintenance trial of lithium versus divalproex in rapid-cycling bipolar disorder. Am J Psychiatry, 162, 2152–2161.Google Scholar
Kemp, D. E., Gao, K., Ganocy, S. J., et al. (2009). A 6-month, double-blind, maintenance trial of lithium monotherapy versus the combination of lithium and divalproex for rapid-cycling bipolar disorder and co-occurring substance abuse or dependence. J Clin Psychiatry, 70, 113–121.Google Scholar
West-Ward Pharmaceuticals Corp. (2019). Lithium Carbonate Package Insert. Eatontown, New Jersey.Google Scholar
Smith, K. A., Cipriani, A. (2017). Lithium and suicide in mood disorders: updated meta-review of the scientific literature. Bipolar Disord, 19, 575–586.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Lithium Protocol. Sacramento, California.Google Scholar
Oya, K., Sakuma, K., Esumi, S., et al. (2019). Efficacy and safety of lithium and lamotrigine for the maintenance treatment of clinically stable patients with bipolar disorder: a systematic review and meta-analysis of double-blind, randomized, placebo-controlled trials with an enrichment design. Neuropsychopharmacol Rep, 39, 241–246.Google Scholar
Undurraga, J., Sim, K., Tondo, L., et al. (2019). Lithium treatment for unipolar major depressive disorder: systematic review. J Psychopharmacol, 33, 167–176.Google Scholar
Bahji, A., Ermacora, D., Stephenson, C., et al. (2020). Comparative efficacy and tolerability of pharmacological treatments for the treatment of acute bipolar depression: a systematic review and network meta-analysis. J Affect Disord, 269, 154–184.Google Scholar
Silva, E., Higgins, M., Hammer, B., et al. (2020). Clozapine rechallenge and initiation despite neutropenia – a practical, step-by-step guide. BMC Psychiatry, 20, 279.Google Scholar
References
Zydus Pharmaceuticals (USA) Inc. (2020). Divalproex Package Insert. Pennington, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Valproic Acid/Divalproex Protocol. Sacramento, California.Google Scholar
Lonergan, E. T., Cameron, M., Luxenberg, J. (2004). Valproic acid for agitation in dementia. Cochrane Database Syst Rev, CD003945.Google Scholar
Sykes, L., Wood, E., Kwan, J. (2014). Antiepileptic drugs for the primary and secondary prevention of seizures after stroke. Cochrane Database Syst Rev, CD005398.Google Scholar
Trinka, E., Hofler, J., Zerbs, A., et al. (2014). Efficacy and safety of intravenous valproate for status epilepticus: a systematic review. CNS Drugs, 28, 623–639.CrossRefGoogle ScholarPubMed
Hayes, J. F., Marston, L., Walters, K., et al. (2016). Adverse renal, endocrine, hepatic, and metabolic events during maintenance mood stabilizer treatment for bipolar disorder: a population-based cohort study. PLoS Med, 13, e1002058.Google Scholar
Nevitt, S. J., Sudell, M., Weston, J., et al. (2017). Antiepileptic drug monotherapy for epilepsy: a network meta-analysis of individual participant data. Cochrane Database Syst Rev, 12, CD011412.Google Scholar
Thomson, S. R., Mamulpet, V., Adiga, S. (2017). Sodium valproate induced alopecia: a case series. J Clin Diagn Res, 11, FR01–FR02.Google Scholar
Baillon, S. F., Narayana, U., Luxenberg, J. S., et al. (2018). Valproate preparations for agitation in dementia. Cochrane Database Syst Rev, 10, CD003945.Google ScholarPubMed
Graham, R. K., Tavella, G., Parker, G. B. (2018). Is there consensus across international evidence-based guidelines for the psychotropic drug management of bipolar disorder during the perinatal period? J Affect Disord, 228, 216–221.Google Scholar
Baudou, E., Benevent, J., Montastruc, J. L., et al. (2019). Adverse effects of treatment with valproic acid during the neonatal period. Neuropediatrics, 50, 31–40.Google Scholar
Baumgartner, J., Hoeflich, A., Hinterbuchinger, B., et al. (2019). Fulminant onset of valproate-associated hyperammonemic encephalopathy. Am J Psychiatry, 176, 900–903.Google Scholar
Jochim, J., Rifkin-Zybutz, R. P., Geddes, J., et al. (2019). Valproate for acute mania. Cochrane Database Syst Rev, 10, CD004052.Google Scholar
Chakrabarty, T., Keramatian, K., Yatham, L. N. (2020). Treatment of mixed features in bipolar disorder: an updated view. Curr Psychiatry Rep, 22, 15.CrossRefGoogle ScholarPubMed
References
Aurobindo Pharma Limited. (2019). Citalopram Package Insert. East Windsor, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Gray, N. A., Milak, M. S., DeLorenzo, C., et al. (2013). Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry, 74, 26–31.Google Scholar
Kraus, C., Castren, E., Kasper, S., et al. (2017). Serotonin and neuroplasticity – links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev, 77, 317–326.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry, 3, 22.Google Scholar
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Jubilant Cadista Pharmaceuticals Inc. (2019). Escitalopram Package Insert. Salisbury, Maryland.Google Scholar
Gray, N. A., Milak, M. S., DeLorenzo, C., et al. (2013). Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry, 74, 26–31.CrossRefGoogle ScholarPubMed
Kraus, C., Castren, E., Kasper, S., et al. (2017). Serotonin and neuroplasticity – links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev, 77, 317–326.Google Scholar
Sánchez, C., Bøgesø, K. P., Ebert, B., et al. (2004). Escitalopram versus citalopram: the surprising role of the R-enantiomer. Psychopharmacology, 174, 163–176.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry, 3, 22.Google Scholar
References
Aurobindo Pharma Limited. (2019). Fluoxetine Package Insert and Label. East Windsor, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Ni, Y., Miledi, R. (1997). Blockage of 5HT2C serotonin receptors by fluoxetine (Prozac). Proc Natl Acad Sci, 94, 2036–2040.Google Scholar
Gray, N. A., Milak, M. S., DeLorenzo, C., et al. (2013). Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry, 74, 26–31.Google Scholar
Kraus, C., Castren, E., Kasper, S., et al. (2017). Serotonin and neuroplasticity – links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev, 77, 317–326.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry, 3, 22.Google Scholar
Sager, J. E., Lutz, J. D., Foti, R. S., et al. (2014). Fluoxetine- and norfluoxetine-mediated complex drug–drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther, 95, 653–662.Google Scholar
Spina, E., de Leon, J. (2014). Clinically relevant interactions between newer antidepressants and second-generation antipsychotics. Expert Opin Drug Metab Toxicol, 10, 721–746.Google Scholar
References
