Skip to main content Accessibility help
Hostname: page-component-99c86f546-qdp55 Total loading time: 3.267 Render date: 2021-12-08T00:20:14.613Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }


Published online by Cambridge University Press:  05 September 2012

Thomas H. Nash, III
Arizona State University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Lichen Biology , pp. 364 - 461
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aarrestad, P. A. and Aamlid, D. (1999). Vegetation monitoring in South-Varanger, Norway – species composition of ground vegetation and its relation to environmental variables and pollution impact. Environmental Monitoring and Assessment, 58, 1–21.CrossRefGoogle Scholar
Abba', S., Ghignone, S. and Bonfante, P. (2006). A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins. BMC Genomics, 7, 39.CrossRefGoogle ScholarPubMed
Acharius, E. (1798). Lichenographiae Svecicae Prodromus. Linköping: D.G. Björn.CrossRefGoogle Scholar
Acharius, E. (1803). Methodus qua omnus detectos Lichenes. Stockholm: F.D.D. Ulrich.Google Scholar
Acharius, E. (1810). Lichenographia universalis. Göttingen: F. Dandewerts.Google Scholar
Acharius, E. (1814). Synopsis methodica lichenum. Lund.Google Scholar
Adams, G. C. and Kropp, B. R. (1996). Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a pathogen of carrot in cold storage. Mycologia, 88, 459–472.CrossRefGoogle Scholar
Adler, M. T. and Calvelo, S. (2002). Parmeliaceae s. str. (lichenized Ascomycetes) from Tierra del Fuego (southern South America) and their world distribution patterns. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg, 30–32, 9–24.Google Scholar
Adler, M. T., Fazio, A., Bertoni, M. D., et al. (2004). Culture experiments and DNA verification of a mycobiont isolated from Punctelia praesignis (Parmeliaceae, lichenized Ascomycotina). Bibliotheca Lichenologica, 88, 1–8.Google Scholar
Aguiar, L. W., Martau, L., Oliveira, M. L. A. A. and Martins-Mazzitelli, S. M. A. (1998). Efeitos do dióxido de enxofre (SO2) em liquens, Rio Grande do Sul, Brasil. Iheringia Botanica, 50, 67–73.Google Scholar
Ahmadjian, V. (1967 a). The Lichen Symbiosis. Toronto: Blaisdell Publishing.Google Scholar
Ahmadjian, V. (1967 b). A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia, 6, 127–160.CrossRefGoogle Scholar
Ahmadjian, V. (1973). Methods of isolating and culturing lichen symbionts and thalli. In The Lichens, ed. Ahmadjian, V. and Hale, M. E., pp. 653–659. London: Academic Press.Google Scholar
Ahmadjian, V. (1988). The lichen alga Trebouxia: does it occur free-living?Plant Systematics and Evolution, 158, 243–247.CrossRefGoogle Scholar
Ahmadjian, V. (1993). The Lichen Symbiosis. New York: John Wiley.Google Scholar
Ahmadjian, V. (1995). Lichens are more important than you think. BioScience, 45, 123–124.CrossRefGoogle Scholar
Ahmadjian, V. (2001). Trebouxia: reflections on a perplexing and controversial lichen photobiont. In Symbiosis, ed. Seckbach, J., pp. 373–383. Dordrecht: Kluwer Academic.Google Scholar
Ahmadjian, V. and Heikkilä, H. (1970). The culture and synthesis of Endocarpon pusillum and Staurothelse clopima. Lichenologist, 4, 259–267.CrossRefGoogle Scholar
Ahmadjian, V. and Jacobs, J. B. (1981). Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature (London), 389, 169–172.CrossRefGoogle Scholar
Ahti, T. (1999). Biogeography. Nordic Lichen Flora, 1, 7–8.Google Scholar
Ahti, T. (2000). Cladoniaceae. Flora Neotropica Monograph, 78, 1–362.Google Scholar
Alebic-Juretic, A. and Arko-Pijevac, M. (1989). Air pollution damage to cell membranes in lichens – results of simple biological test applied in Rijeka, Yugoslavia. Water, Air, and Soil Pollution, 47, 25–33.CrossRefGoogle Scholar
Alexopoulos, C. J., Mims, C. W. and Blackwell, M. (1996). Introductory Mycology. 4th edn. New York: John Wiley.Google Scholar
Allan, A. and Fluhr, R. (1997). Two distinct sources of elirefd reactive oxygen species in tobacco epidermal cells. Plant Cell, 9, 1559–1572.CrossRefGoogle ScholarPubMed
Allen, J. F., Mullineaux, C. W., Sanders, C. E. and Melis, A. (1989). State transitions, photosystem stoichiometry adjustment and non-photochemical quenching in cyanobacterial cells acclimated to light absorbed by photosystem I or photosystem II. Photosynthesis Research, 22, 157–166.CrossRefGoogle ScholarPubMed
Alpert, P. (1988). Survival of a desiccation-tolerant moss, Grimmia laevigata, beyond its observed microdistributional limits. Journal of Bryology, 15, 219–227.CrossRefGoogle Scholar
Alscher, R. (1984). Effects of SO2 on light-modulated enzyme reactions. In Gaseous Air Pollutants and Plant Metabolism, ed. Koziol, M. J. and Whatley, F. R., pp. 181–200. London: Butterworths.Google Scholar
Alstrup, V. (1992). Effects of pesticides on lichens. Bryonora, 9, 2–4.Google Scholar
Alstrup, V. and Hansen, E. S. (1977). Three species of lichens tolerant of high concentrations of copper. Oikos, 29, 290–293.CrossRefGoogle Scholar
Alstrup, V. and Hawksworth, D. L. (1990). The lichenicolous fungi from Greenland. Meddelelser om Grønland, Bioscience, 31, 1–90.Google Scholar
Amthor, J. S. (1995). Higher plant respiration and its relationships to photosynthesis. In Ecophysiology of Photosynthesis, ed. Schulze, E. D. and Caldwell, M. M., pp. 71–101. Berlin: Springer.Google Scholar
Anagnostidis, K. and Komárek, J. (1985). Modern approach to the classification system of cyanophytes. 1 – Introduction. Archiv für Hydrobiologie, Supplementband, 71 (Algological Studies, 38/39), 291–302.Google Scholar
Anagnostidis, K. and Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3 – Oscillatoriales. Archiv für Hydrobiologie, Supplementband, 80 (Algological Studies, 50/53), 327–472.Google Scholar
Anagnostidis, K. and Komárek, J. (1990). Modern approach to the classification system of cyanophytes. 5 – Stigonematales. Algological Studies, 59, 1–73.Google Scholar
Anand, M., Laurence, S. and Rayfield, B. (2005). Diversity relationships among taxonomic groups in recovering and restored forests. Conservation Biology, 19, 955–962.CrossRefGoogle Scholar
Andersen, H. L. and Ekman, S. (2005). Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycological Research, 109, 21–30.CrossRefGoogle ScholarPubMed
Anonymous (2004). Vagrant lichen charged in elk deaths. Castilleja, 23, 1.
