Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T13:37:07.405Z Has data issue: false hasContentIssue false

4 - Manipulation

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11:5 (1986), 288–90.CrossRefGoogle ScholarPubMed
Neuman, K. C. and Nagy, A., Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods, 5:6 (2008), 491505.Google Scholar
Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K., and Block, S. M., Characterization of photodamage to Escherichia coli in optical traps. Biophys. J., 77:5(1999), 2856–63.CrossRefGoogle ScholarPubMed
Sacconi, L., Tolic-Norrelykke, I. M., Stringari, C., Antolini, R., and Pavone, F. S., Optical micromanipulations inside yeast cells. Appl. Opt., 44:11 (2005), 2001–7.Google Scholar
Cherney, D. P., Bridges, T. E., and Harris, J. M., Optical trapping of unilamellar phospholipid vesicles: Investigation of the effect of optical forces on the lipid membrane shape by confocal-raman microscopy. Anal. Chem., 76:17 (2004), 4920–28.CrossRefGoogle ScholarPubMed
Pauzauskie, P. J., Radenovic, A., Trepagnier, E., Shroff, H., Yang, P. D., and Liphardt, J., Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater., 5:2 (2006), 97101.Google Scholar
Agarwal, R., Ladavac, K., Roichman, Y., Yu, G. H., Lieber, C. M., and Grier, D. G., Manipulation and assembly of nanowires with holographic optical traps. Opt. Express, 13:22 (2005), 8906–12.Google Scholar
La Porta, A. and Wang, M. D., Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92:19 (2004), 190801.CrossRefGoogle ScholarPubMed
Block, S. M., Goldstein, L. S. B., and Schnapp, B. J., Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348:6299 (1990), 348–52.Google Scholar
Svoboda, K. and Block, S. M., Force and velocity measured for single kinesin molecules. Cell, 77:5 (1994), 773–84.Google Scholar
Mammen, M., Helmerson, K., Kishore, R., Choi, S. K., Phillips, W. D., and Whitesides, G. M., Optically controlled collisions of biological objects to evaluate potent polyvalent inhibitors of virus-cell adhesion. Chem. Biol., 3:9 (1996), 757–63.CrossRefGoogle ScholarPubMed
Litvinov, R. I., Shuman, H., Bennett, J. S., and Weisel, J. W., Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl. Acad. Sci. USA, 99:11 (2002), 7426–31.Google Scholar
Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., and Block, S. M., Force and velocity measured for single molecules of RNA polymerase. Science, 282:5390 (1998), 902–7.Google Scholar
Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., and Block, S. M., Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115:4 (2003), 437–47.Google Scholar
Shaevitz, J. W., Abbondanzieri, E. A., Landick, R., and Block, S. M., Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426:6967 (2003), 684–7.Google Scholar
Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., and Block, S. M., Direct observation of base-pair stepping by RNA polymerase. Nature, 438:7067 (2005), 460–5.CrossRefGoogle ScholarPubMed
Moffitt, J. R., Chemla, Y. R., Smith, S. B., and Bustamante, C., Recent advances in optical tweezers. Annu. Rev. Biochem., 77 (2008), 205–28.Google Scholar
Hawes, C., Osterrieder, A., Sparkes, I. A., and Ketelaar, T., Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Curr. Opin. Plant Biol., 13:6 (2010), 731–5.CrossRefGoogle ScholarPubMed
Muller, D. J., Helenius, J., Alsteens, D., and Dufrene, Y. F., Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol., 5:6 (2009), 383–90.Google Scholar
Zhang, H. and Liu, K. K., Optical tweezers for single cells. J. R. Soc. Interface, 5:24 (2008), 671–90.CrossRefGoogle ScholarPubMed
Andersson, M., Axner, O., Almqvist, F., Uhlin, B. E., and Fallman, E., Physical properties of biopolymers assessed by optical tweezers: Analysis of folding and refolding of bacterial pili. ChemPhysChem, 9:2 (2008), 221–35.Google ScholarPubMed
Deniz, A. A., Mukhopadhyay, S., and Lemke, E. A., Single-molecule biophysics: At the interface of biology, physics and chemistry. J. R. Soc. Interface, 5:18 (2008), 1545.CrossRefGoogle ScholarPubMed
Herbert, K. M., Greenleaf, W. J., and Block, S. M., Single-molecule studies of RNA polymerase: Motoring along. Annu. Rev. Biochem., 77 (2008), 149–76.Google Scholar
De Vlaminck, I. and Dekker, C., Recent advances in magnetic tweezers. Annu. Rev. Biophys., 41 (2012), 453–72.CrossRefGoogle ScholarPubMed
Tokarev, A., Aprelev, A., Zakharov, M. N., Korneva, G., Gogotsi, Y., and Kornev, K. G., Multifunctional magnetic rotator for micro and nanorheological studies. Rev. Sci. Instrum., 83:6 (2012), 065110.CrossRefGoogle ScholarPubMed
Chen, M., Sun, L., Bonevich, J. E., Reich, D. H., Chien, C. L., and Searson, P. C., Tuning the response of magnetic suspensions. Appl. Phys. Lett., 82:19 (2003), 3310–2.CrossRefGoogle Scholar
Chien, C. L., Sun, L., Tanase, M., et al., Electrodeposited magnetic nanowires: Arrays, field-induced assembly, and surface functionalization. J. Magn. Magn. Mater., 249:1–2 (2002), 146–55.CrossRefGoogle Scholar
Barbic, M., Magnetic wires in MEMS and bio-medical applications. J. Magn. Magn. Mater., 249:1–2 (2002), 357–67.Google Scholar
Hultgren, A., Tanase, M., Chen, C. S., Meyer, G. J., and Reich, D. H., Cell manipulation using magnetic nanowires. J. Appl. Phys., 93:10 (2003), 7554–6.Google Scholar
Bentley, A. K., Trethewey, J. S., Ellis, A. B., and Crone, W. C., Magnetic manipulation of copper-tin nanowires capped with nickel ends. Nano. Lett., 4:3 (2004), 487–90.Google Scholar
Shevkoplyas, S. S., Siegel, A. C., Westervelt, R. M., Prentiss, M. G., and Whitesides, G. M., The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip, 7:10 (2007), 1294–302.Google Scholar
Neuman, K. C., Lionnet, T., and Allemand, J. F., Single-molecule micromanipulation techniques. Annu. Rev. Mater. Res., 37 (2007), 3367.CrossRefGoogle Scholar