Actavis Pharma, I. (2017). Fluvoxamine Extended Release Package Insert. Parsippany, New Jersey.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Gray, N. A., Milak, M. S., DeLorenzo, C., et al. (2013). Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry, 74, 26–31.Google Scholar
Tsai, S. Y., Pokrass, M. J., Klauer, N. R., et al. (2014). Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets, 18, 1461–1476.Google Scholar
Kraus, C., Castren, E., Kasper, S., et al. (2017). Serotonin and neuroplasticity – links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev, 77, 317–326.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry, 3, 22.Google Scholar
Oliveira, P., Ribeiro, J., Donato, H., et al. (2017). Smoking and antidepressants pharmacokinetics: a systematic review. Ann Gen Psychiatry, 16, 17.Google Scholar
Spina, E., de Leon, J. (2014). Clinically relevant interactions between newer antidepressants and second-generation antipsychotics. Expert Opin Drug Metab Toxicol, 10, 721–746.Google Scholar
Strauss, W. L., Layton, M. E., Dager, S. R. (1998). Brain elimination half-life of fluvoxamine measured by 19 F magnetic resonance spectroscopy. Am J Psychiatry, 155, 380–384.Google Scholar
References
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Rhodes Pharmaceuticals, L.P. (2019). Paroxetine Extended Release Package Insert. Coventry, Rhode Island.Google Scholar
Gilmor, M. L., Owens, M. J., Nemeroff, C. B. (2002). Inhibition of norepinephrine uptake in patients with major depression treated with paroxetine. Am J Psychiatry, 159, 1702–1710.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry, 3, 22.Google Scholar
Spina, E., de Leon, J. (2014). Clinically relevant interactions between newer antidepressants and second-generation antipsychotics. Expert Opin Drug Metab Toxicol, 10, 721–746.Google Scholar
References
Exelam Pharmaceuticals Inc. (2018). Sertraline Package Insert. Lawrenceville, Georgia.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Nemeroff, C. B., Owens, M. J. (2004). Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr, 9, 23–31.Google Scholar
Gray, N. A., Milak, M. S., DeLorenzo, C., et al. (2013). Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry, 74, 26–31.Google Scholar
Kraus, C., Castren, E., Kasper, S., et al. (2017). Serotonin and neuroplasticity – links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev, 77, 317–326.Google Scholar
Matsushima, Y., Terada, K., Kamei, C., et al. (2019). Sertraline inhibits nerve growth factor-induced neurite outgrowth in PC12 cells via a mechanism involving the sigma-1 receptor. Eur J Pharmacol, 853, 129–135.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry, 3, 22.Google Scholar
Stahl, S. M. (2004). Selectivity of SSRIs: individualising patient care through rational treatment choices. Int J Psychiatry Clin Pract, 8, 3–10.Google Scholar
References
Schwartz, T. L., Siddiqui, U. A., Stahl, S. M. (2011). Vilazodone: a brief pharmacological and clinical review of the novel serotonin partial agonist and reuptake inhibitor. Ther Adv Psychopharmacol, 1, 81–87.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Croft, H. A., Pomara, N., Gommoll, C., et al. (2014). Efficacy and safety of vilazodone in major depressive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry, 75, e1291–e1298.Google Scholar
Citrome, L. (2012). Vilazodone for major depressive disorder: a systematic review of the efficacy and safety profile for this newly approved antidepressant – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract, 66, 356–368.Google Scholar
Mathews, M., Gommoll, C., Chen, D., et al. (2015). Efficacy and safety of vilazodone 20 and 40 mg in major depressive disorder: a randomized, double-blind, placebo-controlled trial. Int Clin Psychopharmacol, 30, 67–74.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
References
Takeda Pharmaceuticals America Inc. (2019). Vorioxetine Package Insert. Deerfield, Illinois.Google Scholar
Stahl, S. M. (2015). Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT1D, 5HT7 receptors). CNS Spectr, 20, 93–97.Google Scholar
Sagud, M., Nikolac Perkovic, M., Vuksan-Cusa, B., et al. (2016). A prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment. Psychopharmacology (Berl), 233, 3259–3267.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Thase, M. E., Danchenko, N., Brignone, M., et al. (2017). Comparative evaluation of vortioxetine as a switch therapy in patients with major depressive disorder. Eur Neuropsychopharmacol, 27, 773–781.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: SSRI Protocol. Sacramento, California.Google Scholar
Harrison, J. E., Lophaven, S., Olsen, C. K. (2016). Which cognitive domains are improved by treatment with vortioxetine? Int J Neuropsychopharmacol, 19, pyw054.Google Scholar
References
Alembic Pharmaceuticals Limited. (2019). Desvenlafaxine Package Insert. Vadodara (India).Google Scholar
Deecher, D. C., Beyer, C. E., Johnston, G., et al. (2006). Desvenlafaxine succinate: a new serotonin and norepinephrine reuptake inhibitor. J Pharmacol Exp Ther, 318, 657–665.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Soares, C. N., Endicott, J., Boucher, M., et al. (2014). Predictors of functional response and remission with desvenlafaxine 50 mg/d in patients with major depressive disorder. CNS Spectr, 19, 519–527.Google Scholar
Preskorn, S., Patroneva, A., Silman, H., et al. (2009). Comparison of the pharmacokinetics of venlafaxine extended release and desvenlafaxine in extensive and poor cytochrome P450 2D6 metabolizers. J Clin Psychopharmacol, 29, 39–43.Google Scholar
References
Aurobindo Pharma Limited. (2019). Duloxetine Package Insert. East Windsor, New Jersey.Google Scholar
Stahl, S. M., Grady, M. M., Moret, C., et al. (2005). SNRIs: the pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr, 10, 732–747.Google Scholar
Hirschfeld, R. M., Mallinckrodt, C., Lee, T. C., et al. (2005). Time course of depression-symptom improvement during treatment with duloxetine. Depress Anxiety, 21, 170–177.Google Scholar
Brannan, S. K., Mallinckrodt, C. H., Brown, E. B., et al. (2005). Duloxetine 60 mg once-daily in the treatment of painful physical symptoms in patients with major depressive disorder. J Psychiatr Res, 39, 43–53.Google Scholar
Cipriani, A., Koesters, M., Furukawa, T. A., et al. (2012). Duloxetine versus other anti-depressive agents for depression. Cochrane Database Syst Rev, 10, CD006533.Google Scholar
References
Amneal Pharmaceuticals LLC. (2019). Levomilnacipran Package Insert. Bridgewater, New Jersey.Google Scholar
