Skip to main content Accessibility help
×
Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-06T05:43:31.122Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

4 - Manipulation

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11:5 (1986), 288–90.CrossRefGoogle ScholarPubMed
Neuman, K. C. and Nagy, A., Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods, 5:6 (2008), 491505.CrossRefGoogle ScholarPubMed
Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K., and Block, S. M., Characterization of photodamage to Escherichia coli in optical traps. Biophys. J., 77:5(1999), 2856–63.CrossRefGoogle ScholarPubMed
Sacconi, L., Tolic-Norrelykke, I. M., Stringari, C., Antolini, R., and Pavone, F. S., Optical micromanipulations inside yeast cells. Appl. Opt., 44:11 (2005), 2001–7.CrossRefGoogle ScholarPubMed
Cherney, D. P., Bridges, T. E., and Harris, J. M., Optical trapping of unilamellar phospholipid vesicles: Investigation of the effect of optical forces on the lipid membrane shape by confocal-raman microscopy. Anal. Chem., 76:17 (2004), 4920–28.CrossRefGoogle ScholarPubMed
Pauzauskie, P. J., Radenovic, A., Trepagnier, E., Shroff, H., Yang, P. D., and Liphardt, J., Optical trapping and integration of semiconductor nanowire assemblies in water. Nat. Mater., 5:2 (2006), 97101.CrossRefGoogle ScholarPubMed
Agarwal, R., Ladavac, K., Roichman, Y., Yu, G. H., Lieber, C. M., and Grier, D. G., Manipulation and assembly of nanowires with holographic optical traps. Opt. Express, 13:22 (2005), 8906–12.CrossRefGoogle ScholarPubMed
La Porta, A. and Wang, M. D., Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92:19 (2004), 190801.CrossRefGoogle ScholarPubMed
Block, S. M., Goldstein, L. S. B., and Schnapp, B. J., Bead movement by single kinesin molecules studied with optical tweezers. Nature, 348:6299 (1990), 348–52.CrossRefGoogle ScholarPubMed
Svoboda, K. and Block, S. M., Force and velocity measured for single kinesin molecules. Cell, 77:5 (1994), 773–84.CrossRefGoogle ScholarPubMed
Mammen, M., Helmerson, K., Kishore, R., Choi, S. K., Phillips, W. D., and Whitesides, G. M., Optically controlled collisions of biological objects to evaluate potent polyvalent inhibitors of virus-cell adhesion. Chem. Biol., 3:9 (1996), 757–63.CrossRefGoogle ScholarPubMed
Litvinov, R. I., Shuman, H., Bennett, J. S., and Weisel, J. W., Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl. Acad. Sci. USA, 99:11 (2002), 7426–31.CrossRefGoogle ScholarPubMed
Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., and Block, S. M., Force and velocity measured for single molecules of RNA polymerase. Science, 282:5390 (1998), 902–7.CrossRefGoogle ScholarPubMed
Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., and Block, S. M., Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115:4 (2003), 437–47.CrossRefGoogle ScholarPubMed
Shaevitz, J. W., Abbondanzieri, E. A., Landick, R., and Block, S. M., Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426:6967 (2003), 684–7.CrossRefGoogle ScholarPubMed
Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., and Block, S. M., Direct observation of base-pair stepping by RNA polymerase. Nature, 438:7067 (2005), 460–5.CrossRefGoogle ScholarPubMed
Moffitt, J. R., Chemla, Y. R., Smith, S. B., and Bustamante, C., Recent advances in optical tweezers. Annu. Rev. Biochem., 77 (2008), 205–28.CrossRefGoogle ScholarPubMed
Hawes, C., Osterrieder, A., Sparkes, I. A., and Ketelaar, T., Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Curr. Opin. Plant Biol., 13:6 (2010), 731–5.CrossRefGoogle ScholarPubMed
Muller, D. J., Helenius, J., Alsteens, D., and Dufrene, Y. F., Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol., 5:6 (2009), 383–90.CrossRefGoogle ScholarPubMed
Zhang, H. and Liu, K. K., Optical tweezers for single cells. J. R. Soc. Interface, 5:24 (2008), 671–90.CrossRefGoogle ScholarPubMed
Andersson, M., Axner, O., Almqvist, F., Uhlin, B. E., and Fallman, E., Physical properties of biopolymers assessed by optical tweezers: Analysis of folding and refolding of bacterial pili. ChemPhysChem, 9:2 (2008), 221–35.Google ScholarPubMed
Deniz, A. A., Mukhopadhyay, S., and Lemke, E. A., Single-molecule biophysics: At the interface of biology, physics and chemistry. J. R. Soc. Interface, 5:18 (2008), 1545.CrossRefGoogle ScholarPubMed
Herbert, K. M., Greenleaf, W. J., and Block, S. M., Single-molecule studies of RNA polymerase: Motoring along. Annu. Rev. Biochem., 77 (2008), 149–76.CrossRefGoogle ScholarPubMed
De Vlaminck, I. and Dekker, C., Recent advances in magnetic tweezers. Annu. Rev. Biophys., 41 (2012), 453–72.CrossRefGoogle ScholarPubMed
Tokarev, A., Aprelev, A., Zakharov, M. N., Korneva, G., Gogotsi, Y., and Kornev, K. G., Multifunctional magnetic rotator for micro and nanorheological studies. Rev. Sci. Instrum., 83:6 (2012), 065110.CrossRefGoogle ScholarPubMed
Chen, M., Sun, L., Bonevich, J. E., Reich, D. H., Chien, C. L., and Searson, P. C., Tuning the response of magnetic suspensions. Appl. Phys. Lett., 82:19 (2003), 3310–2.CrossRefGoogle Scholar
Chien, C. L., Sun, L., Tanase, M., et al., Electrodeposited magnetic nanowires: Arrays, field-induced assembly, and surface functionalization. J. Magn. Magn. Mater., 249:1–2 (2002), 146–55.CrossRefGoogle Scholar
Barbic, M., Magnetic wires in MEMS and bio-medical applications. J. Magn. Magn. Mater., 249:1–2 (2002), 357–67.CrossRefGoogle Scholar
Hultgren, A., Tanase, M., Chen, C. S., Meyer, G. J., and Reich, D. H., Cell manipulation using magnetic nanowires. J. Appl. Phys., 93:10 (2003), 7554–6.CrossRefGoogle Scholar
Bentley, A. K., Trethewey, J. S., Ellis, A. B., and Crone, W. C., Magnetic manipulation of copper-tin nanowires capped with nickel ends. Nano. Lett., 4:3 (2004), 487–90.CrossRefGoogle Scholar
Shevkoplyas, S. S., Siegel, A. C., Westervelt, R. M., Prentiss, M. G., and Whitesides, G. M., The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip, 7:10 (2007), 1294–302.CrossRefGoogle Scholar
Neuman, K. C., Lionnet, T., and Allemand, J. F., Single-molecule micromanipulation techniques. Annu. Rev. Mater. Res., 37 (2007), 3367.CrossRefGoogle Scholar