Gosse, C. and Croquette, V., Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophys. J., 82:6 (2002), 3314–29.CrossRefGoogle ScholarPubMed
Charvin, G., Strick, T. R., Bensimon, D., and Croquette, V., Tracking topoisomerase activity at the single-molecule level. Annu. Rev. Biophys. Biomol. Struct., 34 (2005), 201–19.Google Scholar
Strick, T. R., Croquette, V., and Bensimon, D., Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature, 404:6780(2000), 901–4.Google Scholar
Celedon, A., I. M. Nodelman, B. Wildt et al., Magnetic tweezers measurement of single molecule torque. Nano. Lett., 9:4 (2009), 1720–5.CrossRefGoogle ScholarPubMed
Koster, D. A., Croquette, V., Dekker, C., Shuman, S., and Dekker, N. H., Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 434:7033 (2005), 671–4.Google Scholar
Koster, D. A., Palle, K., Bot, E. S. M., Bjornsti, M. A., and Dekker, N. H., Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature, 448:7150 (2007), 213–7.CrossRefGoogle ScholarPubMed
Zhang, L., T. Petit, Y. Lu et al., Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano, 4:10(2010), 6228–34.Google Scholar
Tierno, P., Golestanian, R., Pagonabarraga, I., and Sagues, F., Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett., 101:21 (2008), 218304.CrossRefGoogle ScholarPubMed
Gao, W., Sattayasamitsathit, S., Manesh, K. M., Weihs, D., and Wang, J., Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc., 132:41 (2010), 14403–5.Google Scholar
Fan, D. L., Cammarata, R. C., and Chien, C. L., Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett., 92:9 (2008), 093115.Google Scholar
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., Electric tweezers. Nano Today, 6:4 (2011), 339–54.Google Scholar
Jones, T. B., Electromechanics of Particles, 1st edn (Cambridge: Cambridge University Press, 1995).Google Scholar
Smith, P. A., C. D. Nordquist, T. N. Jackson et al., Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett., 77:9 (2000), 1399–401.Google Scholar
Krupke, R., Hennrich, F., von Lohneysen, H., and Kappes, M. M., Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 301:5631 (2003), 344–7.CrossRefGoogle ScholarPubMed
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., Controllable high-speed rotation of nanowires. Phys. Rev. Lett., 94:24 (2005), 247208.Google Scholar
Fan, D. L., Z. Yin, R. Cheong et al., Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotech., 5:7 (2010), 545–51.Google Scholar
Fan, D. L., Zhu, F. Q., Xu, X. B., Cammarata, R. C., and Chien, C. L., Electronic properties of nanoentities revealed by electrically driven rotation. Proc. Natl. Acad. Sci. USA., 109:24 (2012), 9309–13.CrossRefGoogle ScholarPubMed
Xu, X. B., Kim, K., Li, H. F., and Fan, D. L., Ordered arrays of raman nanosensors for ultrasensitive and location predictable biochemical detection. Adv. Mater., 24:40 (2012), 5457–63.Google Scholar
Edwards, B., Engheta, N., and Evoy, S., Electric tweezers: Experimental study of positive dielectrophoresis-based positioning and orientation of a nanorod. J. Appl. Phys., 102:2 (2007), 024913.Google Scholar
Edwards, B., Engheta, N., and Evoy, S., Theory of simultaneous control of orientation and translational motion of nanorods using positive dielectrophoretic forces. J. Appl. Phys., 98:12 (2005), 124314.Google Scholar
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., Manipulation of nanowires in suspension by ac electric fields. Appl. Phys. Lett., 85:18 (2004), 4175–7.Google Scholar
Edwards, B., Mayer, T. S., and Bhiladvala, R. B., Synchronous electrorotation of nanowires in fluid. Nano. Lett., 6:4 (2006), 626–32.Google Scholar
Chiou, P. Y., Ohta, A. T., and Wu, M. C., Massively parallel manipulation of single cells and microparticles using optical images. Nature, 436:7049 (2005), 370–2.Google Scholar
Jamshidi, A., P. J. Pauzauskie, P. J. Schuck et al., Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat. Photon., 2:2 (2008), 86–9.Google Scholar
Paxton, W. F., Sen, A., and Mallouk, T. E., Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J., 11:22 (2005), 6462–70.Google Scholar
Paxton, W. F., K. C. Kistler, C. C. Olmeda et al., Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc., 126:41 (2004), 13424–31.CrossRefGoogle ScholarPubMed
Sundararajan, S., Lammert, P. E., Zudans, A. W., Crespi, V. H., and Sen, A., Catalytic motors for transport of colloidal cargo. Nano. Lett., 8:5 (2008), 1271–6.Google Scholar
Laocharoensuk, R., Burdick, J., and Wang, J., Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano, 2:5 (2008), 1069–75.Google Scholar
Demirok, U. K., Laocharoensuk, R., Manesh, K. M., and Wang, J., Ultrafast catalytic alloy nanomotors. Angew. Chem. Int., 47:48 (2008), 9349–51.Google Scholar
Kagan, D., P. Calvo-Marzal, S. Balasubramanian et al., Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. J. Am. Chem. Soc., 131:34 (2009), 12082–3.Google Scholar
Kagan, D., R. Laocharoensuk, M. Zimmerman et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small, 6:23 (2010), 2741–7.Google Scholar
Valadares, L. F., Y.-G. Tao, N. S. Zacharia et al., Catalytic nanomotors: Self-propelled sphere dimers. Small, 6:4 (2010), 565–72.Google Scholar
Baraban, L., D. Makarov, R. Streubel et al., Catalytic janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery. ACS Nano, 6:4 (2012), 3383–9.CrossRefGoogle ScholarPubMed
Fournier-Bidoz, S., Arsenault, A. C., Manners, I., and Ozin, G. A., Synthetic self-propelled nanorotors. Chem. Commun., 4 (2005), 441–3.Google Scholar
Gibbs, J. G. and Zhao, Y. P., Design and characterization of rotational multicomponent catalytic nanomotors. Small, 5:20 (2009), 2304–8.Google Scholar
Kline, T. R., Paxton, W. F., Mallouk, T. E., and Sen, A., Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int., 44:5 (2005), 744–6.Google Scholar