Auclair, A., Martel, J., Assié, M., et al. (2013). Levomilnacipran (F2695), a norepinephrine-preferring SNRI: profile in vitro and in models of depression and anxiety. Neuropharmacol, 70, 338–347.Google Scholar
McIntyre, R. S., Gommoll, C., Chen, C., et al. (2016). The efficacy of levomilnacipran ER across symptoms of major depressive disorder: a post hoc analysis of 5 randomized, double-blind, placebo-controlled trials. CNS Spectr, 21, 385–392.Google Scholar
Papakostas, G. I., Fava, M. (2007). A meta-analysis of clinical trials comparing milnacipran, a serotonin–norepinephrine reuptake inhibitor, with a selective serotonin reuptake inhibitor for the treatment of major depressive disorder. Eur Neuropsychopharmacol, 17, 32–36.Google Scholar
References
Aurobindo Pharma Limited. (2019). Venlafaxine Package Insert. East Windsor, New Jersey.Google Scholar
Aurobindo Pharma Limited. (2019). Venlafaxine Extended Release Package Insert. East Windsor, New Jersey.Google Scholar
Stahl, S. M., Grady, M. M., Moret, C., et al. (2005). SNRIs: the pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr, 10, 732–747.Google Scholar
Benkert, O., Gründer, G., Wetzel, H., et al. (1996). A randomized, double-blind comparison of a rapidly escalating dose of venlafaxine and imipramine in inpatients with major depression and melancholia. J Psychiatr Res, 30, 441–451.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Cipriani, A., Furukawa, T. A., Salanti, G., et al. (2009). Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet, 373, 746–758.Google Scholar
Preskorn, S. H. (2010). Understanding outliers on the usual dose-response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters. J Psychiatr Prac, 16, 46–49.Google Scholar
References
BluePoint Laboratories. (2020). Bupropion Extended Release (XL) Package Insert. Ridgewood, New Jersey.Google Scholar
Dr. Reddy’s Laboratories Inc. (2020). Bupropion Extended Release (SR) Package Insert. Princeton, New Jersey.Google Scholar
Heritage Pharmaceuticals Inc. (2020). Bupropion Package Insert. East Brunswick, New Jersey.Google Scholar
Stahl, S. M., Pradko, J. F., Haight, B. R., et al. (2004). A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry, 6, 159.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Tsoi, D. T-Y., Porwal, M., Webster, A. C. (2010). Efficacy and safety of bupropion for smoking cessation and reduction in schizophrenia: systematic review and meta-analysis. Br J Psychiatry, 196, 346–353.Google Scholar
Hilliard, W. T., Barloon, L., Farley, P., et al. (2013). Bupropion diversion and misuse in the correctional facility. J Correct Health Care, 19, 211–217.Google Scholar
References
Stimmel, G. L., Dopheide, J. A., Stahl, S. M. (1997). Mirtazapine: an antidepressant with noradrenergic and specific serotonergic effects. Pharmacotherapy, 17, 10–21.Google Scholar
Benkert, O., Muller, M., Szegedi, A. (2002). An overview of the clinical efficacy of mirtazapine. Hum Psychopharm Clin, 17, S23–S26.Google Scholar
Gaynes, B. N., Rush, A. J., Trivedi, M. H., et al. (2008). The STAR*D study: treating depression in the real world. Clevel Clin J Med, 75, 57–66.Google Scholar
Thase, M. E. (1999). Antidepressant treatment of the depressed patient with insomnia. J Clin Psychiatry, 60 Suppl. 17, 28–31.Google Scholar
Poyurovsky, M. (2010). Acute antipsychotic-induced akathisia revisited. Br J Psychiatry, 196, 89–91.Google Scholar
References
Stahl, S. M. (2009). Mechanism of action of trazodone: a multifunctional drug. CNS Spectr, 14, 536–546.Google Scholar
References
Trinkley, K. E., Nahata, M. C. (2014). Medication management of irritable bowel syndrome. Digestion, 89, 253–267.Google Scholar
Moore, R. A., Derry, S., Aldington, D., et al. (2015). Amitriptyline for neuropathic pain in adults. Cochrane Database Syst Rev, 2015, CD008242.Google Scholar
Scheiner, D. A., Perucchini, D., Fink, D., et al. (2015). Interstitial cystitis/bladder pain syndrome (IC/BPS). Praxis (Bern 1994), 104, 909–918.Google Scholar
Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol, 151, 737–748.Google Scholar
Rheker, J., Rief, W., Doering, B. K., et al. (2018). Assessment of adverse events in clinical drug trials: identifying amitriptyline’s placebo- and baseline-controlled side effects. Exp Clin Psychopharmacol, 26, 320–326.Google Scholar
Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230–240.Google Scholar
Brueckle, M. S., Thomas, E. T., Seide, S. E., et al. (2020). Adverse drug reactions associated with amitriptyline – protocol for a systematic multiple-indication review and meta-analysis. Syst Rev, 9, 59.Google Scholar
Guy, S., Silke, B. (1990). The electrocardiogram as a tool for therapeutic monitoring: a critical analysis. J Clin Psychiatry, 51 Suppl. B, 37–39.Google Scholar
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 37–44.Google Scholar
Lieberman, J. A., Cooper, T. B., Suckow, R. F., et al. (1985). Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther, 37, 301–307.Google Scholar
Gupta, S. K., Shah, J. C., Hwang, S. S. (1999). Pharmacokinetic and pharmacodynamic characterization of OROS and immediate-release amitriptyline. Br J Clin Pharmacol, 48, 71–78.Google Scholar
Hayasaka, Y., Purgato, M., Magni, L. R., et al. (2015). Dose equivalents of antidepressants: evidence-based recommendations from randomized controlled trials. J Affect Disord, 180, 179–184.Google Scholar
Constantino, J. L., Fonseca, V. A. (2019). Pharmacokinetics of antidepressants in patients undergoing hemodialysis: a narrative literature review. Braz J Psychiatry, 41, 441–446.Google Scholar
Cheng, Q., Huang, J., Xu, L., et al. (2020). Analysis of time-course, dose-effect, and influencing factors of antidepressants in the treatment of acute adult patients with major depression. Int J Neuropsychopharmacol, 23, 76–87.Google Scholar
Olesen, O. V., Linnet, K. (1997). Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology, 55, 235–243.Google Scholar
Rasmussen, B. B., Nielsen, T. L., Brøsen, K. (1998). Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol, 54, 735–740. doi: 710.1007/s002280050544Google Scholar
Venkatakrishnan, K., Greenblatt, D. J., von Moltke, L. L., et al. (1998). Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol, 38, 112–121.Google Scholar
Patroneva, A., Connolly, S. M., Fatato, P., et al. (2008). An assessment of drug-drug interactions: the effect of desvenlafaxine and duloxetine on the pharmacokinetics of the CYP2D6 probe desipramine in healthy subjects. Drug Metab Dispos, 36, 2484–2491.Google Scholar