Gosse, C. and Croquette, V., Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophys. J., 82:6 (2002), 3314–29.CrossRefGoogle ScholarPubMed
Charvin, G., Strick, T. R., Bensimon, D., and Croquette, V., Tracking topoisomerase activity at the single-molecule level. Annu. Rev. Biophys. Biomol. Struct., 34 (2005), 201–19.CrossRefGoogle ScholarPubMed
Strick, T. R., Croquette, V., and Bensimon, D., Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature, 404:6780(2000), 901–4.CrossRefGoogle ScholarPubMed
Celedon, A., I. M. Nodelman, B. Wildt et al., Magnetic tweezers measurement of single molecule torque. Nano. Lett., 9:4 (2009), 1720–5.CrossRefGoogle ScholarPubMed
Koster, D. A., Croquette, V., Dekker, C., Shuman, S., and Dekker, N. H., Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature, 434:7033 (2005), 671–4.CrossRefGoogle ScholarPubMed
Koster, D. A., Palle, K., Bot, E. S. M., Bjornsti, M. A., and Dekker, N. H., Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature, 448:7150 (2007), 213–7.CrossRefGoogle ScholarPubMed
Zhang, L., T. Petit, Y. Lu et al., Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano, 4:10(2010), 6228–34.CrossRefGoogle Scholar
Tierno, P., Golestanian, R., Pagonabarraga, I., and Sagues, F., Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett., 101:21 (2008), 218304.CrossRefGoogle ScholarPubMed
Gao, W., Sattayasamitsathit, S., Manesh, K. M., Weihs, D., and Wang, J., Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc., 132:41 (2010), 14403–5.CrossRefGoogle ScholarPubMed
Fan, D. L., Cammarata, R. C., and Chien, C. L., Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett., 92:9 (2008), 093115.CrossRefGoogle Scholar
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., Electric tweezers. Nano Today, 6:4 (2011), 339–54.CrossRefGoogle Scholar
Jones, T. B., Electromechanics of Particles, 1st edn (Cambridge: Cambridge University Press, 1995).CrossRefGoogle Scholar
Smith, P. A., C. D. Nordquist, T. N. Jackson et al., Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett., 77:9 (2000), 1399–401.CrossRefGoogle Scholar
Krupke, R., Hennrich, F., von Lohneysen, H., and Kappes, M. M., Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 301:5631 (2003), 344–7.CrossRefGoogle ScholarPubMed
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., Controllable high-speed rotation of nanowires. Phys. Rev. Lett., 94:24 (2005), 247208.CrossRefGoogle Scholar
Fan, D. L., Z. Yin, R. Cheong et al., Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotech., 5:7 (2010), 545–51.CrossRefGoogle ScholarPubMed
Fan, D. L., Zhu, F. Q., Xu, X. B., Cammarata, R. C., and Chien, C. L., Electronic properties of nanoentities revealed by electrically driven rotation. Proc. Natl. Acad. Sci. USA., 109:24 (2012), 9309–13.CrossRefGoogle ScholarPubMed
Xu, X. B., Kim, K., Li, H. F., and Fan, D. L., Ordered arrays of raman nanosensors for ultrasensitive and location predictable biochemical detection. Adv. Mater., 24:40 (2012), 5457–63.Google ScholarPubMed
Edwards, B., Engheta, N., and Evoy, S., Electric tweezers: Experimental study of positive dielectrophoresis-based positioning and orientation of a nanorod. J. Appl. Phys., 102:2 (2007), 024913.CrossRefGoogle Scholar
Edwards, B., Engheta, N., and Evoy, S., Theory of simultaneous control of orientation and translational motion of nanorods using positive dielectrophoretic forces. J. Appl. Phys., 98:12 (2005), 124314.CrossRefGoogle Scholar
Fan, D. L., Zhu, F. Q., Cammarata, R. C., and Chien, C. L., Manipulation of nanowires in suspension by ac electric fields. Appl. Phys. Lett., 85:18 (2004), 4175–7.CrossRefGoogle Scholar
Edwards, B., Mayer, T. S., and Bhiladvala, R. B., Synchronous electrorotation of nanowires in fluid. Nano. Lett., 6:4 (2006), 626–32.CrossRefGoogle Scholar
Chiou, P. Y., Ohta, A. T., and Wu, M. C., Massively parallel manipulation of single cells and microparticles using optical images. Nature, 436:7049 (2005), 370–2.CrossRefGoogle ScholarPubMed
Jamshidi, A., P. J. Pauzauskie, P. J. Schuck et al., Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat. Photon., 2:2 (2008), 86–9.CrossRefGoogle ScholarPubMed
Paxton, W. F., Sen, A., and Mallouk, T. E., Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J., 11:22 (2005), 6462–70.CrossRefGoogle ScholarPubMed
Paxton, W. F., K. C. Kistler, C. C. Olmeda et al., Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc., 126:41 (2004), 13424–31.CrossRefGoogle ScholarPubMed
Sundararajan, S., Lammert, P. E., Zudans, A. W., Crespi, V. H., and Sen, A., Catalytic motors for transport of colloidal cargo. Nano. Lett., 8:5 (2008), 1271–6.CrossRefGoogle ScholarPubMed
Laocharoensuk, R., Burdick, J., and Wang, J., Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano, 2:5 (2008), 1069–75.CrossRefGoogle ScholarPubMed
Demirok, U. K., Laocharoensuk, R., Manesh, K. M., and Wang, J., Ultrafast catalytic alloy nanomotors. Angew. Chem. Int., 47:48 (2008), 9349–51.CrossRefGoogle ScholarPubMed
Kagan, D., P. Calvo-Marzal, S. Balasubramanian et al., Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. J. Am. Chem. Soc., 131:34 (2009), 12082–3.CrossRefGoogle ScholarPubMed
Kagan, D., R. Laocharoensuk, M. Zimmerman et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small, 6:23 (2010), 2741–7.CrossRefGoogle ScholarPubMed
Valadares, L. F., Y.-G. Tao, N. S. Zacharia et al., Catalytic nanomotors: Self-propelled sphere dimers. Small, 6:4 (2010), 565–72.CrossRefGoogle ScholarPubMed
Baraban, L., D. Makarov, R. Streubel et al., Catalytic janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery. ACS Nano, 6:4 (2012), 3383–9.CrossRefGoogle ScholarPubMed
Fournier-Bidoz, S., Arsenault, A. C., Manners, I., and Ozin, G. A., Synthetic self-propelled nanorotors. Chem. Commun., 4 (2005), 441–3.Google Scholar
Gibbs, J. G. and Zhao, Y. P., Design and characterization of rotational multicomponent catalytic nanomotors. Small, 5:20 (2009), 2304–8.CrossRefGoogle ScholarPubMed
Kline, T. R., Paxton, W. F., Mallouk, T. E., and Sen, A., Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int., 44:5 (2005), 744–6.CrossRefGoogle ScholarPubMed
Burdick, J., Laocharoensuk, R., Wheat, P. M., Posner, J. D., and Wang, J., Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. J. Am. Chem. Soc., 130:26 (2008), 8164–5.CrossRefGoogle ScholarPubMed