Burdick, J., Laocharoensuk, R., Wheat, P. M., Posner, J. D., and Wang, J., Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc., 130:26 (2008), 8164–5.Google Scholar
Sundararajan, S., Sengupta, S., Ibele, M. E., and Sen, A., Drop-off of colloidal cargo transported by catalytic Pt-Au nanomotors via photochemical stimuli. Small, 6:14 (2010), 1479–82.CrossRefGoogle ScholarPubMed
Catchmark, J. M., Subramanian, S., and Sen, A., Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small, 1:2 (2005), 202–6.Google Scholar
Wu, J., Balasubramanian, S., Kagan, D., Manesh, K. M., Campuzano, S., and Wang, J., Motion-based DNA detection using catalytic nanomotors. Nature Communications, 1 (2010), 36.Google Scholar
Ding, X. Y., S.-C. Lin, B. Kiraly et al., On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA., 109:28 (2012), 11105–9.Google Scholar
Franke, T., Braunmuller, S., Schmid, L., Wixforth, A., and Weitz, D. A., Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip, 10:6 (2010), 789–94.Google Scholar
Rezk, A. R., Qi, A., Friend, J. R., Li, W. H., and Yeo, L. Y., Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip, 12:4 (2012), 773–9.CrossRefGoogle ScholarPubMed
Shi, J. J., Mao, X. L., Ahmed, D., Colletti, A., and Huang, T. J., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip, 8:2 (2008), 221–3.Google Scholar
Juan, M. L., Righini, M., and Quidant, R., Plasmon nano-optical tweezers. Nat. Photon., 5:6 (2011), 349–56.Google Scholar
Quidant, R., Plasmonic tweezers: The strength of surface plasmons. MRS Bull., 37:8 (2012), 739–44.Google Scholar
Righini, M., Zelenina, A. S., Girard, C., and Quidant, R., Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys., 3:7 (2007), 477–80.CrossRefGoogle Scholar
Zhang, W. H., Huang, L. N., Santschi, C., and Martin, O. J. F., Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano. Lett., 10:3 (2010), 1006–11.Google Scholar
Pang, Y. J. and Gordon, R., Optical trapping of a single protein. Nano. Lett., 12:1 (2012), 402–6.Google Scholar
Torchilin, V. P., Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 197 (2010), 353.Google Scholar
Yasukawa, T., H. Kimura, Y. Tabata et al., Active drug targeting with immunoconjugates to choroidal neovascularization. Curr. Eye. Res., 21:6 (2000), 952–61.Google Scholar
Andrä, W., Häfeli, U. O., Hergt, R., and Misri, R., Application of magnetic particles in medicine and biology. In Kronmüller, H. and Parkin, S., eds., The Handbook of Magnetism and Advanced Magnetic Materials – Novel Materials (Chichester: John Wiley & Sons Ltd., 2007), pp. 2536–68.Google Scholar
Häfeli, U. O., Magnetic nano- and microparticles for targeted drug delivery. In Arshady, R. and Kono, K., eds., Smart Nanoparticles in Nanomedicine – The MML Series (London: Kentus Books, 2006), pp. 77126.Google Scholar
Lu, A. H., Salabas, E. L., and Schuth, F., Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 46:8 (2007), 1222–44.Google Scholar
Wang, X., Zhuang, J., Peng, Q., and Li, Y., A general strategy for nanocrystal synthesis, Nature, 437 (2005), 121–4.CrossRefGoogle ScholarPubMed
Redl, F. X., C. T. Black, G. C. Papaefthymiou et al., Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc., 126:44 (2004), 14583–99.Google Scholar
Sun, S., H. Zeng, D. B. Robinson et al., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126:1 (2004), 273–9.Google Scholar
Butter, K., Philipse, A. P., and Vroege, G. J., Synthesis and properties of iron ferrofluids. J. Magn. Magn. Mater., 252 (2002), 13.Google Scholar
Jana, N. R., Chen, Y., and Peng, X., Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater., 16:20 (2004), 3931–5.Google Scholar
Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., and Li, Y., Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl., 44:18 (2005), 2782–5.Google Scholar
Ge, S., X-Y. Shi, K. Sun et al., A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J. Phys. Chem. C Nanomater. Interfaces, 113:31 (2009), 13593–9.Google Scholar
Martínez, G., Malumbres, A., Mallada, R. et al., Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotechnology, 23:42 (2012), 425605.Google Scholar
Schneider, T., Zhao, H., Jackson, J. K., Chapman, G. H., Dykes, J., and Häfeli, U. O., Use of hydrodynamic flow focusing for the generation of biodegradable camptothecin-loaded polymer microspheres. J. Pharm. Sci., 97:11 (2008), 4943–54.Google Scholar
Sandhu, A., Handa, H., and Abe, M., Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology, 21:44 (2010), 442001.Google Scholar
Weissleder, R., D. D. Stark, B. L. Engelstad et al., Superparamagnetic iron oxide: Pharmacokinetics and toxicity. AJR Am. J. Roentgenol., 152:1 (1989), 167–73.Google Scholar
Häfeli, U. O., Aue, J., and Damani, J., The biocompatibility and toxicity of magnetic particles. In Zborowski, M. and Chalmers, J. J., eds., Magnetic Cell Separation (Amsterdam: Elsevier, 2007), pp. 163224.Google Scholar
Reddy, L. H., Arias, J. L., Nicolas, J., and Couvreur, P., Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 112:11 (2012), 5818–78.Google Scholar
Lopez, A., Gutierrez, L., and Lazaro, F. J., The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Phys. Med. Biol., 52:16 (2007), 5043–56.Google Scholar
Lopez, A., Gutierrez, L., and Lazaro, F. J., The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Phys. Med. Biol., 52:16 (2007), 5043–56.Google Scholar
Misri, R., Saatchi, K., Ng, S. S., Kumar, U., and Hafeli, U. O., Evaluation of (111)In labeled antibodies for SPECT imaging of mesothelin expressing tumors. Nucl. Med. Biol., 38:6 (2011), 885–96.Google Scholar
Misri, R., Meier, D., Yung, A. C., Kozlowski, P., and Hafeli, U. O., Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomedicine, 8:6 (2012), 1007–16.Google Scholar
Sakulkhu, U., Preparation of coated nanoparticles and investigation of their behavior in biological environment. Unpublished Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2013).Google Scholar