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 1184–1189.Google Scholar
References
Kelly, M. W., Myers, C. W. (1990). Clomipramine: a tricyclic antidepressant effective in obsessive compulsive disorder. Ann Pharmacother, 24, 739–744.Google Scholar
Gex-Fabry, M., Balant-Gorgia, A. E., Balant, L. P. (1999). Clomipramine concentration as a predictor of delayed response: a naturalistic study. Eur J Clin Pharmacol, 54, 895–902.Google Scholar
Charlier, C., Pinto, E., Ansseau, M., et al. (2000). Relationship between clinical effects, serum drug concentration, and concurrent drug interactions in depressed patients treated with citalopram, fluoxetine, clomipramine, paroxetine or venlafaxine. Hum Psychopharmacol, 15, 453–459.Google Scholar
Herrera, D., Mayet, L., Galindo, M. C., et al. (2000). Pharmacokinetics of a sustained-release dosage form of clomipramine. J Clin Pharmacol, 40, 1488–1493.Google Scholar
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 37–44.Google Scholar
Evans, L. E., Bett, J. H., Cox, J. R., et al. (1980). The bioavailability of oral and parenteral chlorimipramine (Anafranil). Prog Neuropsychopharmacol, 4, 293–302.Google Scholar
Balant-Gorgia, A. E., Gex-Fabry, M., Balant, L. P. (1991). Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet, 20, 447–462.Google Scholar
Vandel, S., Bertschy, G., Baumann, P., et al. (1995). Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol Res, 31, 347–353.Google Scholar
Rasmussen, B. B., Nielsen, T. L., Brøsen, K. (1998). Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol, 54, 735–740. doi: 710.1007/s002280050544Google Scholar
Pigott, T. A., Seay, S. M. (1999). A review of the efficacy of selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Clin Psychiatry, 60, 101–106. doi: 110.4088/jcp.v4060n0206Google Scholar
Albert, U., Aguglia, E., Maina, G., et al. (2002). Venlafaxine versus clomipramine in the treatment of obsessive-compulsive disorder: a preliminary single-blind, 12-week, controlled study. J Clin Psychiatry, 63, 1004–1009. doi: 1010.4088/jcp.v1063n1108Google Scholar
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 1184–1189.Google Scholar
References
Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230–240.Google Scholar
Hearn, L., Moore, R. A., Derry, S., et al. (2014). Desipramine for neuropathic pain in adults. Cochrane Database Syst Rev, 2014, CD011003.Google Scholar
Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol, 151, 737–748.Google Scholar
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 37–44.Google Scholar
Nagy, A., Johansson, R. (1975). Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol, 290, 145–160.Google Scholar
Lieberman, J. A., Cooper, T. B., Suckow, R. F., et al. (1985). Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther, 37, 301–307.Google Scholar
Sallee, F. R., Pollock, B. G. (1990). Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet, 18, 346–364.Google Scholar
von Ammon Cavanaugh, S. (1990). Drug-drug interactions of fluoxetine with tricyclics. Psychosomatics, 31, 273–276.Google Scholar
Spina, E., Avenoso, A., Campo, G. M., et al. (1995). The effect of carbamazepine on the 2-hydroxylation of desipramine. Psychopharmacology (Berl), 117, 413–416.Google Scholar
Spina, E., Avenoso, A., Campo, G. M., et al. (1996). Phenobarbital induces the 2-hydroxylation of desipramine. Ther Drug Monit, 18, 60–64.Google Scholar
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 1184–1189.Google Scholar
References
Leucht, S., Steimer, W., Kreuz, S., et al. (2001). Doxepin plasma concentrations: is there really a therapeutic range? J Clin Psychopharmacol, 21, 432–439.Google Scholar
Wang, W. A., Qian, J. M., Pan, G. Z. (2003). Treatment of refractory irritable bowel syndrome with subclinical dosage of antidepressants. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 25, 74–78.Google Scholar
de la Torre, Rodriguez, Dreher, B., Malevany, J., I., et al. (2001). Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients. Ther Drug Monit, 23, 435–440.Google Scholar
Müller, M. J., Dragicevic, A., Fric, M., et al. (2003). Therapeutic drug monitoring of tricyclic antidepressants: how does it work under clinical conditions? Pharmacopsychiatry, 36, 98–104.Google Scholar
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 37–44.Google Scholar
Ziegler, V. E., Biggs, J. T., Wylie, L. T., et al. (1978). Doxepin kinetics. Clin Pharmacol Ther, 23, 573–579.Google Scholar
Faulkner, R. D., Senekjian, H. O., Lee, C. S. (1984). Hemodialysis of doxepin and desmethyldoxepin in uremic patients. Artif Organs, 8, 151–155.Google Scholar
Yan, J. H., Hubbard, J. W., McKay, G., et al. (2002). Absolute bioavailability and stereoselective pharmacokinetics of doxepin. Xenobiotica, 32, 615–623.Google Scholar
Leinonen, E., Lillsunde, P., Laukkanen, V., et al. (1991). Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol, 11, 313–318.Google Scholar
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 1184–1189.Google Scholar
References
Deupree, J. D., Montgomery, M. D., Bylund, D. B. (2007). Pharmacological properties of the active metabolites of the antidepressants desipramine and citalopram. Eur J Pharmacol, 576, 55–60.Google Scholar
Lopez-Munoz, F., Alamo, C. (2009). Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des, 15, 1563–1586.Google Scholar
Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230–240.Google Scholar
Rief, W., Nestoriuc, Y., von Lilienfeld-Toal, A., et al. (2009). Differences in adverse effect reporting in placebo groups in SSRI and tricyclic antidepressant trials: a systematic review and meta-analysis. Drug Saf, 32, 1041–1056.Google Scholar
Rodriguez de la Torre, B., Dreher, J., Malevany, I., et al. (2001). Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients. Ther Drug Monit, 23, 435–440.Google Scholar
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 37–44.Google Scholar
Nagy, A., Johansson, R. (1975). Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol, 290, 145–160.Google Scholar
Lieberman, J. A., Cooper, T. B., Suckow, R. F., et al. (1985). Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther, 37, 301–307.Google Scholar
Sallee, F. R., Pollock, B. G. (1990). Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet, 18, 346–364.Google Scholar
Rasmussen, B. B., Nielsen, T. L., Brøsen, K. (1998). Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol, 54, 735–740. doi: 710.1007/s002280050544Google Scholar