Sundararajan, S., Sengupta, S., Ibele, M. E., and Sen, A., Drop-off of colloidal cargo transported by catalytic Pt-Au nanomotors via photochemical stimuli. Small, 6:14 (2010), 1479–82.CrossRefGoogle ScholarPubMed
Catchmark, J. M., Subramanian, S., and Sen, A., Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small, 1:2 (2005), 202–6.CrossRefGoogle ScholarPubMed
Wu, J., Balasubramanian, S., Kagan, D., Manesh, K. M., Campuzano, S., and Wang, J., Motion-based DNA detection using catalytic nanomotors. Nature Communications, 1 (2010), 36.CrossRefGoogle ScholarPubMed
Ding, X. Y., S.-C. Lin, B. Kiraly et al., On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA., 109:28 (2012), 11105–9.CrossRefGoogle ScholarPubMed
Franke, T., Braunmuller, S., Schmid, L., Wixforth, A., and Weitz, D. A., Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip, 10:6 (2010), 789–94.CrossRefGoogle Scholar
Rezk, A. R., Qi, A., Friend, J. R., Li, W. H., and Yeo, L. Y., Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip, 12:4 (2012), 773–9.CrossRefGoogle ScholarPubMed
Shi, J. J., Mao, X. L., Ahmed, D., Colletti, A., and Huang, T. J., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip, 8:2 (2008), 221–3.CrossRefGoogle Scholar
Juan, M. L., Righini, M., and Quidant, R., Plasmon nano-optical tweezers. Nat. Photon., 5:6 (2011), 349–56.CrossRefGoogle Scholar
Quidant, R., Plasmonic tweezers: The strength of surface plasmons. MRS Bull., 37:8 (2012), 739–44.CrossRefGoogle Scholar
Righini, M., Zelenina, A. S., Girard, C., and Quidant, R., Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys., 3:7 (2007), 477–80.CrossRefGoogle Scholar
Zhang, W. H., Huang, L. N., Santschi, C., and Martin, O. J. F., Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano. Lett., 10:3 (2010), 1006–11.CrossRefGoogle ScholarPubMed
Pang, Y. J. and Gordon, R., Optical trapping of a single protein. Nano. Lett., 12:1 (2012), 402–6.CrossRefGoogle ScholarPubMed
Torchilin, V. P., Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 197 (2010), 353.CrossRefGoogle Scholar
Yasukawa, T., H. Kimura, Y. Tabata et al., Active drug targeting with immunoconjugates to choroidal neovascularization. Curr. Eye. Res., 21:6 (2000), 952–61.CrossRefGoogle ScholarPubMed
Andrä, W., Häfeli, U. O., Hergt, R., and Misri, R., Application of magnetic particles in medicine and biology. In Kronmüller, H. and Parkin, S., eds., The Handbook of Magnetism and Advanced Magnetic Materials – Novel Materials (Chichester: John Wiley & Sons Ltd., 2007), pp. 2536–68.Google Scholar
Häfeli, U. O., Magnetic nano- and microparticles for targeted drug delivery. In Arshady, R. and Kono, K., eds., Smart Nanoparticles in Nanomedicine – The MML Series (London: Kentus Books, 2006), pp. 77126.Google Scholar
Lu, A. H., Salabas, E. L., and Schuth, F., Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 46:8 (2007), 1222–44.CrossRefGoogle ScholarPubMed
Wang, X., Zhuang, J., Peng, Q., and Li, Y., A general strategy for nanocrystal synthesis, Nature, 437 (2005), 121–4.CrossRefGoogle ScholarPubMed
Redl, F. X., C. T. Black, G. C. Papaefthymiou et al., Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc., 126:44 (2004), 14583–99.CrossRefGoogle ScholarPubMed
Sun, S., H. Zeng, D. B. Robinson et al., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 126:1 (2004), 273–9.CrossRefGoogle ScholarPubMed
Butter, K., Philipse, A. P., and Vroege, G. J., Synthesis and properties of iron ferrofluids. J. Magn. Magn. Mater., 252 (2002), 13.CrossRefGoogle Scholar
Jana, N. R., Chen, Y., and Peng, X., Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater., 16:20 (2004), 3931–5.CrossRefGoogle Scholar
Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., and Li, Y., Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl., 44:18 (2005), 2782–5.CrossRefGoogle ScholarPubMed
Ge, S., X-Y. Shi, K. Sun et al., A facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J. Phys. Chem. C Nanomater. Interfaces, 113:31 (2009), 13593–9.CrossRefGoogle ScholarPubMed
Martínez, G., Malumbres, A., Mallada, R. et al., Use of a polyol liquid collection medium to obtain ultrasmall magnetic nanoparticles by laser pyrolysis. Nanotechnology, 23:42 (2012), 425605.CrossRefGoogle ScholarPubMed
Schneider, T., Zhao, H., Jackson, J. K., Chapman, G. H., Dykes, J., and Häfeli, U. O., Use of hydrodynamic flow focusing for the generation of biodegradable camptothecin-loaded polymer microspheres. J. Pharm. Sci., 97:11 (2008), 4943–54.CrossRefGoogle ScholarPubMed
Sandhu, A., Handa, H., and Abe, M., Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology, 21:44 (2010), 442001.CrossRefGoogle ScholarPubMed
Weissleder, R., D. D. Stark, B. L. Engelstad et al., Superparamagnetic iron oxide: Pharmacokinetics and toxicity. AJR Am. J. Roentgenol., 152:1 (1989), 167–73.CrossRefGoogle ScholarPubMed
Häfeli, U. O., Aue, J., and Damani, J., The biocompatibility and toxicity of magnetic particles. In Zborowski, M. and Chalmers, J. J., eds., Magnetic Cell Separation (Amsterdam: Elsevier, 2007), pp. 163224.CrossRefGoogle Scholar
Reddy, L. H., Arias, J. L., Nicolas, J., and Couvreur, P., Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 112:11 (2012), 5818–78.CrossRefGoogle ScholarPubMed
Lopez, A., Gutierrez, L., and Lazaro, F. J., The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Phys. Med. Biol., 52:16 (2007), 5043–56.CrossRefGoogle ScholarPubMed
Lopez, A., Gutierrez, L., and Lazaro, F. J., The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues. Phys. Med. Biol., 52:16 (2007), 5043–56.CrossRefGoogle ScholarPubMed
Misri, R., Saatchi, K., Ng, S. S., Kumar, U., and Hafeli, U. O., Evaluation of (111)In labeled antibodies for SPECT imaging of mesothelin expressing tumors. Nucl. Med. Biol., 38:6 (2011), 885–96.CrossRefGoogle ScholarPubMed
Misri, R., Meier, D., Yung, A. C., Kozlowski, P., and Hafeli, U. O., Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomedicine, 8:6 (2012), 1007–16.Google ScholarPubMed
Sakulkhu, U., Preparation of coated nanoparticles and investigation of their behavior in biological environment. Unpublished Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2013).