Antoine, M. E. (2004). An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist, 107, 82–87.CrossRefGoogle Scholar
Antoine, M. E. and McCune, B. (2004). Contrasting fundamental and realized ecological niches with epiphytic lichen transplants in an old-growth Pseudotsuga forest. Bryologist, 107, 163–173.CrossRefGoogle Scholar
Aptroot, A. (1987). Terpenoids in tropical Pyxinaceae (lichenized fungi). In XIV International Botanical Congress, Abstracts, Berlin, ed. Greuter, W., Zimmer, B. and Behnke, H.-D., p. 5–04–7.Google Scholar
Aptroot, A. (2001). Lichenized and saprobic fungal biodiversity of a single Elaeocarpus tree in Papua New Guinea, with the report of 200 species of ascomycetes associated with one tree. Fungal Diversity, 6, 1–11.Google Scholar
Aptroot, A. and Seaward, M. R. D. (2003). Freshwater lichens. In Freshwater Mycology, ed. Tsui, C. K. and Hyde, K. D., pp. 101–110. Hong Kong: Fungal Diversity Press.Google Scholar
Aptroot, A. and Sipman, H. J. M. (1997). Diversity of lichenized fungi in the tropics. In Biodiversity of Tropical Microfungi, ed. Hyde, K. D., pp. 93–106. Hong Kong: Hong Kong University Press.Google Scholar
Aptroot, A. and Sparrius, L. B. (2006). Additions to the lichen flora of Vietnam, with an annotated checklist and bibliography. Bryologist, 109, 358–371.CrossRefGoogle Scholar
Archer, A. W. and Elix, J. A. (1993). Additional new taxa and a new report of Pertusaria (lichenised Ascomycotina) from Australia. Mycotaxon, 49, 143–150.Google Scholar
Archer, D., Eggink, G., Schweizer, M. Stymne, S. and Rathledge, G. (1999). Manipulation of Lipid Metabolism Aimed at the Production of Fatty Acids and Polyketides. Final report, Contr. No. Air 2-CT94-967. Internet Publication
Archibald, P. A. (1975). Trebouxia DePuymaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia (Chlorophyceae, Chlorosarcinales). Phycologia, 14, 125–137.CrossRefGoogle Scholar
Armaleo, D. (1993). Why do lichens make secondary products? In XV International Botanical Congress Abstracts, ed. Furuya, M., p. 11. Yokohama, Japan: International Union of Biological Sciences.Google Scholar
Armaleo, D. and Clerc, P. (1990). Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Experimental Mycology, 15, 1–10.CrossRefGoogle Scholar
Armaleo, D. and Clerc, P. (1995). A rapid and inexpensive method for the purification of DNA from lichens and their symbionts. Lichenologist, 27, 207–213.CrossRefGoogle Scholar
Armstrong, R. A. (1974). A comparison of the growth-curves of the foliose lichen Parmelia conspersa determined by a cross-sectional study and by direct measurement. Environmental and Experimental Botany, 32, 221–227.CrossRefGoogle Scholar
Armstrong, R. A. (1988). Substrate colonization, growth, and competition. In CRC Handbook of Lichenology, Vol. 2, ed. Galun, M., pp. 3–16. Boca Raton: CRC Press.Google Scholar
Armstrong, R. A. (1992). Soredial dispersal from individual soralia in the lichen Hypogymnia physodes (L.) Nyl. Environmental and Experimental Botany, 32, 55–63.CrossRefGoogle Scholar
Armstrong, R. A. (1993). Factors determining lobe growth in foliose lichen thalli. New Phytologist, 124, 675–679.CrossRefGoogle Scholar
Armstrong, R. A. and Smith, S. N. (1992). Lobe growth variation and the maintenance of symmetry in foliose lichen thalli. Symbiosis, 12, 145–158.Google Scholar
Aronson, J. M. (1977). Cell walls and intracellular polysaccharides of Leptomitales. Abstracts Second International Mycological Congress A–L, ed. Bigelow, H. E. and Simmons, E. G., p. 19. Tampa: IMC-2, Inc.Google Scholar
Arup, U. and Grube, M. (1998). Molecular systematics of Lecanora subgenus Placodium. Lichenologist, 30, 415–425.CrossRefGoogle Scholar
Arup, U., Ekman, S., Grube, M., Mattsson, J. E. and Wedin, M. (2007). The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia, 99, 42–49.CrossRefGoogle Scholar
Arup, U., Ekman, S., Lindblom, L. and Mattsson, J. E. (1993). High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist, 25, 61–71.CrossRefGoogle Scholar
Asahina, Y. and Shibata, S. (1954). Chemistry of Lichen Substances. Tokyo: Japan Society for the Promotion of Science.Google Scholar
Ascaso, C., Wierzchos, J. and los Rios, A. (1995). Cytological investigations of lithobiontic microorganisms in granitic rocks. Botanica Acta, 108, 474–481.CrossRefGoogle Scholar
Aspray, T., Jones, E., Whipps, J. and Bending, G. (2006). Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris / Lactarius rufus symbiosis. FEMS Microbiology Ecology, 56, 25–33.CrossRefGoogle ScholarPubMed
Augusto, S., Pinho, P., Branquinho, C., et al. (2004). Atmospheric dioxin and furan deposition in relation to land-use and other pollutants: a survey with lichens. Journal of Atmospheric Chemistry, 49, 53–65.CrossRefGoogle Scholar
Avise, J. C. (1998). The history and purview of phylogeography: a personal reflection. Molecular Ecology, 7, 371–379.CrossRefGoogle Scholar
Bacci, E., Calamari, D., Gaggi, C., et al. (1986). Chlorinated hydrocarbons in lichen and moss samples from the Antarctic Peninsula. Chemosphere, 15, 747–754.CrossRefGoogle Scholar
Baćkor, M. and Dzubaj, A. (2004). Short-term and chronic effects of copper, zinc and mercury on the chlorophyll content of four lichen photobionts and related alga. Journal of the Hattori Botanical Laboratory, 95, 271–284.Google Scholar