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 1184–1189.Google Scholar
Bighelli, I., Castellazzi, M., Cipriani, A., et al. (2018). Antidepressants versus placebo for panic disorder in adults. Cochrane Database Syst Rev, 4, CD010676.Google Scholar
References
Perry, P. J., Zeilmann, C., Arndt, S. (1994). Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J Clin Psychopharmacol, 14, 230–240.Google Scholar
Derry, S., Wiffen, P. J., Aldington, D., et al. (2015). Nortriptyline for neuropathic pain in adults. Cochrane Database Syst Rev, 1, CD011209.Google Scholar
Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol, 151, 737–748.Google Scholar
Macaluso, M., Preskorn, S. H. (2011). CYP 2D6 PM status and antidepressant response to nortriptyline and venlafaxine: is it more than just drug metabolism? J Clin Psychopharmacol, 31, 143–145.Google Scholar
Hicks, J. K., Sangkuhl, K., Swen, J. J., et al. (2017). Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 102, 37–44.Google Scholar
Alexanderson, B. (1972). Pharmacokinetics of nortriptyline in man after single and multiple oral doses: the predictability of steady-state plasma concentrations from single-dose plasma-level data. Eur J Clin Pharmacol, 4, 82–91.Google Scholar
Dawling, S., Lynn, K., Rosser, R., et al. (1981). The pharmacokinetics of nortriptyline in patients with chronic renal failure. Br J Clin Pharmacol, 12, 39–45.Google Scholar
Tasset, J. J., Singh, S., Pesce, A. J. (1985). Evaluation of amitriptyline pharmacokinetics during peritoneal dialysis. Ther Drug Monit, 7, 255–257.Google Scholar
Yue, Q. Y., Zhong, Z. H., Tybring, G., et al. (1998). Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther, 64, 384–390.Google Scholar
Kvist, E. E., Al-Shurbaji, A., Dahl, M. L., et al. (2001). Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet, 40, 869–877.Google Scholar
von Ammon Cavanaugh, S. (1990). Drug-drug interactions of fluoxetine with tricyclics. Psychosomatics, 31, 273–276.Google Scholar
Undurraga, J., Baldessarini, R. J. (2017). Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: systematic review and meta-analysis. J Psychopharmacol, 31, 1184–1189.Google Scholar
References
Shulman, K. I., Herrmann, N., Walker, S. E. (2013). Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs, 27, 789–797.Google Scholar
Kennedy, S. H. (1997). Continuation and maintenance treatments in major depression: the neglected role of monoamine oxidase inhibitors. J Psychiatry Neurosci, 22, 127–131.Google Scholar
Larsen, J. K., Bendsen, B. B., Bech, P. (2011). Vitamin B6 treatment of oedema induced by mirtazapine and isocarboxazid. Acta Psychiatr Scand, 124, 76–77; discussion 77.Google Scholar
Koechlin, B. A., Schwartz, M. A., Oberhaensli, W. E. (1962). Metabolism of C-14-iproniazid and C-14-isocarboxazid in man. J Pharmacol Exp Ther, 138, 11–20.Google Scholar
Davidson, J. R., Giller, E. L., Zisook, S., et al. (1988). An efficacy study of isocarboxazid and placebo in depression, and its relationship to depressive nosology. Arch Gen Psychiatry, 45, 120–127.Google Scholar
Thase, M. E., Trivedi, M. H., Rush, A. J. (1995). MAOIs in the contemporary treatment of depression. Neuropsychopharmacology, 12, 185–219.Google Scholar
References
Bonnet, U. (2003). Moclobemide: therapeutic use and clinical studies. CNS Drug Rev, 9, 97–140.Google Scholar
Kennedy, S. H. (1997). Continuation and maintenance treatments in major depression: the neglected role of monoamine oxidase inhibitors. J Psychiatry Neurosci, 22, 127–131.Google Scholar
Shulman, K. I., Herrmann, N., Walker, S. E. (2013). Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs, 27, 789–797.Google Scholar
Macaluso, M., Preskorn, S. H. (2011). CYP 2D6 PM status and antidepressant response to nortriptyline and venlafaxine: is it more than just drug metabolism? J Clin Psychopharmacol, 31, 143–145.Google Scholar
Schoerlin, M. P., Horber, F. F., Frey, F. J., et al. (1990). Disposition kinetics of moclobemide, a new MAO-A inhibitor, in subjects with impaired renal function. J Clin Pharmacol, 30, 272–284.Google Scholar
Stoeckel, K., Pfefen, J. P., Mayersohn, M., et al. (1990). Absorption and disposition of moclobemide in patients with advanced age or reduced liver or kidney function. Acta Psychiatr Scand Suppl, 360, 94–97.Google Scholar
Mayersohn, M., Guentert, T. W. (1995). Clinical pharmacokinetics of the monoamine oxidase-A inhibitor moclobemide. Clin Pharmacokinet, 29, 292–332.Google Scholar
Amrein, R., Stabl, M., Henauer, S., et al. (1997). Efficacy and tolerability of moclobemide in comparison with placebo, tricyclic antidepressants, and selective serotonin reuptake inhibitors in elderly depressed patients: a clinical overview. Can J Psychiatry, 42, 1043–1050.Google Scholar
Papakostas, G. I., Thase, M. E., Fava, M., et al. (2007). Are antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A meta-analysis of studies of newer agents. Biol Psychiatry, 62, 1217–1227.Google Scholar
Kriston, L., von Wolff, A., Westphal, A., et al. (2014). Efficacy and acceptability of acute treatments for persistent depressive disorder: a network meta-analysis. Depress Anxiety, 31, 621–630.Google Scholar
Bandelow, B., Reitt, M., Röver, C., et al. (2015). Efficacy of treatments for anxiety disorders: a meta-analysis. Int Clin Psychopharmacol, 30, 183–192.Google Scholar
References
Shulman, K. I., Herrmann, N., Walker, S. E. (2013). Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs, 27, 789–797.Google Scholar
Kennedy, S. H. (1997). Continuation and maintenance treatments in major depression: the neglected role of monoamine oxidase inhibitors. J Psychiatry Neurosci, 22, 127–131.Google Scholar
Tyrer, P., Gardner, M., Lambourn, J., et al. (1980). Clinical and pharmacokinetic factors affecting response to phenelzine. Br J Psychiatry, 136, 359–365.Google Scholar
Malcolm, D. E., Yu, P. H., Bowen, R. C., et al. (1994). Phenelzine reduces plasma vitamin B6. J Psychiatry Neurosci, 19, 332–334.Google Scholar
Birkenhager, T. K., van den Broek, W. W., Mulder, P. G., et al. (2004). Efficacy and tolerability of tranylcypromine versus phenelzine: a double-blind study in antidepressant-refractory depressed inpatients. J Clin Psychiatry, 65, 1505–1510.Google Scholar
Robinson, D. S., Cooper, T. B., Jindal, S. P., et al. (1985). Metabolism and pharmacokinetics of phenelzine: lack of evidence for acetylation pathway in humans. J Clin Psychopharmacol, 5, 333–337.Google Scholar