Zborowski, M., Magnetic cell separation (Laboratory Techniques in Biochemistry and Molecular Biology), (Amsterdam: Elsevier, 2007).Google Scholar
Zborowski, M. and Chalmers, J. J., Rarecell separation and analysis by magnetic sorting. Anal. Chem., 83:21 (2011), 8050–6.CrossRefGoogle Scholar
Kim, E., Lee, K., Huh, Y-M., and Haam, S., Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy. J. Mater. Chem. B, 1 (2013), 729–39.CrossRefGoogle Scholar
Yang, J., C-H. Lee, J. Park et al., Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J. Mater. Chem., 17 (2007), 2695–9.CrossRefGoogle Scholar
Kaittanis, C., Santra, S., and Perez, J. M., Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Am. Chem. Soc., 131:35 (2009), 12780–91.CrossRefGoogle ScholarPubMed
Gaster, R. S., D. A. Hall, C. H. Nielsen et al., Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med., 15:11 (2009), 1327–32.CrossRefGoogle Scholar
Puertas, S., Moros, M., Fernández-Pacheco, R., Ibarra, M. R., Grazú, V., and Fuente, J. M. d. l., Designing novel nano-immunoassays: Antibody orientation versus sensitivity. J. Phys. D: Appl. Phys., 43:47 (2010), 474012.CrossRefGoogle Scholar
Puertas, S., P. Batalla, M. Moros et al., Taking advantage of unspecific interactions to produce highly active magnetic nanoparticle-antibody conjugates. ACS Nano, 5:6 (2011), 4521–8.CrossRefGoogle ScholarPubMed
Misri, R., Saatchi, K., and Hafeli, U. O., Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomedicine (Lond.), 7:5 (2012), 719–33.CrossRefGoogle ScholarPubMed
Vazquez, M., Luna, C., Morales, M. P., Sanz, R., Serna, C. J., and Mijangos, C., Magnetic nanoparticles: Synthesis, ordering and properties. Physica B, 354 (2004), 71–9.CrossRefGoogle Scholar
Gold, L., Brown, D., He, Y., Shtatland, T., Singer, B. S., and Wu, Y., From oligonucleotide shapes to genomic SELEX: Novel biological regulatory loops. Proc. Natl. Acad. Sci. USA., 94:1 (1997), 5964.CrossRefGoogle ScholarPubMed
Gold, L. and Ringquist, S., Systematic evolution of ligands by exponential enrichment: Solution SELEX, USA Patent 5567588 (1995).
Farokhzad, O. C., Karp, J. M., and Langer, R., Nanoparticle-aptamer bioconjugates for cancer targeting. Expert. Opin. Drug Del., 3:3 (2006), 311–24.CrossRefGoogle ScholarPubMed
Gu, F., L-F. Zhang, B. A. Teply et al., Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA., 105:7 (2008), 2586–91.CrossRefGoogle ScholarPubMed
Wang, A. Z. et al., Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 3:9 (2008), 1311–5.CrossRefGoogle ScholarPubMed
Chen, H. W., C. D. Medley, K. Sefah et al., Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 3:6 (2008), 9911001.CrossRefGoogle ScholarPubMed
Bamrungsap, S., Shukoor, M. I., Chen, T., Sefah, K., and Tan, W., Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal. Chem., 83:20 (2011), 7795–9.CrossRefGoogle ScholarPubMed
Bamrungsap, S., T. Chen, M. I. Shukoor et al., Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano, 6:5 (2012), 3974–81.CrossRefGoogle ScholarPubMed
Lim, E. K., B. Kim, Y. Choi et al., Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin αvβ3 via magnetic resonance imaging. J. Biomed. Mater. Res. A, 102:1(2014), 4959.CrossRefGoogle ScholarPubMed
Lopez-Colon, D., Jimenez, E., You, M., Gulbakan, B., and Tan, W., Aptamers: Turning the spotlight on cells. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 3:3 (2011), 328–40.CrossRefGoogle ScholarPubMed
Mann, S., Hannington, J. P., and Williams, R. J. P., Phospholipid vesicles as a model system for biomineralization. Nature, 324 (1986), 565–7.CrossRefGoogle ScholarPubMed
Meldrum, F. C., Heywood, B. R., and Mann, S., Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science, 257:5069 (1992), 522–3.CrossRefGoogle ScholarPubMed
Tresilwised, N., P. Pithayanukul, O. Mykhaylyk et al., Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol. Pharm., 7:4 (2010), 1069–89.CrossRefGoogle ScholarPubMed
Huh, Y-M., E-S. Lee, J-H. Lee et al., Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater., 19:20 (2007), 3109–12.Google Scholar
Nishimura, K., Hasegawa, M., Ogura, Y., Nishi, T., Kataoka, K., and Handa, H., 4°C preparation of ferrite nanoparticles having protein molecules immobilized on their surfaces. J. Appl. Phys., 91:10 (2002), 8555–6.CrossRefGoogle Scholar
Nishio, K., N. Gokon, M. Hasegawa et al., Identification of a chemical substructure that is immobilized to ferrite nanoparticles (FP). Colloids Surf. B, 54:2 (2007), 249–53.CrossRefGoogle ScholarPubMed
Hatanaka, S., Matsushita, N., Abe, M., Nishimura, K., Hasegawa, M., and Handa, H., Direct immobilization of fluorescent dyes onto ferrite nanoparticles during their synthesis from aqueous solution. J. Appl. Phys., 93:10 (2003), 7569–70.CrossRefGoogle Scholar
Vanderhoff, J. W., Micale, F. J., and Krumrine, P. H., Continuous flow electrophoresis. In Righetti, P. G., Oss, C. J. Van, and Vanderhoff, J. W., eds., Electrokinetic Separation Methods (Amsterdam: Elsevier/North-Holland Biomedical Press, 1979), pp. 121–41.Google Scholar
Zborowski, M., Magnetophoresis. In Zborowski, M. and Chalmers, J. J., eds., Magnetic Cell Separation (Amsterdam: Elsevier, 2007), pp. 105–18.Google Scholar
Iacob, G., Rotariu, O., Strachan, N. J. C., and Häfeli, U. O., Magnetizable needles and wires – modeling an efficient way to target magnetic microspheres in vivo. Biorheology, 41:5 (2004), 599612.Google ScholarPubMed
Rotariu, O., Iacob, G., Strachan, N. J. C., and Chiriac, H., Simulating the embolization of blood vessels using magnetic microparticles and acupuncture needle in a magnetic field. Biotechnol. Progr., 20 (2004), 299305.CrossRefGoogle Scholar
Chen, H., Ebner, A. D., Rosengart, A. J., Kaminski, M. D., and Ritter, J. A., Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation. J. Magn. Magn. Mater., 284 (2004), 181–94.CrossRefGoogle Scholar
Forbes, Z. G., Yellen, B. B., Halverson, D. S., Fridman, G., Barbee, K. A., and Friedman, G., Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans. Biomed. Eng., 55:2 (2008), 643–9.CrossRefGoogle ScholarPubMed
Furlani, E. P. and Ng, K. C., Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E, 73:6 (2006) 061919.CrossRefGoogle ScholarPubMed
Gerber, R., Takayasu, M., and Friedlaender, F. J., Generalization of HGMS theory: The capture of ultra-fine particles. IEEE Trans. Magn., 19 (1983), 2115–7.CrossRefGoogle Scholar