Baćkor, M. and Fahselt, D. (2004). Physiological attributes of the lichen Cladonia pleurota in heavy metal-rich and control sites near Sudbury (Ont., Canada). Environmental and Experimental Botany, 52, 149–159.CrossRefGoogle Scholar
Baćkor, M. and Váczi, P. (2002). Copper tolerance in the lichen photobiont Trebouxia erici (Chlorophyta). Environmental and Experimental Botany, 48, 11–20.CrossRefGoogle Scholar
Baćkor, M. and Zetikova, J. (2003). Effects of copper, cobalt and mercury on the chlorophyll content of lichens Cetraria islandica and Flavocetraria cucullata. Journal of the Hattori Botanical Laboratory, 93, 175–187.Google Scholar
Baćkor, M., Dvorsky, K. and Fahselt, D. (2003). Influence of invertebrate feeding on the lichen Cladonia pocillum. Symbiosis, 34, 281–291.Google Scholar
Baddeley, M. S., Ferry, B. W. and Finegan, E. J. (1973). Sulphur dioxide and respiration in lichens. In Air Pollution and Lichens, ed. Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L., pp. 299–313. Toronto: University of Toronto Press.Google Scholar
Badger, M. R., Pfanz, H., Büdel, B., Heber, U. and Lange, O. L. (1993). Evidence for the functioning of photosynthetic CO2 concentration mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta, 191, 57–70.CrossRefGoogle Scholar
Bailey, R. H. (1966). Studies on the dispersal of lichen soredia. Journal of the Linnean Society, Botany, 59, 479–490.CrossRefGoogle Scholar
Bailey, R. H. (1976). Ecological aspects of dispersal and establishment in lichens. In Lichenology: Progress and Problems, ed. Brown, D. H., Hawksworth, D. L. and Bailey, R. H., pp. 215–247. New York: Academic Press.Google Scholar
Balaguer, L. and Manrique, E. (1995). Factors which determine lichen response to chronic fumigations with sulphur dioxide. Cryptogamic Botany, 5, 215–219.Google Scholar
Balaguer, L., Manrique, E., los Rios, A., et al. (1999). Long-term responses of the green algal lichen Parmelia caperata to natural CO2 enrichment. Oecologia, 119, 166–174.CrossRefGoogle ScholarPubMed
Balaguer, L., Valladares, F., Ascaso, C., et al. (1996). Potential effects of rising tropospheric concentrations of CO2 and O3 on green-algal lichens. New Phytologist, 132, 641–652.CrossRefGoogle Scholar
Bargagli, R., Iosco, F. P. and Barghigiani, C. (1987). Assessment of mercury dispersal in an abandoned mining area by soil and lichen analysis. Water, Air, and Soil Pollution, 36, 219–225.CrossRefGoogle Scholar
Barghigiani, C., Bargagli, R., Siegel, B. Z. and Siegel, S. M. (1990). A comparative study of mercury distribution on the Aeolian volcanoes, Vulcano and Stromboli. Water, Air, and Soil Pollution, 53, 179–188.CrossRefGoogle Scholar
Barkman, J. J. (1958). Phytosociology and Ecology of Cryptogamic Epiphytes. Assen: Van Gorcum.Google Scholar
Barreno, E. (1991). Phytogeography of terricolous lichens in the Iberian Peninsula and the Canary Islands. Botanika Chronika, 10, 199–210.Google Scholar
Barreno, E., Grube, M., Bois, L., et al. (1998). Forum discussion. Lichens: a special case in biogeographical analysis. International Lichenologial Newsletter, 31, 18–24.Google Scholar
Barták, M., Solhaug, K. A., Vráblíková, H. and Gaulaa, Y. (2006). Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. Oecologia, 149, 553–560.CrossRefGoogle ScholarPubMed
Bartók, K. (1999). Pesticide usage and epiphytic lichen diversity in Romanian orchards. Lichenologist, 31, 21–25.Google Scholar
Bates, J. W., Bell, J. N. B. and Farmer, A. M. (1990). Epiphyte recolonisation of oaks along a gradient of air pollution in south-east England, 1979–1990. Environmental Pollution, 68, 81–99.CrossRefGoogle Scholar
Bates, J. W., Bell, J. N. B. and Massara, A. C. (2001). Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S. E. England over 21 years with declining SO2 concentrations. Atmospheric Environment, 35, 2557–2568.CrossRefGoogle Scholar
Bauer, H. (1984). Net photosynthetic CO2 compensation concentrations of some lichens. Zeitschrift für Pflanzenphysiologie, 114, 45–50.CrossRefGoogle Scholar
Beard, K. H. and DePriest, P. T. (1996). Genetic variation within and among mats of the reindeer lichen, Cladina subtenuis. Lichenologist, 28, 171–182.CrossRefGoogle Scholar
Beck, A. (1999). Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist, 31, 501–510.CrossRefGoogle Scholar
Beck, A. (2002). Photobionts: diversity and selectivity in lichen symbioses. International Lichenological Newsletter, 35, 18–24.Google Scholar
Beck, A. and Koop, H. U. (2001). Analysis of the photobiont population in lichens using a single-cell manipulator. Symbiosis, 31, 57–67.Google Scholar
Beck, A., Friedl, T. and Rambold, G., (1998). Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist, 139, 709–720.CrossRefGoogle Scholar
Beck, A., Kasalicky, T. and Rambold, G. (2002). Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytologist, 153, 317–326.CrossRefGoogle Scholar
Beckelhimer, S. L. and Weaks, T. E. (1986). Effects of water transported sediment on corticolous lichen communities. Lichenologist, 18, 339–347.CrossRefGoogle Scholar
Becker, V. E. (1980). Nitrogen fixing lichens in forests of the southern Appalachian Mountains of North Carolina. Bryologist, 83, 29–39.CrossRefGoogle Scholar