Zborowski, M., Magnetic cell separation (Laboratory Techniques in Biochemistry and Molecular Biology), (Amsterdam: Elsevier, 2007).Google Scholar
Zborowski, M. and Chalmers, J. J., Rarecell separation and analysis by magnetic sorting. Anal. Chem., 83:21 (2011), 8050–6.Google Scholar
Kim, E., Lee, K., Huh, Y-M., and Haam, S., Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy. J. Mater. Chem. B, 1 (2013), 729–39.Google Scholar
Yang, J., C-H. Lee, J. Park et al., Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J. Mater. Chem., 17 (2007), 2695–9.Google Scholar
Kaittanis, C., Santra, S., and Perez, J. M., Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Am. Chem. Soc., 131:35 (2009), 12780–91.Google Scholar
Gaster, R. S., D. A. Hall, C. H. Nielsen et al., Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med., 15:11 (2009), 1327–32.Google Scholar
Puertas, S., Moros, M., Fernández-Pacheco, R., Ibarra, M. R., Grazú, V., and Fuente, J. M. d. l., Designing novel nano-immunoassays: Antibody orientation versus sensitivity. J. Phys. D: Appl. Phys., 43:47 (2010), 474012.CrossRefGoogle Scholar
Puertas, S., P. Batalla, M. Moros et al., Taking advantage of unspecific interactions to produce highly active magnetic nanoparticle-antibody conjugates. ACS Nano, 5:6 (2011), 4521–8.Google Scholar
Misri, R., Saatchi, K., and Hafeli, U. O., Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomedicine (Lond.), 7:5 (2012), 719–33.CrossRefGoogle ScholarPubMed
Vazquez, M., Luna, C., Morales, M. P., Sanz, R., Serna, C. J., and Mijangos, C., Magnetic nanoparticles: Synthesis, ordering and properties. Physica B, 354 (2004), 71–9.Google Scholar
Gold, L., Brown, D., He, Y., Shtatland, T., Singer, B. S., and Wu, Y., From oligonucleotide shapes to genomic SELEX: Novel biological regulatory loops. Proc. Natl. Acad. Sci. USA., 94:1 (1997), 5964.Google Scholar
Gold, L. and Ringquist, S., Systematic evolution of ligands by exponential enrichment: Solution SELEX, USA Patent 5567588 (1995).Google Scholar
Farokhzad, O. C., Karp, J. M., and Langer, R., Nanoparticle-aptamer bioconjugates for cancer targeting. Expert. Opin. Drug Del., 3:3 (2006), 311–24.Google Scholar
Gu, F., L-F. Zhang, B. A. Teply et al., Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA., 105:7 (2008), 2586–91.Google Scholar
Wang, A. Z. et al., Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 3:9 (2008), 1311–5.Google Scholar
Chen, H. W., C. D. Medley, K. Sefah et al., Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 3:6 (2008), 9911001.Google Scholar
Bamrungsap, S., Shukoor, M. I., Chen, T., Sefah, K., and Tan, W., Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal. Chem., 83:20 (2011), 7795–9.Google Scholar
Bamrungsap, S., T. Chen, M. I. Shukoor et al., Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano, 6:5 (2012), 3974–81.Google Scholar
Lim, E. K., B. Kim, Y. Choi et al., Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin αvβ3 via magnetic resonance imaging. J. Biomed. Mater. Res. A, 102:1(2014), 4959.Google Scholar
Lopez-Colon, D., Jimenez, E., You, M., Gulbakan, B., and Tan, W., Aptamers: Turning the spotlight on cells. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 3:3 (2011), 328–40.Google Scholar
Mann, S., Hannington, J. P., and Williams, R. J. P., Phospholipid vesicles as a model system for biomineralization. Nature, 324 (1986), 565–7.Google Scholar
Meldrum, F. C., Heywood, B. R., and Mann, S., Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science, 257:5069 (1992), 522–3.Google Scholar
Tresilwised, N., P. Pithayanukul, O. Mykhaylyk et al., Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol. Pharm., 7:4 (2010), 1069–89.Google Scholar
Huh, Y-M., E-S. Lee, J-H. Lee et al., Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater., 19:20 (2007), 3109–12.CrossRefGoogle Scholar
Nishimura, K., Hasegawa, M., Ogura, Y., Nishi, T., Kataoka, K., and Handa, H., 4°C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces. J. Appl. Phys., 91:10 (2002), 8555–6.Google Scholar
Nishio, K., N. Gokon, M. Hasegawa et al., Identification of a chemical substructure that is immobilized to ferrite nanoparticles (FP). Colloids Surf. B, 54:2 (2007), 249–53.Google Scholar
Hatanaka, S., Matsushita, N., Abe, M., Nishimura, K., Hasegawa, M., and Handa, H., Direct immobilization of fluorescent dyes onto ferrite nanoparticles during their synthesis from aqueous solution. J. Appl. Phys., 93:10 (2003), 7569–70.Google Scholar
Vanderhoff, J. W., Micale, F. J., and Krumrine, P. H., Continuous flow electrophoresis. In Righetti, P. G., Oss, C. J. Van, and Vanderhoff, J. W., eds., Electrokinetic Separation Methods (Amsterdam: Elsevier/North-Holland Biomedical Press, 1979), pp. 121–41.Google Scholar
Zborowski, M., Magnetophoresis. In Zborowski, M. and Chalmers, J. J., eds., Magnetic Cell Separation (Amsterdam: Elsevier, 2007), pp. 105–18.Google Scholar
Iacob, G., Rotariu, O., Strachan, N. J. C., and Häfeli, U. O., Magnetizable needles and wires – modeling an efficient way to target magnetic microspheres in vivo. Biorheology, 41:5 (2004), 599612.Google Scholar
Rotariu, O., Iacob, G., Strachan, N. J. C., and Chiriac, H., Simulating the embolization of blood vessels using magnetic microparticles and acupuncture needle in a magnetic field. Biotechnol. Progr., 20 (2004), 299305.Google Scholar
Chen, H., Ebner, A. D., Rosengart, A. J., Kaminski, M. D., and Ritter, J. A., Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation. J. Magn. Magn. Mater., 284 (2004), 181–94.Google Scholar
Forbes, Z. G., Yellen, B. B., Halverson, D. S., Fridman, G., Barbee, K. A., and Friedman, G., Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans. Biomed. Eng., 55:2 (2008), 643–9.Google Scholar