Takayasu, M., Gerber, R., and Friedlaender, F. J., Magnetic separation of submicron particles. IEEE Trans. Magn., 19:5 (1983), 2112–4.CrossRefGoogle Scholar
Goll, D. and Kronmüller, H., High-performance permanent magnets. Naturwissenschaften, 87 (2000), 423–38.CrossRefGoogle ScholarPubMed
Avilés, M. O., Chen, H., Ebner, A. D., Rosengart, A. J., Kaminski, M. D., and Ritter, J. A., In vitro study of ferromagnetic stents for implant assisted magnetic drug targeting. J. Magn. Magn. Mater., 311:1 (2007), 306311.CrossRefGoogle Scholar
Polyak, B., I. Fishbein, M. Chorny et al., High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl. Acad. Sci. USA., 105:2 (2008), 698703.CrossRefGoogle ScholarPubMed
Hournkumnuard, K. and Natenapit, M., Magnetic drug targeting by ferromagnetic microwires implanted within blood vessels. Med. Phys., 40:6 (2013), 062302.CrossRefGoogle ScholarPubMed
McCloskey, K. E., Chalmers, J. J., and Zborowski, M., Magnetophoretic mobilities correlate to antibody binding capacities. Cytometry, 40:4 (2000), 307–15.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Moore, L. R., M. Zborowski, M. Nakamura et al., The use of magnetite-doped polymeric microspheres in calibrating cell tracking velocimetry. J. Biochem. Bioph. Meth., 44:1–2 (2000), 115–30.CrossRefGoogle ScholarPubMed
Nakamura, M., Zborowski, M., Lasky, L. C., Margel, S., and Chalmers, J. J., Theoretical and experimental analysis of the accuracy and reproducibility of cell tracking velocimetry. Exp. Fluids, 30 (2001), 371–80.CrossRefGoogle Scholar
Schneider, T., L. R. Moore, Y. Jing et al., Continuous flow magnetic cell fractionation based on antigen expression level. J. Biochem. Bioph. Meth., 68:1 (2006), 121.CrossRefGoogle ScholarPubMed
Schneider, T., Karl, S., Moore, L. R., Chalmers, J. J., Williams, P. S., and Zborowski, M., Sequential CD34 cell fractionation by dipole magnetophoresis. Analyst, 135:1 (2010), 6270.CrossRefGoogle ScholarPubMed
Robinson, A. L., New magnets enhance synchrotron radiation. Science, 219:4590 (1983), 1309–11.CrossRefGoogle ScholarPubMed
Hayden, M. E. and Häfeli, U. O., “Magnetic bandages” for targeted delivery of therapeutic agents. J. Phys. Condens. Mat., 18:38 (2006), S2877–91.CrossRefGoogle Scholar
Häfeli, U. O., Gilmour, K., Zhou, A., Lee, S., and Hayden, M. E., Modeling of magnetic bandages for drug targeting: Button vs. Halbach arrays. J. Magn. Magn. Mater., 311:1 (2007), 323–9.CrossRefGoogle Scholar
Hoyos, M., Moore, L., Williams, P. S., and Zborowski, M., The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species. J. Magn. Magn. Mater., 323:10 (2011), 1384–8.CrossRefGoogle ScholarPubMed
Ijiri, Y., Poudel, C., Williams, P. S., Moore, L. R., Orita, T., and Zborowski, M., Inverted linear halbach array for separation of magnetic nanoparticles. IEEE Trans. Magn., 49:7 (2013) 3449–52.CrossRefGoogle ScholarPubMed
Sarwar, A., Nemirovski, A., and Shapiro, B., Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles. J. Magn. Magn. Mater., 324:5 (2012), 742–54.CrossRefGoogle ScholarPubMed
Krause, K., U. Adamu, M. Weber et al., German stereotaxis-guided percutaneous coronary intervention study group: First multicenter real world experience. Clin. Res. Cardiol., 98:9 (2009), 541–7.CrossRefGoogle Scholar
Carpi, F., Kastelein, N., Talcott, M., and Pappone, C., Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans. Biomed. Eng., 58:2 (2011), 231–4.CrossRefGoogle ScholarPubMed
Rinaldi, C., Franklin, T., Zahn, M., and Cader, T., Magnetic nanoparticles in fluid suspension: ferrofluid applications. In Schwarz, J. A., Contescu, C. I., and Putyera, K., eds., Encyclopedia of Nanoscience and Nanotechnology (Oxford: Taylor & Francis Group Ltd., 2004), pp. 1731–48.Google Scholar
Dutz, S. and Hergt, R., Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperther., 29:8 (2013), 790800.CrossRefGoogle ScholarPubMed
Hennecke, A.. MagForce AG receives BfArM approval to start the post-marketing study in glioblastoma with NanoTherm® therapy, (2013). http://hugin.info/143761/R/1691021/555244.pdf
Jordan, A., R. Scholz, K. Maier-Hauff et al., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater., 225 (2001), 118–26.CrossRefGoogle Scholar
Johannsen, M., U. Gneveckow, L. Eckelt et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperther., 21:7 (2005), 637–47.CrossRefGoogle ScholarPubMed
Johannsen, M., U. Gneveckow, K. Taymoorian et al., Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int. J. Hyperthermia, 23:3 (2007), 315–23.CrossRefGoogle ScholarPubMed
Johannsen, M., U. Gneveckow, B. Thiesen et al., Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol., 52:6 (2007), 1653–61.CrossRefGoogle ScholarPubMed
Maier-Hauff, K., R. Rothe, R. Scholz et al., Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol., 81:1 (2007), 5360.CrossRefGoogle ScholarPubMed
Johannsen, M., Thiesen, B., Wust, P., and Jordan, A., Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperther., 26:8 (2010), 790–5.CrossRefGoogle ScholarPubMed
van Landeghem, F. K., K. Maier-Hauff, A. Jordan et al., Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials, 30:1 (2009), 52–7.CrossRefGoogle ScholarPubMed
Krishnan, S., Diagaradjane, P., and Cho, S. H., Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. Int. J. Hyperther., 26:8 (2010), 775–89.CrossRefGoogle ScholarPubMed
Maier-Hauff, K., F. Ulrich, D. Nestler et al., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 103:2 (2011), 317–24.CrossRefGoogle ScholarPubMed
Nakamura, T., Konno, K., Moroné, T., Tsuya, N., and Hatano, M., Magneto-medicine: Biological aspects of ferromagnetic fine particles. J. Appl. Phys., 42:4 (1971), 1320–44.CrossRefGoogle Scholar
Senyei, A. E. and Widder, K. J., Drug targeting: Magnetically responsive albumin microspheres – a review of the system to date. Gynecol. Oncol., 12:1 (1981), 113.CrossRefGoogle ScholarPubMed
Lim, E. K., Huh, Y. M., Yang, J., Lee, K., Suh, J. S., and Haam, S., pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater., 23:21 (2011), 2436–42.CrossRefGoogle ScholarPubMed
Nowicka, A. M., A. Kowalczyk, A. Jarzebinska et al., Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Biomacromolecules, 14:3 (2013), 828–33.CrossRefGoogle ScholarPubMed