Becker, V. E., Reeder, J. and Stetler, R. (1977). Biomass and habitat of nitrogen fixing lichens in an oak forest in the North Carolina Piedmont. Bryologist, 80, 93–99.CrossRefGoogle Scholar
Beckett, A. (1981). Ascospore formation. In The Fungal Spore: Morphogenetic Controls, ed. Turian, G. and Hohl, H. R., pp. 107–129. London: Academic Press.Google Scholar
Beckett, P. J., Boileau, L. J. R., Padovan, D., Richardson, D. H. S. and Nieboer, E. (1982). Lichens and mosses as monitors of industrial activity associated with uranium and lead accumulation patterns. Environmental Pollution (Series B), 4, 91–107.CrossRefGoogle Scholar
Beckett, R. P. (1995). Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Annals of Botany, 76, 211–217.CrossRefGoogle Scholar
Beckett, R. P. (1997). Pressure-volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Annals of Botany, 79, 145–152.CrossRefGoogle Scholar
Beckett, R. P. and Brown, D. H. (1983). Natural and experimentally-induced zinc and copper resistance in the lichen genus Peltigera. Annals of Botany, 52, 43–50.CrossRefGoogle Scholar
Beckett, R. P. and Brown, D. H. (1984 a). The control of cadmium uptake in the lichen genus Peltigera. Journal of Experimental Botany, 35, 1071–1082.CrossRefGoogle Scholar
Beckett, R. P. and Brown, D. H. (1984 b). The relationship between cadmium uptake and heavy metal uptake tolerance in the lichen genus Peltigera. New Phytologist, 97, 301–311.CrossRefGoogle Scholar
Beckett, R. P. and Minibayeva, F. V. (2007). Rapid breakdown of exogenous extracellular hydrogen peroxide by lichens. Physiologia Plantarum, 129, 588–596.CrossRefGoogle Scholar
Beckett, R. P., Marschall, M. and Laufer, Z. (2005 a). Hardening enhances photoprotection in the moss Atrichum androgynum during rehydration by increasing fast rather than slow-relaxing quenching. Journal of Bryology, 27, 7–12.CrossRefGoogle Scholar
Beckett, R. P., Mayaba, N., Minibayeva, F. V. and Alyabyev, A. J. (2005 b). Hardening by partial dehydration and ABA increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon. Annals of Botany, 96, 109–115.CrossRefGoogle ScholarPubMed
Beckett, R. P., Minibayeva, F. V., Vylegzhanina, N. V. and Tolpysheva, T. (2003). High rates of extracellular superoxide reduction by lichens in the Suborder Peltigerineae correlate with indices of high metabolic activity. Plant, Cell and Environment, 26, 1827–1837.CrossRefGoogle Scholar
Bedeneau, M. (1982). Reproduction in vitro des effets de la pollution par le dioxyde de soufre sur quelques lichens. Annales des Sciences Forestieres, 39, 165–178.CrossRefGoogle Scholar
Bedford, D. J., Schweizer, E., Hopwood, D. A. and Khosla, C. (1995). Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). Journal of Bacteriology, 177, 4544–4548.CrossRefGoogle Scholar
Begora, M. and Fahselt, D. (2001). Photolability of secondary compounds in some lichen species. Symbiosis, 31, 3–22.Google Scholar
Belandria, G., Asta, J. and Nurit, F. (1989). Effects of sulphur dioxide and fluoride on ascospore germination of several lichens. Lichenologist, 21, 79–86.CrossRefGoogle Scholar
Belnap, J. (2001). Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In Biological Soil Crusts: Structure, Function, and Management, ed. Belnap, J. and Lange, O. L., pp. 241–261. Berlin: Springer.Google Scholar
Belnap, J. (2002). Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biological Fertility of Soils, 35, 128–135.CrossRefGoogle Scholar
Belnap, J. and Lange, O. L. (eds.) (2003). Biological Soil Crusts: Structure, Function, and Management: Ecological Studies 150. Berlin: Springer.CrossRefGoogle Scholar
Belnap, J. and Lange, O. L. (2005 a). Lichens and microfungi in biological soil crusts: community structure, physiology, and ecological functions. In The Fungal Community: Its Organization and Role in the Ecosystem, Vol. 3, ed. Dighton, J., White, J. F. and Oudemans, P., pp. 117–138. Boca Raton: CRC Press.CrossRefGoogle Scholar
Belnap, J. and Lange, O. L. (2005 b). Biological soil crusts and global changes: what does the future hold? In The Fungal Community: Its Organization and Role in the Ecosystem, Vol. 3, ed. Dighton, J., White, J. F. and Oudemans, P., pp. 697–712. Boca Raton: CRC Press.CrossRefGoogle Scholar
Benedict, J. B. (1991). Experiments on lichen growth. II. Effects of a seasonal snow cover. Arctic and Alpine Research, 23, 189–199.CrossRefGoogle Scholar
Benner, J. W. and Vitousek, P. M. (2007). Development of a diverse epiphyte community in response to phosphorous fertilization. Ecological Letters, 10, 628–636.CrossRefGoogle Scholar
Benner, J. W., Conroy, S., Lunch, C. K.Toyoda, N. and Vitousek, P. M. (2007). Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica, 39, 400–405.CrossRefGoogle Scholar
Bennett, J. P. and Wetmore, C. M. (1999). Geothermal elements in lichens of Yellowstone National Park, USA. Environmental and Experimental Botany, 42, 191–200.CrossRefGoogle Scholar
Berger, F. and Aptroot, A. (2003). Further contributions to the flora of lichens and lichenicolous fungi of the Azores. Arquipélago, 19A, 1–12.Google Scholar
Bergman, D. E. and Ebinger, J. E. (1990). Cyanogenesis in the lichen genus Dermatocarpon. Castanea, 55, 207–210.Google Scholar