Furlani, E. P. and Ng, K. C., Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E, 73:6 (2006) 061919.Google Scholar
Gerber, R., Takayasu, M., and Friedlaender, F. J., Generalization of HGMS theory: The capture of ultra-fine particles. IEEE Trans. Magn., 19 (1983), 2115–7.Google Scholar
Takayasu, M., Gerber, R., and Friedlaender, F. J., Magnetic separation of submicron particles. IEEE Trans. Magn., 19:5 (1983), 2112–4.Google Scholar
Goll, D. and Kronmüller, H., High-performance permanent magnets. Naturwissenschaften, 87 (2000), 423–38.Google Scholar
Avilés, M. O., Chen, H., Ebner, A. D., Rosengart, A. J., Kaminski, M. D., and Ritter, J. A., In vitro study of ferromagnetic stents for implant assisted magnetic drug targeting. J. Magn. Magn. Mater., 311:1 (2007), 306311.CrossRefGoogle Scholar
Polyak, B., I. Fishbein, M. Chorny et al., High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl. Acad. Sci. USA., 105:2 (2008), 698703.Google Scholar
Hournkumnuard, K. and Natenapit, M., Magnetic drug targeting by ferromagnetic microwires implanted within blood vessels. Med. Phys., 40:6 (2013), 062302.Google Scholar
McCloskey, K. E., Chalmers, J. J., and Zborowski, M., Magnetophoretic mobilities correlate to antibody binding capacities. Cytometry, 40:4 (2000), 307–15.Google Scholar
Moore, L. R., M. Zborowski, M. Nakamura et al., The use of magnetite-doped polymeric microspheres in calibrating cell tracking velocimetry. J. Biochem. Bioph. Meth., 44:1–2 (2000), 115–30.Google Scholar
Nakamura, M., Zborowski, M., Lasky, L. C., Margel, S., and Chalmers, J. J., Theoretical and experimental analysis of the accuracy and reproducibility of cell tracking velocimetry. Exp. Fluids, 30 (2001), 371–80.Google Scholar
Schneider, T., L. R. Moore, Y. Jing et al., Continuous flow magnetic cell fractionation based on antigen expression level. J. Biochem. Bioph. Meth., 68:1 (2006), 121.Google Scholar
Schneider, T., Karl, S., Moore, L. R., Chalmers, J. J., Williams, P. S., and Zborowski, M., Sequential CD34 cell fractionation by dipole magnetophoresis. Analyst, 135:1 (2010), 6270.Google Scholar
Robinson, A. L., New magnets enhance synchrotron radiation. Science, 219:4590 (1983), 1309–11.Google Scholar
Hayden, M. E. and Häfeli, U. O., “Magnetic bandages” for targeted delivery of therapeutic agents. J. Phys. Condens. Mat., 18:38 (2006), S2877–91.Google Scholar
Häfeli, U. O., Gilmour, K., Zhou, A., Lee, S., and Hayden, M. E., Modeling of magnetic bandages for drug targeting: Button vs. Halbach arrays. J. Magn. Magn. Mater., 311:1 (2007), 323–9.Google Scholar
Hoyos, M., Moore, L., Williams, P. S., and Zborowski, M., The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species. J. Magn. Magn. Mater., 323:10 (2011), 1384–8.Google Scholar
Ijiri, Y., Poudel, C., Williams, P. S., Moore, L. R., Orita, T., and Zborowski, M., Inverted linear halbach array for separation of magnetic nanoparticles. IEEE Trans. Magn., 49:7 (2013) 3449–52.Google Scholar
Sarwar, A., Nemirovski, A., and Shapiro, B., Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles. J. Magn. Magn. Mater., 324:5 (2012), 742–54.Google Scholar
Krause, K., U. Adamu, M. Weber et al., German stereotaxis-guided percutaneous coronary intervention study group: First multicenter real world experience. Clin. Res. Cardiol., 98:9 (2009), 541–7.Google Scholar
Carpi, F., Kastelein, N., Talcott, M., and Pappone, C., Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans. Biomed. Eng., 58:2 (2011), 231–4.Google Scholar
Rinaldi, C., Franklin, T., Zahn, M., and Cader, T., Magnetic nanoparticles in fluid suspension: ferrofluid applications. In Schwarz, J. A., Contescu, C. I., and Putyera, K., eds., Encyclopedia of Nanoscience and Nanotechnology (Oxford: Taylor & Francis Group Ltd., 2004), pp. 1731–48.Google Scholar
Dutz, S. and Hergt, R., Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperther., 29:8 (2013), 790800.Google Scholar
Hennecke, A.. MagForce AG receives BfArM approval to start the post-marketing study in glioblastoma with NanoTherm® therapy, (2013). http://hugin.info/143761/R/1691021/555244.pdfGoogle Scholar
Jordan, A., R. Scholz, K. Maier-Hauff et al., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater., 225 (2001), 118–26.Google Scholar
Johannsen, M., U. Gneveckow, L. Eckelt et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperther., 21:7 (2005), 637–47.Google Scholar
Johannsen, M., U. Gneveckow, K. Taymoorian et al., Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int. J. Hyperthermia, 23:3 (2007), 315–23.Google Scholar
Johannsen, M., U. Gneveckow, B. Thiesen et al., Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol., 52:6 (2007), 1653–61.Google Scholar
Maier-Hauff, K., R. Rothe, R. Scholz et al., Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol., 81:1 (2007), 5360.Google Scholar
Johannsen, M., Thiesen, B., Wust, P., and Jordan, A., Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperther., 26:8 (2010), 790–5.Google Scholar
van Landeghem, F. K., K. Maier-Hauff, A. Jordan et al., Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials, 30:1 (2009), 52–7.Google Scholar
Krishnan, S., Diagaradjane, P., and Cho, S. H., Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. Int. J. Hyperther., 26:8 (2010), 775–89.Google Scholar
Maier-Hauff, K., F. Ulrich, D. Nestler et al., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 103:2 (2011), 317–24.Google Scholar
Nakamura, T., Konno, K., Moroné, T., Tsuya, N., and Hatano, M., Magneto-medicine: Biological aspects of ferromagnetic fine particles. J. Appl. Phys., 42:4 (1971), 1320–44.Google Scholar
Senyei, A. E. and Widder, K. J., Drug targeting: Magnetically responsive albumin microspheres – a review of the system to date. Gynecol. Oncol., 12:1 (1981), 113.Google Scholar