Chorny, M., I. Fishbein, B. B. Yellen et al., Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl. Acad. Sci. USA., 107:18 (2010), 8346–51.CrossRefGoogle ScholarPubMed
Li, M., Neoh, K. G., Wang, R., Zong, B. Y., Tan, J. Y., and Kang, E. T., Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe(3)O(4) magnetic nanoparticles for targeted anticancer effects. Eur. J. Pharm. Sci., 48:1–2 (2013), 111–20.CrossRefGoogle Scholar
Bleul, R., R. Thiermann, G. U. Marten et al., Continuously manufactured magnetic polymersomes: A versatile tool (not only) for targeted cancer therapy. Nanoscale, 5:23 (2013), 11385–93.CrossRefGoogle ScholarPubMed
Alexiou, C., R. J. Schmid, R. Jurgons et al., Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur. Biophys. J., 35:5 (2006), 446–50.CrossRefGoogle ScholarPubMed
Hsieh, D. S., Langer, R., and Folkman, J., Magnetic modulation of release of macromolecules from polymers. Proc. Natl. Acad. Sci. USA., 78:3 (1981), 1863–7.CrossRefGoogle ScholarPubMed
Edelman, E. R., Kost, J., Bobeck, H., and Langer, R., Regulation of drug release from polymer matrices by oscillating magnetic fields. J. Biomed. Mater. Res., 19:1 (1985), 6783.CrossRefGoogle ScholarPubMed
Edelman, E. R., Fiorino, A., Grodzinsky, A., and Langer, R., Mechanical deformation of polymer matrix controlled release devices modulates drug release. J. Biomed. Mater. Res., 26:12 (1985), 1619–31.Google Scholar
Pirmoradi, F. N., Jackson, J. K., Burt, H. M., and Chiao, M., A magnetically controlled MEMS device for drug delivery: Design, fabrication, and testing. Lab Chip, 11:18 (2011), 3072–80.CrossRefGoogle Scholar
Pirmoradi, F. N., Jackson, J. K., Burt, H. M., and Chiao, M., On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip, 11:16 (2011), 2744–52.CrossRefGoogle ScholarPubMed
Dengler, M., K. Saatchi, J. P. Dailey et al., Targeted delivery of magnetic cobalt nanoparticles to the eye following systemic administration. AIP Conf. Proc., 1311 (2010), 329–36.CrossRefGoogle Scholar
Yanai, A., Häfeli, U. O., Metcalfe, A. L. et al., Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant., 21:6 (2012), 1137–48.CrossRefGoogle ScholarPubMed
Gregory-Evans, K., Bashar, A. E., and Laver, C., Use of magnetism to enhance cell transplantation success in regenerative medicine. Regen. Med., 8:1 (2013), 13.CrossRefGoogle ScholarPubMed
Bashar, A. E., A. Metcalfe, A. Yanai et al., Influence of iron oxide nanoparticles on innate and genetically modified secretion profiles of mesenchymal stem cells. IEEE Trans. Magn., 49:1 (2013), 389393.CrossRefGoogle ScholarPubMed
Plank, C., Anton, M., Rudolph, C., Rosenecker, J., and Krotz, F., Enhancing and targeting nucleic acid delivery by magnetic force. Expert. Opin. Biol. Ther., 3:5 (2003), 745–58.CrossRefGoogle ScholarPubMed
Mykhaylyk, O., Antequera, Y. S., Vlaskou, D., and Plank, C., Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc., 2:10 (2007), 2391–411.CrossRefGoogle ScholarPubMed
Jenkins, S. I., Pickard, M. R., and Chari, D. M., Magnetic nanoparticle mediated gene delivery in oligodendroglial cells: A comparison of differentiated cells versus precursor forms. Nano Life, 3:2 (2012), 1243001.CrossRefGoogle Scholar
Vlaskou, D. et al., Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery. Adv. Funct. Mater., 20 (2010), 38813894.CrossRefGoogle Scholar
Riegler, J., Wells, J. A., Kyrtatos, P. G., Price, A. N., Pankhurst, Q. A., and Lythgoe, M. F., Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials, 31:20 (2010), 5366–71.CrossRefGoogle ScholarPubMed
Honig, D., DeRouchey, J., Jungmann, R., Koch, C., Plank, C., and Radler, J. O., Biophysical characterization of copolymer-protected gene vectors. Biomacromolecules, 11:7 (2010), 1802–9.CrossRefGoogle ScholarPubMed
Mayes, E., Douek, M., and Pankhurst, Q. A., Surgical magnetic systems and tracers for cancer staging. In Thanh, N. T. K., ed. Magnetic Nanoparticles – From Fabrication to Clinical Applications (Boca Raton: CRC Press – Taylor & Francis Group, 2012) pp. 541–55.Google Scholar
Krishnan, K. M., Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn., 46:7 (2010), 2523–58.CrossRefGoogle Scholar
Duncan, R. and Gaspar, R., Nanomedicine(s) under the microscope. Mol. Pharm., 8:6 (2011), 2101–41.CrossRefGoogle ScholarPubMed
Svenson, S., Theranostics: Are we there yet?, Mol. Pharmaceutics, 10:3 (2013), 848–56.CrossRefGoogle ScholarPubMed
Zhou, J., Zhang, J., and Gao, W., Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, beta-glucosidase-conjugated iron oxide nanoparticles. Int. J. Nanomed., 9 (2014), 2905–17.Google ScholarPubMed
Arias, J. L., Gallardo, V., Ruiz, M. A., and Delgado, A. V., Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur. J. Pharm. Biopharm., 69:1 (2008), 5463.CrossRefGoogle ScholarPubMed
Arias, J. L., Lopez-Viota, M., Delgado, A. V., and Ruiz, M. A., Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf. B, 77:1 (2010), 111–6.CrossRefGoogle ScholarPubMed
Hua, M. Y., H. L. Liu, H. W. Yang et al., The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials, 32:2 (2011), 516–27.CrossRefGoogle ScholarPubMed
Qu, J. B., Shao, H. H., Jing, G. L., and Huang, F., PEG-chitosan-coated iron oxide nanoparticles with high saturated magnetization as carriers of 10-hydroxycamptothecin: Preparation, characterization and cytotoxicity studies. Colloids Surf. B, 102 (2013), 3744.CrossRefGoogle ScholarPubMed
Ding, G. B., Wang, Y., Guo, Y., and Xu, L., Integrin alpha(V)beta(3)-targeted magnetic nanohybrids with enhanced antitumor efficacy, cell cycle arrest ability, and encouraging anti-cell-migration activity. ACS Appl. Mater. Interfaces, 6:19 (2014), 16643–52.CrossRefGoogle ScholarPubMed
Li, F. R., Yan, W. H., Guo, Y. H., Qi, H., and Zhou, H. X., Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int. J. Hyperther., 25:5 (2009), 383–91.CrossRefGoogle Scholar
Saboktakin, M. R., Tabatabaie, R. M., Amini, F. S., Maharramov, A., and Ramazanov, M. A., Synthesis and in-vitro photodynamic studies of the superparamagnetic chitosan hydrogel/chlorin E6 nanocarriers. Med. Chem., 9:1 (2013), 112–7.Google ScholarPubMed
Gupta, R. and Bajpai, A. K., Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites. J. Biomater. Sci. Polym. Ed., 22:7 (2011), 893918.CrossRefGoogle ScholarPubMed