Beschel, R. E. (1961). Dating rock surfaces by lichen growth and its application to glaciology and physiography (lichenometry). In Geology of the Arctic, Vol. 2, ed. Raasch, G. O., pp. 1044–1062. Toronto: University of Toronto Press.Google Scholar
Bewley, J. D. (1979). Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology, 30, 195–238.CrossRefGoogle Scholar
Bewley, J. D. and Krochko, J. E. (1982). Desiccation tolerance. In Physiological Plant Ecology. Vol. II: Water Relations and Carbon Assimilation, ed. Lange, O. L., Nobel, P. S., Osmond, C. B. and Ziegler, H., pp. 325–378. Encyclopedia of Plant Physiology 12B. Berlin: Springer.CrossRefGoogle Scholar
Bilger, W., Rimke, S., Schreiber, U. and Lange, O. L. (1989). Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. Journal of Plant Physiology, 134, 261–268.CrossRefGoogle Scholar
Bingle, L. E., Simpson, T. J. and Lazarus, C. M. (1999). Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genetics and Biology, 26, 209–223.CrossRefGoogle ScholarPubMed
Bischoff, H. W. and Bold, H. C. (1963). Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication, 6318, 1–95.Google Scholar
Bjelland, T. and Ekman, S. (2005). Fungal diversity in rock beneath a crustose lichen as revealed by molecular markers. Microbial Ecology, 49, 598–603.CrossRefGoogle ScholarPubMed
Bjerke, J. W. (2005). Synopsis of the lichen genus Menegazzia (Parmeliaceae, lichenized Ascomycotina) in South America. Mycotaxon, 91, 423–454.Google Scholar
Bjerke, J. W., Elvebakk, A., Dominguez, B. and Dahlbäck, A. (2005). Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry, 66, 337–344.CrossRefGoogle ScholarPubMed
Bjerke, J. W., Lerfall, K. and Elvebakk, A. (2002). Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochemical and Photobiological Sciences, 1, 678–685.CrossRefGoogle ScholarPubMed
Bjerke, J. W., Zielke, M. and Solheim, B. (2003). Long-term impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic. New Phytologist, 159, 361–367.CrossRefGoogle Scholar
Björkman, O. (1981). Responses to different quantum flux densities. In Physiological Plant Ecology. Vol. I: Responses to the Physical Environment, ed. Lange, O. L., Nobel, P. S., Osmond, C. B. and Ziegler, H., pp. 57–108. Encyclopedia of Plant Physiology 12A. Berlin: Springer.CrossRefGoogle Scholar
Björkman, O., Boardman, N. K., Anderson, J. A., et al. (1972). Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Carnegie Institution Washington Yearbook, 71, 115–135.Google Scholar
Black, M. and Pritchard, H. W. (2002). Desiccation and Survival in Plants: Drying Without Dying. Oxon: CABI Publishing.CrossRefGoogle Scholar
Blaha, J., Baloch, E. and Grube, M. (2006). High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society, 88, 283–293.CrossRefGoogle Scholar
Blanco, O., Crespo, A., Divakar, P. K., Elix, J. A. and Lumbsch, H. T. (2005). Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia, 97, 150–159.CrossRefGoogle Scholar
Blanco, O., Crespo, A., Elix, J. A., Hawksworth, D. L. and Lumbsch, H. T. (2004). A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon, 53, 959–975.CrossRefGoogle Scholar
Blanco, O., Crespo, A., Ree, R. H. and Lumbsch, H. T. (2006). Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution, 39, 52–69.CrossRefGoogle ScholarPubMed
Blum, O. B. (1973). Water relations. In The Lichens, ed. Ahmadjian, V. and Hale, M. E., pp. 381–400. New York: Academic Press.Google Scholar
Boardman, N. K. (1977). Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology, 28, 355–377.CrossRefGoogle Scholar
Boardman, N. K., Anderson, J. M., Thorne, S. E. and Björkman, O. (1972). Photochemical reactions of chloroplasts and components of the photosynthetic electron transport chain in two rainforest species. Carnegie Institution Washington Yearbook, 71, 107–114.Google Scholar
Boileau, L. J. R., Beckett, P. J., Lavoie, P., Richardson, D. H. S. and Nieboer, E. (1982). Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada. I. Field procedures, chemical analyses and interspecies comparisons. Experimental Pollution (Series B), 4, 69–84.CrossRefGoogle Scholar
Boison, G., Mergel, A., Jolkver, H. and Bothe, H. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Applied and Environmental Microbiology, 70, 7070–7077.CrossRefGoogle Scholar
Boissière, M.-C. (1982). Cytochemical ultrastructure of Peltigera canina: some factors relating to its symbiosis. Lichenologist, 14, 1–28.CrossRefGoogle Scholar
Boissière, M.-C. (1987). Ultrastructural relationship between the composition and the structure of the cell wall of the mycobiont of two lichens. Bibliotheca Lichenologica, 25, 117–123.Google Scholar
Bold, H. C. and Wynne, M. J. (1985). Introduction to the Algae. Stucture and Reproduction. 2nd edn. Englewood Cliffs: Prentice Hall.Google Scholar
Boonpragob, K., Nash, T. H., III, and Fox, C. A. (1989). Seasonal deposition patterns of acidic ions and ammonium to the lichen Ramalina menziesii Tayl. in southern California. Environmental and Experimental Botany, 29, 187–197.CrossRefGoogle Scholar
Borecký, J. and Vercesi, A. (2005). Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. Bioscience Reports, 25, 271–286.CrossRefGoogle Scholar