Chiuccariello, L., Cooke, R. G., Miler, L., et al. (2015). Monoamine oxidase-A occupancy by moclobemide and phenelzine: implications for the development of monoamine oxidase inhibitors. Int J Neuropsychopharmacol, 19(1), pyv078.Google Scholar
Thase, M. E., Trivedi, M. H., Rush, A. J. (1995). MAOIs in the contemporary treatment of depression. Neuropsychopharmacol, 12, 185–219.Google Scholar
References
Shulman, K. I., Herrmann, N., Walker, S. E. (2013). Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs, 27, 789–797.Google Scholar
Lee, K. C., Chen, J. J. (2007). Transdermal selegiline for the treatment of major depressive disorder. Neuropsychiatr Dis Treat, 3, 527–537.Google Scholar
Clarke, A., Brewer, F., Johnson, E. S., et al. (2003). A new formulation of selegiline: improved bioavailability and selectivity for MAO-B inhibition. J Neural Transm (Vienna), 110, 1241–1255.Google Scholar
Goodnick, P. J. (2007). Seligiline transdermal system in depression. Expert Opin Pharmacother, 8, 59–64.Google Scholar
Patkar, A. A., Pae, C. U., Masand, P. S. (2006). Transdermal selegiline: the new generation of monoamine oxidase inhibitors. CNS Spectr, 11, 363–375.Google Scholar
Blob, L. F., Sharoky, M., Campbell, B. J., et al. (2007). Effects of a tyramine-enriched meal on blood pressure response in healthy male volunteers treated with selegiline transdermal system 6 mg/24 hour. CNS Spectr, 12, 25–34.Google Scholar
References
Shulman, K. I., Herrmann, N., Walker, S. E. (2013). Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs, 27, 789–797.Google Scholar
Kennedy, S. H. (1997). Continuation and maintenance treatments in major depression: the neglected role of monoamine oxidase inhibitors. J Psychiatry Neurosci, 22, 127–131.Google Scholar
Mallinger, A. G., Himmelhoch, J. M., Thase, M. E., et al. (1990). Plasma tranylcypromine: relationship to pharmacokinetic variables and clinical antidepressant actions. J Clin Psychopharmacol, 10, 176–183.Google Scholar
Ulrich, S., Ricken, R., Buspavanich, P., et al. (2020). Efficacy and adverse effects of tranylcypromine and tricyclic antidepressants in the treatment of depression: a systematic review and comprehensive meta-analysis. J Clin Psychopharmacol, 40, 63–74.Google Scholar
Morgan, M. H., Read, A. E. (1972). Antidepressants and liver disease. Gut, 13, 697–701.Google Scholar
Mallinger, A. G., Edwards, D. J., Himmelhoch, J. M., et al. (1986). Pharmacokinetics of tranylcypromine in patients who are depressed: relationship to cardiovascular effects. Clin Pharmacol Ther, 40, 444–450.Google Scholar
Ulrich, S., Ricken, R., Adli, M. (2017). Tranylcypromine in mind (part I): review of pharmacology. Eur Neuropsychopharmacol, 27, 697–713.Google Scholar
Thase, M. E., Trivedi, M. H., Rush, A. J. (1995). MAOIs in the contemporary treatment of depression. Neuropsychopharmacol, 12, 185–219.Google Scholar
References
Jonas, J. M., Cohon, M. S. (1993). A comparison of the safety and efficacy of alprazolam versus other agents in the treatment of anxiety, panic, and depression: a review of the literature. J Clin Psychiatry, 54 Suppl., 25–45; discussion 46–48.Google Scholar
Liver Toxicology. (2012). Benzodiazepines. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (eds.). Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar
Ait-Daoud, N., Hamby, A. S., Sharma, S., et al. (2018). A review of alprazolam use, misuse, and withdrawal. J Addict Med, 12, 4–10.Google Scholar
DeVane, C. L., Ware, M. R., Lydiard, R. B. (1991). Pharmacokinetics, pharmacodynamics, and treatment issues of benzodiazepines: alprazolam, adinazolam, and clonazepam. Psychopharmacol Bull, 27, 463–473.Google Scholar
Olivier, J. D. A., Olivier, B. (2020). Translational studies in the complex role of neurotransmitter systems in anxiety and anxiety disorders. Adv Exp Med Biol, 1191, 121–140.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476–483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 1023–1033.Google Scholar
Spiegel, D. A. (1998). Efficacy studies of alprazolam in panic disorder. Psychopharmacol Bull, 34, 191–195.Google Scholar
Klein, E. (2002). The role of extended-release benzodiazepines in the treatment of anxiety: a risk-benefit evaluation with a focus on extended-release alprazolam. J Clin Psychiatry, 63 Suppl. 14, 27–33.Google Scholar
No authors listed. (2019). Drugs for anxiety disorders. Med Lett Drugs Ther, 61, 121–126.Google Scholar
Greenblatt, D. J., Wright, C. E. (1993). Clinical pharmacokinetics of alprazolam. Therapeutic implications. Clin Pharmacokinet, 24, 453–471.Google Scholar
References
Stahl, S. M. (2017). Buspirone. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 113–115.Google Scholar
Amneal Pharmaceuticals LLC. (2019). Buspirone Package Insert. Bridgewater, New Jersey.Google Scholar
Mahmood, I., Sahajwalla, C. (1999). Clinical pharmacokinetics and pharmacodynamics of buspirone, an anxiolytic drug. Clin Pharmacokinet, 36, 277–287.Google Scholar
Mezher, A. W., McKnight, C. A., Caplan, J. P. (2019). Buspirone abuse: no safe haven. Psychosomatics, 60, 534–535.Google Scholar
References
Liver Toxicology. (2012). Benzodiazepines. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (eds.). Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar
Stahl, S. M. (2017). Clonazepam. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 159–163.Google Scholar
Volz, A., Khorsand, V., Gillies, D., et al. (2007). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 24(1), CD006391.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476–483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 1023–1033.Google Scholar
Gillies, D., Sampson, S., Beck, A., et al. (2013). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 24(1), CD003079.Google Scholar
Dodds, T. J. (2017). Prescribed benzodiazepines and suicide risk: a review of the literature. Prim Care Companion CNS Disord, 19, doi 10.4088Google Scholar
Zaman, H., Sampson, S., Beck, A., et al. (2018). Benzodiazepines for psychosis-induced aggression or agitation. Schizophr Bull, 44, 966–969.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Benzodiazepine Protocol. Sacramento, California.Google Scholar
DeVane, C. L., Ware, M. R., Lydiard, R. B. (1991). Pharmacokinetics, pharmacodynamics, and treatment issues of benzodiazepines: alprazolam, adinazolam, and clonazepam. Psychopharmacol Bull, 27, 463–473.Google Scholar
No authors listed. (2019). Drugs for anxiety disorders. Med Lett Drugs Ther, 61, 121–126.Google Scholar
References
Oceanside Pharmaceuticals Inc. (2017). Diazepam Gel Package Insert. Bridgewater, New Jersey.Google Scholar