Unterweger, H., R. Tietze, C. Janko et al., Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. Int. J. Nanomed., 9 (2014), 3659–76.Google ScholarPubMed
Manju, S. and Sreenivasan, K., Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: Blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir, 27:23 (2011), 14489–96.CrossRefGoogle ScholarPubMed
Mikhaylova, M., Stasinopoulos, I., Kato, Y., Artemov, D., and Bhujwalla, Z. M., Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther., 16:3 (2009), 217–26.CrossRefGoogle ScholarPubMed
Du, X., K. Chen, S. Kuriyavar et al., Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol. Neurotol., 34:1 (2013), 41–7.CrossRefGoogle ScholarPubMed
Ling, Y., Wei, K., Luo, Y., Gao, X., and Zhong, S., Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials, 32:29 (2011), 7139–50.CrossRefGoogle ScholarPubMed
Gao, X., Y. Luo, Y. Wang et al., Prostate stem cell antigen-targeted nanoparticles with dual functional properties: In vivo imaging and cancer chemotherapy. Int. J. Nanomed., 7 (2012), 4037–51.Google ScholarPubMed
Mi, Y., Liu, X., Zhao, J., Ding, J., and Feng, S. S., Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials, 33:30 (2012), 7519–29.CrossRefGoogle ScholarPubMed
Guo, M., Que, C., Wang, C., Liu, X., Yan, H., and Liu, K., Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials, 32:1 (2011), 185–94.CrossRefGoogle ScholarPubMed
Nasongkla, N., E. Bey, J. Ren et al., Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett., 6:11 (2006), 2427–30.CrossRefGoogle ScholarPubMed
Zhang, J. and Misra, R. D., Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core-shell nanoparticle carrier and drug release response. Acta Biomater., 3:6 (2007), 838–50.CrossRefGoogle ScholarPubMed
Chen, L. B., Zhang, F., and Wang, C. C., Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Small, 5:5 (2009), 621–8.CrossRefGoogle ScholarPubMed
Purushotham, S., P. E. J. Chang, H. Rumpel et al., Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology, 20:30 (2009), 305101.CrossRefGoogle ScholarPubMed
Purushotham, S. and Ramanujan, R. V., Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater., 6:2 (2010), 502–10.CrossRefGoogle ScholarPubMed
Pradhan, P., J. Giri, F. Rieken et al., Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release, 142:1 (2010), 108–21.CrossRefGoogle ScholarPubMed
Rahimi, M., A. Wadajkar, K. Subramanian et al., In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine, 6:5 (2010), 672–80.Google ScholarPubMed
Yallapu, M. M., Foy, S. P., Jain, T. K., and Labhasetwar, V., PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res., 27:11 (2010), 2283–95.CrossRefGoogle ScholarPubMed
Yang, X., J. J. Grailer, I. J. Rowland et al., Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials, 31:34 (2010), 9065–73.CrossRefGoogle ScholarPubMed
Zou, P., Y. Yu, Y. A. Wang et al., Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol. Pharm., 7:6 (2010), 1974–84.CrossRefGoogle ScholarPubMed
Chang, Y., X. Meng, Y. Zhao et al., Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J. Colloid Interface Sci., 363:1 (2011), 403–9.CrossRefGoogle Scholar
Chao, X., L. Guo, Y. Zhao et al., PEG-modified GoldMag nanoparticles (PGMNs) combined with the magnetic field for local drug delivery. J. Drug Target., 19:3 (2011), 161–70.CrossRefGoogle ScholarPubMed
Chen, T., M. I. Shukoor, R. Wang et al., Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano, 5:10 (2011), 7866–73.CrossRefGoogle ScholarPubMed
Fan, T., Li, M., Wu, X., and Wu, Y., Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloids Surf. B, 88:2 (2011), 593600.CrossRefGoogle ScholarPubMed
Liao, C., Sun, Q., Liang, B., Shen, J., and Shuai, X., Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur. J. Radiol., 80:3 (2011), 699705.Google ScholarPubMed
Yang, X., H. Hong, J. J. Grailer et al., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 32:17 (2011), 4151–60.CrossRefGoogle Scholar
Akbarzadeh, A., Mikaeili, H., Zarghami, N., Mohammad, R., Barkhordari, A., and Davaran, S., Preparation and in vitro evaluation of doxorubicin-loaded Fe(3)O(4) magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomed., 7 (2012), 511–26.Google ScholarPubMed
Allard-Vannier, E., S. Cohen-Jonathan, J. Gautier et al., Pegylated magnetic nanocarriers for doxorubicin delivery: A quantitative determination of stealthiness in vitro and in vivo. Eur. J. Pharm. Biopharm., 81:3 (2012), 498505.CrossRefGoogle ScholarPubMed
Gautier, J., E. Munnier, A. Paillard et al., A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int. J. Pharm., 423:1 (2012), 1625.CrossRefGoogle ScholarPubMed
Huang, C., Z. Tang, Y. Zhou et al., Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Pharm., 429:1–2 (2012), 113–22.CrossRefGoogle ScholarPubMed
Kaaki, K., Hervé-Aubert, K., Chiper, M. et al., Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: Relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir, 28:2 (2012), 1496–505.CrossRefGoogle ScholarPubMed
Li, D., Tang, J., Guo, J., Wang, S., Chaudhary, D., and Wang, C., Hollow-core magnetic colloidal nanocrystal clusters with ligand-exchanged surface modification as delivery vehicles for targeted and stimuli-responsive drug release. Chemistry, 18:51 (2012), 16517–24.Google ScholarPubMed
Wang, H., S. Wang, Z. Liao et al., Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int. J. Pharm., 430:1–2 (2012), 342–9.CrossRefGoogle Scholar
Chiang, W. H., W. C. Huang, C. W. Chang et al., Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. J. Control. Release, 168:3 (2013), 280–8.CrossRefGoogle ScholarPubMed
Glover, A. L., J. B. Bennett, J. S. Pritchett et al., Magnetic heating of iron oxide nanoparticles and magnetic micelles for cancer therapy. IEEE Trans. Magn., 49:1 (2013), 231235.CrossRefGoogle ScholarPubMed
Pourjavadi, A., Hosseini, S. H., Alizadeh, M., and Bennett, C., Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin. Colloids Surf. B, 116C (2013), 4954.Google Scholar
Sahoo, B., Devi, K. S., Banerjee, R., Maiti, T. K., Pramanik, P., and Dhara, D., Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl. Mater. Interfaces, 5:9 (2013), 3884–93.CrossRefGoogle ScholarPubMed
Ao, L., B. Wang, P. Liu et al., A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale, 6:18 (2014), 10710–6.CrossRefGoogle ScholarPubMed