Boreham, S. (1992). A study of corticolous lichens on London plane Platanus × hybrida trees in West Ham Park, London. London Naturalist, 71, 61–71.Google Scholar
Bothe, H. and Loos, E. (1972). Effect of far red light and inhibitors on nitrogen fixation and photosynthesis in the blue-green alga Anabaena cylindrica. Archiv für Microbiologie, 86, 241–254.CrossRefGoogle Scholar
Bothe, H., Distler, E. and Eisbrenner, G. (1978). Hydrogen metabolism in blue-green algae. Biochimie, 60, 277–289.CrossRefGoogle ScholarPubMed
Bottomley, P. J. and Stewart, W. D. P. (1977). ATP and nitrogenase activity in nitrogen-fixing heterocystous blue-green algae. New Phytologist, 79, 625–638.CrossRefGoogle Scholar
Boucher, V. L. and Nash, T. H., III (1990 a). Growth pattern in Ramalina menziesii in California: coastal vs. inland populations. Bryologist, 93, 295–302.CrossRefGoogle Scholar
Boucher, V. L. and Nash, T. H., III (1990 b). The role of the fruticose lichen Ramalina menziesii in the annual turnover of biomass and macronutrients in a blue oak woodland. Botanical Gazette, 151, 114–118.CrossRefGoogle Scholar
Boustie, J. and Grube, M. (2005). Lichens – a promising source of bioactive secondary metabolites. Plant Genetic Resources, 3, 273–287.CrossRefGoogle Scholar
Bowker, M. A., Belnap, J., Davidson, D. W. and Phillips, S. L. (2005). Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecological Applications, 15, 1941–1951.CrossRefGoogle Scholar
Branquinho, C., Brown, D. H. and Catarino, F. (1997). The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environmental and Experimental Botany, 38, 165–179.CrossRefGoogle Scholar
Brightman, F. H. and Seaward, M. R. D. (1977). Lichens of man-made substrates. In Lichen Ecology, ed. Seaward, M. R. D., pp. 253–293. London: Academic Press.Google Scholar
Broady, P. A. and Ingerfeld, M. (1993). Three new species and a new record of chaetophoracean (Chlorophyta) algae from terrestrial habitats in Antarctica. European Journal of Phycology, 28, 25–31.CrossRefGoogle Scholar
Brochmann, C., Gabrielsen, T. M., Nordal, I., Landvik, J. Y. and Elven, R. (2003). Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon, 52, 417–450.CrossRefGoogle Scholar
Brock, T. D. (1978). Thermophilic Microorganisms and Life at High Temperatures. New York: Springer.CrossRefGoogle Scholar
Brodo, I. M. (1973). Substrate ecology. In The Lichens, ed. Ahmadjian, V. and Hale, M. E., pp. 401–441. New York: Academic Press.Google Scholar
Brodo, I. M. (1978). Changing concepts regarding chemical diversity in lichens. Lichenologist, 10, 1–11.CrossRefGoogle Scholar
Brodo, I. M. and Richardson, D. H. S. (1978). Chimeroid associations in the genus Peltigera. Lichenologist, 10, 157–170.CrossRefGoogle Scholar
Brodo, I. M., Sharnoff, S. D. and Sharnoff, S. (2001). Lichens of North America. New Haven: Yale University Press.Google Scholar
Brooks, D. R. (2004). Reticulations in historical biogeography: the triumph of time over space in evolution. In Frontiers of Biogeography: New Directions in the Geography of Nature, ed. Lomolino, M. V. and Heaney, L. R., pp. 125–144. Sunderland: Sinauer Associates.Google Scholar
Brouwer, R. (1962). Distribution of dry matter in the plant. Netherland Journal of Agricultural Sciences, 10, 399–408.Google Scholar
Brown, D. H. (1972). The effect of Kuwait crude oil and a solvent emulsifier on the metabolism of the marine lichen, Lichina pygmaea. Marine Biology, 12, 309–315.CrossRefGoogle Scholar
Brown, D. H. (1992). Impact of agriculture on bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. and Farmer, A. M., pp. 259–283. Oxford: Clarendon Press.Google Scholar
Brown, D. H. and Beckett, R. P. (1984). Uptake and effect of cations on lichen metabolism. Lichenologist, 16, 173–188.CrossRefGoogle Scholar
Brown, D. H. and Beckett, R. P. (1985). The role of the cell wall in the intracellular uptake of cations by lichens. In Lichen Physiology and Cell Biology, ed. Brown, D. H., pp. 247–258. New York: Plenum Press.CrossRefGoogle Scholar
Brown, D. H., Ascaso, C. and Rapsch, S. (1987). Ultrastructural changes in the pyrenoid of the lichen Parmelia sulcata stored under controlled conditions. Protoplasma, 136, 136–144.CrossRefGoogle Scholar
Brown, D. H., MacFarlane, J. D. and Kershaw, K. A. (1983). Physiological-environmental interactions in lichens. XVI. A re-examination of resaturation respiration phenomena. New Phytologist, 93, 237–246.CrossRefGoogle Scholar
Brown, D. H., Standell, C. J. and Miller, J. E. (1995). Effects of agricultural chemicals on lichens. Cryptogamic Botany, 5, 220–223.Google Scholar
Brown, M. J., Jarman, S. K. and Kantvilas, G. (1994). Conservation and reservation of non-vascular plants in Tasmania, with special reference to lichens. Biodiversity and Conservation, 3, 263–278.CrossRefGoogle Scholar
Brown, R. M. Jr. and Bold, H. C. (1964). Comparative studies of the algal genera Tetracystis and Chlorococcum. Phycological Studies V. University of Texas Publications, 6417, 1–213.Google Scholar
Brunauer, G. and Stocker-Wörgötter, E. (2005). Culture of lichen fungi for future production of biologically active compounds. Symbiosis, 38, 187–201.Google Scholar
Brunauer, G., Grube, M., Muggia, L. and Stocker-Wörgötter, E. (2006). Gene bank of PKS from the mycobiont of Xanthoria elegans. Published in NCBI Database.