Lim, E. K., Huh, Y. M., Yang, J., Lee, K., Suh, J. S., and Haam, S., pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater., 23:21 (2011), 2436–42.Google Scholar
Nowicka, A. M., A. Kowalczyk, A. Jarzebinska et al., Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Biomacromolecules, 14:3 (2013), 828–33.Google Scholar
Chorny, M., I. Fishbein, B. B. Yellen et al., Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl. Acad. Sci. USA., 107:18 (2010), 8346–51.Google Scholar
Li, M., Neoh, K. G., Wang, R., Zong, B. Y., Tan, J. Y., and Kang, E. T., Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe(3)O(4) magnetic nanoparticles for targeted anticancer effects. Eur. J. Pharm. Sci., 48:1–2 (2013), 111–20.Google Scholar
Bleul, R., R. Thiermann, G. U. Marten et al., Continuously manufactured magnetic polymersomes: A versatile tool (not only) for targeted cancer therapy. Nanoscale, 5:23 (2013), 11385–93.Google Scholar
Alexiou, C., R. J. Schmid, R. Jurgons et al., Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur. Biophys. J., 35:5 (2006), 446–50.Google Scholar
Hsieh, D. S., Langer, R., and Folkman, J., Magnetic modulation of release of macromolecules from polymers. Proc. Natl. Acad. Sci. USA., 78:3 (1981), 1863–7.Google Scholar
Edelman, E. R., Kost, J., Bobeck, H., and Langer, R., Regulation of drug release from polymer matrices by oscillating magnetic fields. J. Biomed. Mater. Res., 19:1 (1985), 6783.Google Scholar
Edelman, E. R., Fiorino, A., Grodzinsky, A., and Langer, R., Mechanical deformation of polymer matrix controlled release devices modulates drug release. J. Biomed. Mater. Res., 26:12 (1985), 1619–31.Google Scholar
Pirmoradi, F. N., Jackson, J. K., Burt, H. M., and Chiao, M., A magnetically controlled MEMS device for drug delivery: Design, fabrication, and testing. Lab Chip, 11:18 (2011), 3072–80.Google Scholar
Pirmoradi, F. N., Jackson, J. K., Burt, H. M., and Chiao, M., On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip, 11:16 (2011), 2744–52.Google Scholar
Dengler, M., K. Saatchi, J. P. Dailey et al., Targeted delivery of magnetic cobalt nanoparticles to the eye following systemic administration. AIP Conf. Proc., 1311 (2010), 329–36.Google Scholar
Yanai, A., Häfeli, U. O., Metcalfe, A. L. et al., Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant., 21:6 (2012), 1137–48.Google Scholar
Gregory-Evans, K., Bashar, A. E., and Laver, C., Use of magnetism to enhance cell transplantation success in regenerative medicine. Regen. Med., 8:1 (2013), 13.Google Scholar
Bashar, A. E., A. Metcalfe, A. Yanai et al., Influence of iron oxide nanoparticles on innate and genetically modified secretion profiles of mesenchymal stem cells. IEEE Trans. Magn., 49:1 (2013), 389393.Google Scholar
Plank, C., Anton, M., Rudolph, C., Rosenecker, J., and Krotz, F., Enhancing and targeting nucleic acid delivery by magnetic force. Expert. Opin. Biol. Ther., 3:5 (2003), 745–58.Google Scholar
Mykhaylyk, O., Antequera, Y. S., Vlaskou, D., and Plank, C., Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc., 2:10 (2007), 2391–411.Google Scholar
Jenkins, S. I., Pickard, M. R., and Chari, D. M., Magnetic nanoparticle mediated gene delivery in oligodendroglial cells: A comparison of differentiated cells versus precursor forms. Nano Life, 3:2 (2012), 1243001.CrossRefGoogle Scholar
Vlaskou, D. et al., Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery. Adv. Funct. Mater., 20 (2010), 38813894.Google Scholar
Riegler, J., Wells, J. A., Kyrtatos, P. G., Price, A. N., Pankhurst, Q. A., and Lythgoe, M. F., Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials, 31:20 (2010), 5366–71.Google Scholar
Honig, D., DeRouchey, J., Jungmann, R., Koch, C., Plank, C., and Radler, J. O., Biophysical characterization of copolymer-protected gene vectors. Biomacromolecules, 11:7 (2010), 1802–9.Google Scholar
Mayes, E., Douek, M., and Pankhurst, Q. A., Surgical magnetic systems and tracers for cancer staging. In Thanh, N. T. K., ed. Magnetic Nanoparticles – From Fabrication to Clinical Applications (Boca Raton: CRC Press – Taylor & Francis Group, 2012) pp. 541–55.Google Scholar
Krishnan, K. M., Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn., 46:7 (2010), 2523–58.Google Scholar
Duncan, R. and Gaspar, R., Nanomedicine(s) under the microscope. Mol. Pharm., 8:6 (2011), 2101–41.Google Scholar
Svenson, S., Theranostics: Are we there yet?, Mol. Pharmaceutics, 10:3 (2013), 848–56.Google Scholar
Zhou, J., Zhang, J., and Gao, W., Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, beta-glucosidase-conjugated iron oxide nanoparticles. Int. J. Nanomed., 9 (2014), 2905–17.Google Scholar
Arias, J. L., Gallardo, V., Ruiz, M. A., and Delgado, A. V., Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur. J. Pharm. Biopharm., 69:1 (2008), 5463.Google Scholar
Arias, J. L., Lopez-Viota, M., Delgado, A. V., and Ruiz, M. A., Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf. B, 77:1 (2010), 111–6.Google Scholar
Hua, M. Y., H. L. Liu, H. W. Yang et al., The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials, 32:2 (2011), 516–27.CrossRefGoogle ScholarPubMed
Qu, J. B., Shao, H. H., Jing, G. L., and Huang, F., PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: Preparation, characterization and cytotoxicity studies. Colloids Surf. B, 102 (2013), 3744.Google Scholar
Ding, G. B., Wang, Y., Guo, Y., and Xu, L., Integrin alpha(V)beta(3)-targeted magnetic nanohybrids with enhanced antitumor efficacy, cell cycle arrest ability, and encouraging anti-cell-migration activity. ACS Appl. Mater. Interfaces, 6:19 (2014), 16643–52.Google Scholar
Li, F. R., Yan, W. H., Guo, Y. H., Qi, H., and Zhou, H. X., Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int. J. Hyperther., 25:5 (2009), 383–91.Google Scholar