Stahl, S. M. (2017). Diazepam. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 211–215.Google Scholar
Olivier, J. D. A., Olivier, B. (2020). Translational studies in the complex role of neurotransmitter systems in anxiety and anxiety disorders. Adv Exp Med Biol, 1191, 121–140.Google Scholar
Volz, A., Khorsand, V., Gillies, D., et al. (2007). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11 CD006391.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476–483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 1023–1033.Google Scholar
Gillies, D., Sampson, S., Beck, A., et al. (2013). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 9, CD003079.Google Scholar
Dodds, T. J. (2017). Prescribed benzodiazepines and suicide risk: a review of the literature. Prim Care Companion CNS Disord, 19, doi 10.4088Google Scholar
Zaman, H., Sampson, S., Beck, A., et al. (2018). Benzodiazepines for psychosis-induced aggression or agitation. Schizophr Bull, 44, 966–969.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Benzodiazepine Protocol. Sacramento, CaliforniaGoogle Scholar
Liver Toxicology. (2012). Benzodiazepines. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (eds.). Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar
References
Stahl, S. M. (2017). Hydroxyzine. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 331–334.Google Scholar
Avet Pharmaceuticals Inc. (2020). Hydroxyzine Package Insert. East Brunswick, New Jersey.Google Scholar
Paton, D. M., Webster, D. R. (1985). Clinical pharmacokinetics of H1-receptor antagonists (the antihistamines). Clin Pharmacokinet, 10, 477–497.Google Scholar
References
Stahl, S. M. (2017). Lorazepam. In Stahl’s Essential Psychopharmacology Prescriber’s Edition (eds.). Cambridge: Cambridge University Press, pp. 403–407.Google Scholar
Qualitest Pharmaceuticals Inc. (2018). Lorazepam Tablets Package Insert. Huntsville, Alabama.Google Scholar
Amneal Pharmaceuticals LLC. (2019). Lorazepam Concentrate Package Insert. Bridgewater, New Jersey.Google Scholar
International Medication Systems. (2019). Lorazepam Injection Package Insert. South El Monte, California.Google Scholar
Volz, A., Khorsand, V., Gillies, D., et al. (2007). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476–483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 1023–1033.Google Scholar
Gillies, D., Sampson, S., Beck, A., et al. (2013). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 9, CD003079.Google Scholar
Dodds, T. J. (2017). Prescribed benzodiazepines and suicide risk: a review of the literature. Prim Care Companion CNS Disord, 19, doi: 10.4088Google Scholar
Zaman, H., Sampson, S., Beck, A., et al. (2018). Benzodiazepines for psychosis-induced aggression or agitation. Schizophr Bull, 44, 966–969.Google Scholar
Liver Toxicology. (2012). Benzodiazepines. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (eds.). Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Benzodiazepine Protocol. Sacramento, California.Google Scholar
References
Stahl, S. M. (2017). Eszopiclone. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 261–264.Google Scholar
West-Ward Pharmaceuticals Corp. (2020). Eszopiclone Package Insert. West Eatontown, New Jersey.Google Scholar
References
Stahl, S. M. (2017). Oxazepam. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 537–541.Google Scholar
Frase, L., Nissen, C., Riemann, D., et al. (2018). Making sleep easier: pharmacological interventions for insomnia. Expert Opin Pharmacother, 19, 1465–1473.Google Scholar
Volz, A., Khorsand, V., Gillies, D., et al. (2007). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476–483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 1023–1033.Google Scholar
Gillies, D., Sampson, S., Beck, A., et al. (2013). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 9, CD003079.Google Scholar
Dodds, T. J. (2017). Prescribed benzodiazepines and suicide risk: a review of the literature. Prim Care Companion CNS Disord, 19, doi: 10.4088Google Scholar
Zaman, H., Sampson, S., Beck, A., et al. (2018). Benzodiazepines for psychosis-induced aggression or agitation. Schizophr Bull, 44, 966–969.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Benzodiazepine Protocol. Sacramento, California.Google Scholar
Greenblatt, D. J. (1981). Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet, 6, 89–105.Google Scholar
Sonne, J., Loft, S., Døssing, M., et al. (1988). Bioavailability and pharmacokinetics of oxazepam. Eur J Clin Pharmacol, 35, 385–389.Google Scholar
Sonne, J., Boesgaard, S., Poulsen, H. E., et al. (1990). Pharmacokinetics and pharmacodynamics of oxazepam and metabolism of paracetamol in severe hypothyroidism. Br J Clin Pharmacol, 30, 737–742.Google Scholar
References
Stahl, S. M. (2017). Temazepam. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 703–706.Google Scholar
Volz, A., Khorsand, V., Gillies, D., et al. (2007). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476–483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 1023–1033.Google Scholar
Gillies, D., Sampson, S., Beck, A., et al. (2013). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 9, CD003079.Google Scholar
Dodds, T. J. (2017). Prescribed benzodiazepines and suicide risk: a review of the literature. Prim Care Companion CNS Disord, 19, doi: 10.4088Google Scholar
Zaman, H., Sampson, S., Bec, A., et al. (2018). Benzodiazepines for psychosis-induced aggression or agitation. Schizophr Bull, 44, 966–969.Google Scholar
California Department of State Hospitals. (2019). DSH Psychotropic Medication Policy: Benzodiazepine Protocol. Sacramento, California.Google Scholar
Liver Toxicology. (2012). Benzodiazepines. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (eds.). Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases.Google Scholar
Stoehr, G. P., Kroboth, P. D., Juhl, R. P., et al. (1984). Effect of oral contraceptives on triazolam, temazepam, alprazolam, and lorazepam kinetics. Clin Pharmacol Ther, 36, 683–690.Google Scholar
References
Stahl, S. M. (2017). Zaleplon. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 803–806.Google Scholar
References
Stahl, S. M. (2017). Zolpidem. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 815–818.Google Scholar
References
Hansen, M. V., Halladin, N. L., Rosenberg, J., et al. (2015). Melatonin for pre- and postoperative anxiety in adults. Cochrane Database Syst Rev, 2015(4), CD009861.Google Scholar