Brunner, U. and Honegger, R. (1985). Chemical and ultrastructural studies on the distribution of sporopollenin-like biopolymers in 6 genera of lichen phycobionts. Canadian Journal of Botany, 63, 2221–2230.CrossRefGoogle Scholar
Bruns, T. D., White, T. J. and Taylor, J. W. (1991). Fungal molecular systematics. Annual Review of Ecology and Systematics, 22, 525–564.CrossRefGoogle Scholar
Bruteig, I. E. (1993). The epiphytic lichen Hypogymnia physodes as biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environmental Monitoring and Assessment, 26, 27–47.CrossRefGoogle ScholarPubMed
Bryant, J. P., Chapin, F. S. III and Klein, D. R. (1983). Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357–368.CrossRefGoogle Scholar
Bubrick, P. and Galun, M. (1980 a). Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Correlation between binding patterns and cell wall cytochemistry. Protoplasma, 104, 167–173.CrossRefGoogle Scholar
Bubrick, P. and Galun, M. (1980 b). Symbiosis in lichens: differences in cell wall properties of freshly isolated and cultured phycobionts. FEMS Microbiology Letters, 7, 311–313.CrossRefGoogle Scholar
Bubrick, P., Galun, M. and Frensdorff, A. (1981). Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Localization in the intact lichen and cultured mycobiont. Protoplasma, 105, 207–211.CrossRefGoogle Scholar
Bubrick, P., Galun, M. and Frensdorff, A. (1984). Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.) Th. Fr. can be found free-living in nature. New Phytologist, 97, 455–462.CrossRefGoogle Scholar
Buchauer, M. J. (1973). Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead. Environmental Science and Technology, 7, 131–135.CrossRefGoogle Scholar
Büdel, B. (1982). Phycobionten der Lichinaceen. Diplom-Thesis. Marburg: Universität Marburg.
Büdel, B. (1987). Zur Biologie und Systematik der Flechtengattungen Heppia und Peltula im südlichen Afrika. Bibliotheca Lichenologica, 23, 1–105.Google Scholar
Büdel, B. (1990). Anatomical adaptations to the semiarid/arid environment in the lichen genus Peltula. Bibliotheca Lichenologica, 38, 47–61.Google Scholar
Büdel, B. (1992). Taxonomy of lichenized procaryotic blue-green algae. In Algae and Symbioses, ed. Reisser, W., pp. 301–324. Bristol: Biopress Limited.Google Scholar
Büdel, B. and Henssen, A. (1983). Chroococcidiopsis (Cyanophyceae), a phycobiont in the lichen family Lichinaceae. Phycologia, 22, 367–375.CrossRefGoogle Scholar
Büdel, B. and Henssen, A. (1988). Zwei neue Peltula-Arten von Südafrika. International Journal of Mycology and Lichenology, 2, 235–249.Google Scholar
Büdel, B. and Lange, O. L. (1991). Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid?Botanica Acta, 104, 361–366.CrossRefGoogle Scholar
Büdel, B. and Lange, O. L. (1994). The role of cortical and epicortical layers in the lichen genus Peltula. Cryptogamic Botany, 4, 262–269.Google Scholar
Büdel, B. and Wessels, D. C. (1986). Parmelia hueana Gyeln., a vagrant lichen from the Namib Desert, SWA/Namibia. I. Anatomical and reproductive adaptations. Dinteria, 18, 3–15.Google Scholar
Bull, W. B. (1996). Dating San Andreas fault earthquakes with lichenometry. Geology, 24, 111–114.2.3.CO;2>CrossRefGoogle Scholar
Bull, W. B. and Brandon, M. T. (1998). Lichen dating of earthquake-generated regional rockfall events, Southern Alps, New Zealand. Geological Society of America Bulletin, 110, 60–84.2.3.CO;2>CrossRefGoogle Scholar
Bull, W. B., King, J., Kong, F., Moutoux, T. and Phillips, W. M. (1994). Lichen dating of coseismic landslide hazards in alpine mountains. Geomorphology, 10, 253–264.CrossRefGoogle Scholar
Bunce, H. W. F. (1996). Methods of monitoring smelter emission effects on a temperate rain forest. Fluoride, 29, 241–251.Google Scholar
Bungartz, F., Garvie, L. A. J. and Nash, T. H., III (2004). Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. Lichenologist, 36, 55–73.CrossRefGoogle Scholar
Burkholder, P. R. and Evans, A. W. (1945). Further studies on the antibiotic activity of Lichens. Bulletin of the Torrey Botanical Club, 72, 157–164.CrossRefGoogle Scholar
Burkholder, P. R., Evans, A. W., McVeigh, I. and Thornton, H. K. (1944). Antibiotic activity of Lichens. Proceedings of the National Academy of Sciences, USA, 30, 250–255.CrossRefGoogle ScholarPubMed
Buschbom, J. and Barker, D. (2006). Evolutionary history of vegetative reproduction in Porpidia s.l. (lichen-forming Ascomycota). Systematic Biology, 55, 417–484.CrossRefGoogle Scholar