Saboktakin, M. R., Tabatabaie, R. M., Amini, F. S., Maharramov, A., and Ramazanov, M. A., Synthesis and in-vitro photodynamic studies of the superparamagnetic chitosan hydrogel/chlorin E6 nanocarriers. Med. Chem., 9:1 (2013), 112–7.Google Scholar
Gupta, R. and Bajpai, A. K., Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites. J. Biomater. Sci. Polym. Ed., 22:7 (2011), 893918.Google Scholar
Unterweger, H., R. Tietze, C. Janko et al., Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. Int. J. Nanomed., 9 (2014), 3659–76.Google Scholar
Manju, S. and Sreenivasan, K., Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: Blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir, 27:23 (2011), 14489–96.Google Scholar
Mikhaylova, M., Stasinopoulos, I., Kato, Y., Artemov, D., and Bhujwalla, Z. M., Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther., 16:3 (2009), 217–26.Google Scholar
Du, X., K. Chen, S. Kuriyavar et al., Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol. Neurotol., 34:1 (2013), 41–7.Google Scholar
Ling, Y., Wei, K., Luo, Y., Gao, X., and Zhong, S., Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials, 32:29 (2011), 7139–50.Google Scholar
Gao, X., Y. Luo, Y. Wang et al., Prostate stem cell antigen-targeted nanoparticles with dual functional properties: In vivo imaging and cancer chemotherapy. Int. J. Nanomed., 7 (2012), 4037–51.Google Scholar
Mi, Y., Liu, X., Zhao, J., Ding, J., and Feng, S. S., Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials, 33:30 (2012), 7519–29.Google Scholar
Guo, M., Que, C., Wang, C., Liu, X., Yan, H., and Liu, K., Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials, 32:1 (2011), 185–94.Google Scholar
Nasongkla, N., E. Bey, J. Ren et al., Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett., 6:11 (2006), 2427–30.Google Scholar
Zhang, J. and Misra, R. D., Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomater., 3:6 (2007), 838–50.Google Scholar
Chen, L. B., Zhang, F., and Wang, C. C., Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Small, 5:5 (2009), 621–8.Google Scholar
Purushotham, S., P. E. J. Chang, H. Rumpel et al., Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology, 20:30 (2009), 305101.Google Scholar
Purushotham, S. and Ramanujan, R. V., Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater., 6:2 (2010), 502–10.Google Scholar
Pradhan, P., J. Giri, F. Rieken et al., Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 142:1 (2010), 108–21.CrossRefGoogle ScholarPubMed
Rahimi, M., A. Wadajkar, K. Subramanian et al., In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine, 6:5 (2010), 672–80.Google Scholar
Yallapu, M. M., Foy, S. P., Jain, T. K., and Labhasetwar, V., PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res., 27:11 (2010), 2283–95.Google Scholar
Yang, X., J. J. Grailer, I. J. Rowland et al., Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials, 31:34 (2010), 9065–73.Google Scholar
Zou, P., Y. Yu, Y. A. Wang et al., Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol. Pharm., 7:6 (2010), 1974–84.Google Scholar
Chang, Y., X. Meng, Y. Zhao et al., Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J. Colloid Interface Sci., 363:1 (2011), 403–9.Google Scholar
Chao, X., L. Guo, Y. Zhao et al., PEG-modified GoldMag nanoparticles (PGMNs) combined with the magnetic field for local drug delivery. J. Drug Target., 19:3 (2011), 161–70.Google Scholar
Chen, T., M. I. Shukoor, R. Wang et al., Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano, 5:10 (2011), 7866–73.Google Scholar
Fan, T., Li, M., Wu, X., and Wu, Y., Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloids Surf. B, 88:2 (2011), 593600.Google Scholar
Liao, C., Sun, Q., Liang, B., Shen, J., and Shuai, X., Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur. J. Radiol., 80:3 (2011), 699705.Google Scholar
Yang, X., H. Hong, J. J. Grailer et al., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 32:17 (2011), 4151–60.Google Scholar
Akbarzadeh, A., Mikaeili, H., Zarghami, N., Mohammad, R., Barkhordari, A., and Davaran, S., Preparation and in vitro evaluation of doxorubicin-loaded Fe(3)O(4) magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomed., 7 (2012), 511–26.Google Scholar
Allard-Vannier, E., S. Cohen-Jonathan, J. Gautier et al., Pegylated magnetic nanocarriers for doxorubicin delivery: A quantitative determination of stealthiness in vitro and in vivo. Eur. J. Pharm. Biopharm., 81:3 (2012), 498505.Google Scholar
Gautier, J., E. Munnier, A. Paillard et al., A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int. J. Pharm., 423:1 (2012), 1625.Google Scholar
Huang, C., Z. Tang, Y. Zhou et al., Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Pharm., 429:1–2 (2012), 113–22.Google Scholar
Kaaki, K., Hervé-Aubert, K., Chiper, M. et al., Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 28:2 (2012), 1496–505.Google Scholar
Li, D., Tang, J., Guo, J., Wang, S., Chaudhary, D., and Wang, C., Hollow-core magnetic colloidal nanocrystal clusters with ligand-exchanged surface modification as delivery vehicles for targeted and stimuli-responsive drug release. Chemistry, 18:51 (2012), 16517–24.Google Scholar
Wang, H., S. Wang, Z. Liao et al., Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int. J. Pharm., 430:1–2 (2012), 342–9.Google Scholar
Chiang, W. H., W. C. Huang, C. W. Chang et al., Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J. Control. Release, 168:3 (2013), 280–8.Google Scholar
Glover, A. L., J. B. Bennett, J. S. Pritchett et al., Magnetic heating of iron oxide nanoparticles and magnetic micelles for cancer therapy. IEEE Trans. Magn., 49:1 (2013), 231235.Google Scholar
Pourjavadi, A., Hosseini, S. H., Alizadeh, M., and Bennett, C., Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin. Colloids Surf. B, 116C (2013), 4954.Google Scholar