Auld, F., Maschauer, E. L., Morrison, I., et al. (2017). Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med Rev, 34, 10–22.Google Scholar
Erland, L. A., Saxena, P. K. (2017). Melatonin natural health products and supplements: presence of serotonin and significant variability of melatonin content. J Clin Sleep Med, 13, 275–281.Google Scholar
Posadzki, P. P., Bajpai, R., Kyaw, B. M., et al. (2018). Melatonin and health: an umbrella review of health outcomes and biological mechanisms of action. BMC Med, 16, 18.Google Scholar
Pierce, M., Linnebur, S. A., Pearson, S. M., et al. (2019). Optimal melatonin dose in older adults: a clinical review of the literature. Sr Care Pharm, 34, 419–431.Google Scholar
Tordjman, S., Chokron, S., Delorme, R., et al. (2017). Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol, 15, 434–443.Google Scholar
Riha, R. L. (2018). The use and misuse of exogenous melatonin in the treatment of sleep disorders. Curr Opin Pulm Med, 24, 543–548.Google Scholar
Andersen, L. P., Werner, M. U., Rosenkilde, M. M., et al. (2016). Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol Toxicol, 17, 8.Google Scholar
Costello, R. B., Lentino, C. V., Boyd, C. C., et al. (2014). The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr J, 13, 106.Google Scholar
Andersen, L. P., Gogenur, I., Rosenberg, J., et al. (2016). The safety of melatonin in humans. Clin Drug Investig, 36, 169–175.Google Scholar
References
Borja, N. L., Daniel, K. L. (2006). Ramelteon for the treatment of insomnia. Clin Ther, 28, 1540–1555.Google Scholar
Low, T. L., Choo, F. N., Tan, S. M. (2020). The efficacy of melatonin and melatonin agonists in insomnia – an umbrella review. J Psychiatr Res, 121, 10–23.Google Scholar
Erman, M., Seiden, D., Zammit, G., et al. (2006). An efficacy, safety, and dose-response study of Ramelteon in patients with chronic primary insomnia. Sleep Med, 7, 17–24.Google Scholar
References
Stahl, S. M. (2017). Tasimelteon. In Stahl’s Essential Psychopharmacology Prescriber’s Guide (eds.). Cambridge: Cambridge University Press, pp. 699–701.Google Scholar
Low, T. L., Choo, F. N., Tan, S. M. (2020). The efficacy of melatonin and melatonin agonists in insomnia – an umbrella review. J Psychiatr Res, 121, 10–23.Google Scholar
References
Garnock-Jones, K. P., Keating, G. M. (2009). Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs, 11, 203–226.Google Scholar
Stahl, S. M., Grady, M. M., Munter, N. (2017). Prescriber’s Guide: Stahl’s Essential Psychopharmacology. Cambridge: Cambridge University Press.Google Scholar
Michelson, D., Adler, L., Spencer, T., et al. (2003). Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry, 53, 112–120.Google Scholar
Kelsey, D. K., Sumner, C. R., Casat, C. D., et al. (2004). Once-daily atomoxetine treatment for children with attention-deficit/hyperactivity disorder, including an assessment of evening and morning behavior: a double-blind, placebo-controlled trial. Pediatrics, 114, e1–e8.Google Scholar
Stiefel, G., Besag, F. M. (2010). Cardiovascular effects of methylphenidate, amphetamines and atomoxetine in the treatment of attention-deficit hyperactivity disorder. Drug Saf, 33, 821–842.Google Scholar
References
Stahl, S. M., Grady, M. M., Munter, N. (2017). Prescriber’s Guide: Stahl’s Essential Psychopharmacology. Cambridge: Cambridge University Press.Google Scholar
Vinson, D. C. (1994). Therapy for attention-deficit hyperactivity disorder. Arch Fam Med, 3, 445–451.Google Scholar
Jadad, A. R., Boyle, M., Cunningham, C., et al. (1999). Treatment of attention-deficit/hyperactivity disorder. Evid Rep Technol Assess (Summ), i–viii, 1–341.Google Scholar
Wender, P. H., Wolf, L. E., Wasserstein, J. (2001). Adults with ADHD. An overview. Ann N Y Acad Sci, 931, 1–16.Google Scholar
Greenhill, L. L., Pliszka, S., Dulcan, M. K., et al. (2002). Practice parameter for the use of stimulant medications in the treatment of children, adolescents, and adults. J Am Acad Child Adolesc Psychiatry, 41, 26S–49S.Google Scholar
Stiefel, G., Besag, F. M. (2010). Cardiovascular effects of methylphenidate, amphetamines and atomoxetine in the treatment of attention-deficit hyperactivity disorder. Drug Saf, 33, 821–842.Google Scholar
References
Biederman, J., Krishnan, S., Zhang, Y., et al. (2007). Efficacy and tolerability of lisdexamfetamine dimesylate (NRP-104) in children with attention-deficit/hyperactivity disorder: a phase III, multicenter, randomized, double-blind, forced-dose, parallel-group study. Clin Ther, 29, 450–463.Google Scholar
Stahl, S. M. (2020). Stahl’s Essential Psychopharmacology Prescriber’s Guide. 7th ed. New York: Cambridge University Press.Google Scholar
References
Stahl, S. M., Grady, M. M., Munter, N. (2017). Prescriber’s Guide: Stahl’s Essential Psychopharmacology. Cambridge: Cambridge University Press.Google Scholar
Keating, G. M., Figgitt, D. P. (2002). Dexmethylphenidate. Drugs, 62, 1899–1904; discussion 1905–1908.Google Scholar
References
Stahl, S. M., Grady, M. M., Munter, N. (2017). Prescriber’s Guide: Stahl’s Essential Psychopharmacology. Cambridge: Cambridge University Press.Google Scholar
Teva Pharmaceuticals USA Inc. (2020). Dextroamphetamine saccharate, amphetamine as partate, dextroamphetamine sulfate and amphetamine sulfate tablets (mixed salts of a single entity amphetamine product) Package Insert. Parsippany, New Jersey.Google Scholar
Greenhill, L. L., Pliszka, S., Dulcan, M. K., et al. (2002). Practice parameter for the use of stimulant medications in the treatment of children, adolescents, and adults. J Am Acad Child Adolesc Psychiatry, 41, 26S–49S.Google Scholar
Stiefel, G., Besag, F. M. (2010). Cardiovascular effects of methylphenidate, amphetamines and atomoxetine in the treatment of attention-deficit hyperactivity disorder. Drug Saf, 33, 821–842.Google Scholar
References
Murillo-Rodríguez, E., Barciela Veras, A., Barbosa Rocha, N., et al. (2018). An overview of the clinical uses, pharmacology, and safety of modafinil. ACS Chem Neurosci, 9, 151–158.Google Scholar
Darwish, M., Kirby, M., Hellriegel, E. T., et al. (2009). Armodafinil and modafinil have substantially different pharmacokinetic profiles despite having the same terminal half-lives: analysis of data from three randomized, single-dose, pharmacokinetic studies. Clin Drug Investig, 29, 613–623.Google Scholar
Darwish, M., Kirby, M., Robertson, P. Jr., et al. (2008). Interaction profile of armodafinil with medications metabolized by cytochrome P450 enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet, 47, 61–74.Google Scholar