Davaran, S., S. Alimirzalu, K. Nejati-Koshki et al., Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on Poly(N-isopropylacrylamide) for anti-cancer drug delivery. Asian Pac. J. Cancer Prev., 15:1 (2014), 4954.CrossRefGoogle ScholarPubMed
Park, J. H., H. J. Cho, H. Y. Yoon et al., Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release, 174 (2014), 98108.CrossRefGoogle ScholarPubMed
Sadighian, S., Rostamizadeh, K., Hosseini-Monfared, H., and Hamidi, M., Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf. B, 117 (2014), 406–13.CrossRefGoogle ScholarPubMed
Scialabba, C., Licciardi, M., Mauro, N., Rocco, F., Ceruti, M., and Giammona, G., Inulin-based polymer coated SPIONs as potential drug delivery systems for targeted cancer therapy. Eur. J. Pharm. Biopharm., 88:3 (2014), 695705.CrossRefGoogle ScholarPubMed
Tian, Y., Jiang, X., Chen, X., Shao, Z., and Yang, W., Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv. Mater., 26:43 (2014), 7393–8.CrossRefGoogle ScholarPubMed
Unsoy, G., Khodadust, R., Yalcin, S., Mutlu, P., and Gunduz, U., Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci., 62 (2014), 243–50.CrossRefGoogle ScholarPubMed
Shen, J. M., F. Y. Gao, T. Yin et al., cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol. Res., 70:1 (2013), 102–15.CrossRefGoogle ScholarPubMed
Wadajkar, A. S. et al., Multifunctional particles for melanoma-targeted drug delivery. Acta. Biomater., 8:8 (2012), 29963004.CrossRefGoogle ScholarPubMed
Shevtsov, M. A., B. P. Nikolaev, L. Y. Yakovleva et al., Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int. J. Nanomed., 9 (2014), 273–87.Google ScholarPubMed
Su, W. et al., PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int. J. Pharm., 426:1–2 (2012), 170–81.CrossRefGoogle ScholarPubMed
Yuk, S. H. et al., Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules, 12:6 (2011), 2335–43.CrossRefGoogle ScholarPubMed
Zhang, J., Shin, M. C., and Yang, V. C., Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm. Res., 31:3 (2014), 579–92.CrossRefGoogle Scholar
Cinteza, L. O., Ohulchanskyy, T. Y., Sahoo, Y., Bergey, E. J., Pandey, R. K., and Prasad, P. N., Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol. Pharm., 3:4 (2006), 415–23.CrossRefGoogle ScholarPubMed
Shen, J. M., L. Xu, Y. Lu et al., Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements. Int. J. Pharm., 427:2 (2012), 400–9.CrossRefGoogle ScholarPubMed
Chen, S., Y. Li, C. Guo et al., Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir, 23:25 (2007), 12669–76.CrossRefGoogle ScholarPubMed
Cheong, S-J., C-M. Lee, S-L. Kim et al., Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int. J. Pharm., 372:1–2 (2009), 169–76.CrossRefGoogle ScholarPubMed
Ragheb, R. R., D. Kim, A. Bandyopadhyay et al., Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med., 70:6 (2013), 1748–60.CrossRefGoogle ScholarPubMed
Krukemeyer, M. G., Krenn, V., Jakobs, M., and Wagner, W., Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets – sarcoma treatment in progress. J. Drug Target., 20:2 (2012), 185–93.CrossRefGoogle Scholar
Majd, M. Heidari et al., Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J. Drug Target., 21:4 (2013), 328–40.Google Scholar
Ciofani, G., Genchi, G. G., Guardia, P., Mazzolai, B., Mattoli, V., and Bandiera, A., Recombinant human elastin-like magnetic microparticles for drug delivery and targeting. Macromol. Biosci., 14:5 (2014), 632–42.CrossRefGoogle ScholarPubMed
Jiang, X., X. Sha, H. Xin et al., Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c(RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials, 32:35 (2011), 9457–69.CrossRefGoogle Scholar
Luo, B., S. Xu, A. Luo et al., Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano, 5:2 (2011), 1428–35.CrossRefGoogle ScholarPubMed
Chen, Y. C., Lee, W. F., Tsai, H. H., and Hsieh, W. Y., Paclitaxel and iron oxide loaded multifunctional nanoparticles for chemotherapy, fluorescence properties, and magnetic resonance imaging. J. Biomed. Mater. Res. A, 100:5 (2012), 1279–92.Google ScholarPubMed
Filippousi, M., S. A. Papadimitriou, D. N. Bikiaris et al., Novel core-shell magnetic nanoparticles for Taxol encapsulation in biodegradable and biocompatible block copolymers: Preparation, characterization and release properties. Int. J. Pharm., 448:1 (2013), 221–30.CrossRefGoogle ScholarPubMed
Shen, J. M., Yin, T., Tian, X. Z., Gao, F. Y., and Xu, S., Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. ACS Appl. Mater. Interfaces, 5:15 (2013), 7014–24.CrossRefGoogle ScholarPubMed
Jiao, Y., Sun, Y., Tang, X., Ren, Q., and Yang, W., Tumor- targeting multifunctional rattle-type theranostic nanoparticles for MRI/NIRF bimodal imaging and delivery of hydrophobic drugs. Small, 11:16 (2015). 1962–74CrossRefGoogle ScholarPubMed
Singh, A., Dilnawaz, F., Mewar, S., Sharma, U., Jagannathan, N. R., and Sahoo, S. K., Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl. Mater. Interfaces, 3:3 (2011), 842–56.CrossRefGoogle ScholarPubMed
Oliveira, R. R., Ferreira, F. S., Cintra, E. R., Branquinho, L. C., Bakuzis, A. F., and Lima, E. M., Magnetic nanoparticles and rapamycin encapsulated into polymeric nanocarriers. J. Biomed. Nanotechnol., 8:2 (2012), 193201.CrossRefGoogle ScholarPubMed
Kirthivasan, B., Singh, D., Bommana, M. M., Raut, S. L., Squillante, E., and Sadoqi, M., Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system. Nanotechnology, 23:25 (2012), 255102.CrossRefGoogle ScholarPubMed
Namiki, Y., T. Namiki, H. Yoshida et al., A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol., 4:9 (2009), 598606.CrossRefGoogle ScholarPubMed
Kumar, S., Jana, A. K., Dhamija, I., and Maiti, M., Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J. Drug Target., 22:2 (2014), 123–37.CrossRefGoogle ScholarPubMed
Chen, Y., W. Wang, G. Lian et al., Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int. J. Nanomed., 7 (2012), 359–68.Google ScholarPubMed
Majd, M. Heidari, D. Asgari, J. Barar et al., Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf. B, 106 (2013), 117–25.Google Scholar
Kempe, M., H. Kempe, I. Snowball et al., The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials, 31:36 (2010), 9499–510.CrossRefGoogle ScholarPubMed