Sahoo, B., Devi, K. S., Banerjee, R., Maiti, T. K., Pramanik, P., and Dhara, D., Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl. Mater. Interfaces, 5:9 (2013), 3884–93.Google Scholar
Ao, L., B. Wang, P. Liu et al., A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale, 6:18 (2014), 10710–6.Google Scholar
Davaran, S., S. Alimirzalu, K. Nejati-Koshki et al., Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on Poly(N-isopropylacrylamide) for anti-cancer drug delivery. Asian Pac. J. Cancer Prev., 15:1 (2014), 4954.Google Scholar
Park, J. H., H. J. Cho, H. Y. Yoon et al., Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release, 174 (2014), 98108.Google Scholar
Sadighian, S., Rostamizadeh, K., Hosseini-Monfared, H., and Hamidi, M., Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf. B, 117 (2014), 406–13.Google Scholar
Scialabba, C., Licciardi, M., Mauro, N., Rocco, F., Ceruti, M., and Giammona, G., Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm., 88:3 (2014), 695705.Google Scholar
Tian, Y., Jiang, X., Chen, X., Shao, Z., and Yang, W., Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv. Mater., 26:43 (2014), 7393–8.Google Scholar
Unsoy, G., Khodadust, R., Yalcin, S., Mutlu, P., and Gunduz, U., Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci., 62 (2014), 243–50.Google Scholar
Shen, J. M., F. Y. Gao, T. Yin et al., cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol. Res., 70:1 (2013), 102–15.Google Scholar
Wadajkar, A. S. et al., Multifunctional particles for melanoma-targeted drug delivery. Acta. Biomater., 8:8 (2012), 29963004.Google Scholar
Shevtsov, M. A., B. P. Nikolaev, L. Y. Yakovleva et al., Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int. J. Nanomed., 9 (2014), 273–87.Google Scholar
Su, W. et al., PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int. J. Pharm., 426:1–2 (2012), 170–81.Google Scholar
Yuk, S. H. et al., Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules, 12:6 (2011), 2335–43.Google Scholar
Zhang, J., Shin, M. C., and Yang, V. C., Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm. Res., 31:3 (2014), 579–92.Google Scholar
Cinteza, L. O., Ohulchanskyy, T. Y., Sahoo, Y., Bergey, E. J., Pandey, R. K., and Prasad, P. N., Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol. Pharm., 3:4 (2006), 415–23.Google Scholar
Shen, J. M., L. Xu, Y. Lu et al., Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements. Int. J. Pharm., 427:2 (2012), 400–9.Google Scholar
Chen, S., Y. Li, C. Guo et al., Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir, 23:25 (2007), 12669–76.Google Scholar
Cheong, S-J., C-M. Lee, S-L. Kim et al., Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int. J. Pharm., 372:1–2 (2009), 169–76.Google Scholar
Ragheb, R. R., D. Kim, A. Bandyopadhyay et al., Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med., 70:6 (2013), 1748–60.Google Scholar
Krukemeyer, M. G., Krenn, V., Jakobs, M., and Wagner, W., Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets – sarcoma treatment in progress. J. Drug Target., 20:2 (2012), 185–93.Google Scholar
Majd, M. Heidari et al., Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J. Drug Target., 21:4 (2013), 328–40.Google Scholar
Ciofani, G., Genchi, G. G., Guardia, P., Mazzolai, B., Mattoli, V., and Bandiera, A., Recombinant human elastin-like magnetic microparticles for drug delivery and targeting. Macromol. Biosci., 14:5 (2014), 632–42.Google Scholar
Jiang, X., X. Sha, H. Xin et al., Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials, 32:35 (2011), 9457–69.Google Scholar
Luo, B., S. Xu, A. Luo et al., Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano, 5:2 (2011), 1428–35.Google Scholar
Chen, Y. C., Lee, W. F., Tsai, H. H., and Hsieh, W. Y., Paclitaxel and iron oxide loaded multifunctional nanoparticles for chemotherapy, fluorescence properties, and magnetic resonance imaging. J. Biomed. Mater. Res. A, 100:5 (2012), 1279–92.Google Scholar
Filippousi, M., S. A. Papadimitriou, D. N. Bikiaris et al., Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int. J. Pharm., 448:1 (2013), 221–30.Google Scholar
Shen, J. M., Yin, T., Tian, X. Z., Gao, F. Y., and Xu, S., Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. ACS Appl. Mater. Interfaces, 5:15 (2013), 7014–24.Google Scholar
Jiao, Y., Sun, Y., Tang, X., Ren, Q., and Yang, W., Tumor- targeting multifunctional rattle-type theranostic nanoparticles for MRI/NIRF bimodal imaging and delivery of hydrophobic drugs. Small, 11:16 (2015). 1962–74Google Scholar
Singh, A., Dilnawaz, F., Mewar, S., Sharma, U., Jagannathan, N. R., and Sahoo, S. K., Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl. Mater. Interfaces, 3:3 (2011), 842–56.Google Scholar
Oliveira, R. R., Ferreira, F. S., Cintra, E. R., Branquinho, L. C., Bakuzis, A. F., and Lima, E. M., Magnetic nanoparticles and rapamycin encapsulated into polymeric nanocarriers. J. Biomed. Nanotechnol., 8:2 (2012), 193201.Google Scholar
Kirthivasan, B., Singh, D., Bommana, M. M., Raut, S. L., Squillante, E., and Sadoqi, M., Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system. Nanotechnology, 23:25 (2012), 255102.Google Scholar
Namiki, Y., T. Namiki, H. Yoshida et al., A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol., 4:9 (2009), 598606.Google Scholar
Kumar, S., Jana, A. K., Dhamija, I., and Maiti, M., Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J. Drug Target., 22:2 (2014), 123–37.Google Scholar
Chen, Y., W. Wang, G. Lian et al., Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int. J. Nanomed., 7 (2012), 359–68.Google Scholar
Majd, M. Heidari, D. Asgari, J. Barar et al., Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B, 106 (2013), 117–25.Google Scholar
Kempe, M., H. Kempe, I. Snowball et al., The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials, 31:36 (2010), 9499–510.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×