Buschbom, J. and Mueller, G. M. (2004). Resolving evolutionary relationships in the lichen-forming genus Porpidia and related allies (Porpidiaceae, Ascomycota). Molecular Phylogenetics and Evolution, 32, 66–82.CrossRefGoogle Scholar
Buschbom, J. and Mueller, G. M. (2005). Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Molecular Biology and Evolution, 23, 574–586.CrossRefGoogle ScholarPubMed
Butin, H. (1954). Physiologisch-ökologische Untersuchungen über den Wasserhaushalt und die Photosynthese bei Flechten. Biologisches Zentralblatt, 73, 459–502.Google Scholar
Butler, M. J. and Day, A. W. (1998). Fungal melanins: a review. Canadian Journal of Microbiology, 44, 1115–1136.CrossRefGoogle Scholar
Bychek-Guschina, I. A., Kotlova, E. R. and Heipieper, H. (1999). Effects of sulfur dioxide on lichen lipids and fatty acids. Biochemistry (Moscow), 64, 61–65.Google ScholarPubMed
Calatayud, A., Sanz, M.-J., Calvo, E., Barreno, E. and Valle-Tascon, S. (1996). Chlorophyll a fluorescence and chlorophyll content in Parmelia quercina thalli from a polluted region of northern Castellón (Spain). Lichenologist, 28, 49–65.CrossRefGoogle Scholar
Calatayud, A., Tempe, P. J. and Barreno, E. (2000). Chlorophyll a fluorescence emission, xanthophylls cycle activity, and net photosynthetic responses to ozone in some foliose and fruticose lichen species. Photosynthetica, 38, 281–286.CrossRefGoogle Scholar
Caldwell, C. F., Turano, F. J. and McMahon, M. B. (1998). Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli. Planta, 204, 120–126.Google ScholarPubMed
Calvelo, S. and Liberatore, S. (2001). Checklist of Argentinian lichens (version 2). Online:
Campbell, D. (1996). Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix. Microbiology, 142, 1255–1263.CrossRefGoogle Scholar
Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P. and Öquist, G. (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 62, 667–683.Google ScholarPubMed
Cane, D. E., Walsh, C. T. and Khosla, C. (1998). Harnessing the biosynthetic code: combinations, permutations, and mutations. Science, 282, 63–68.CrossRefGoogle ScholarPubMed
Cardinale, M., Puglia, A. M. and Grube, M. (2006). Molecular analysis of lichen-associated bacterial communities. FEMS Microbiology Ecology, 57, 484–495.CrossRefGoogle ScholarPubMed
Carlberg, G. E., Ofstad, E. B., Drangsholt, H. and Steinnes, E. (1983). Atmospheric deposition of organic micropollutants in Norway studied by means of moss and lichen analysis. Chemosphere, 12, 341–356.CrossRefGoogle Scholar
Carter, N. E. A. and Viles, H. A. (2003). Experimental investigations into the interactions between moisture, rock surface temperatures and an epilithic lichen cover in the bioprotection of limestone. Building and Environment, 38, 1225–1234.CrossRefGoogle Scholar
Carter, N. E. A. and Viles, H. A. (2005). Bioprotection explored: the story of a little known earth surface process. Geomorphology, 67, 273–281.CrossRefGoogle Scholar
Case, J. W. and Krouse, H. R. (1980). Variations in sulphur content and stable sulphur isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia, 44, 248–257.CrossRefGoogle Scholar
Casely, A. F. and Dugmore, A. J. (2004). Climate change and ‘anomalous’ glacier fluctuations: the southwest outlets of Myrdalsjokull, Iceland. Boreas, 33, 108–122.CrossRefGoogle Scholar
Casselman, K. D. (2001). Lichen Dyes: The New Source Book. Mineola, NY: Dover Publications.Google Scholar
Castenholz, R. W. and Waterbury, J. B. (1989). Group I. Cyanobacteria. In Bergey's Manual of Systematic Bacteriology, Vol. 3, ed. Staley, J. T., Bryant, P., Pfennig, N and Holt, J. G., pp. 1710–1806. Baltimore: Williams and Wilkins.Google Scholar
Cavalier-Smith, T. (1987). The origin of fungi and pseudofungi. In Evolutionary Biology of the Fungi, ed. Rayner, A. D. M., Brasier, C. N. and Moore, D., pp. 339–353. Cambridge: Cambridge University Press.Google Scholar
Chamberlain, A. C. (1970). Interception and retention of radioactive aerosols by vegetation. Atmospheric Environment, 4, 57–78.CrossRefGoogle ScholarPubMed
Chapin, F. S. III (1991). Integrated responses of plants to stress. BioScience, 41, 29–36.CrossRefGoogle Scholar
Chapin, F. S. III, Bloom, A. J., Field, C. B. and Waring, R. H. (1987). Plant responses to multiple environmental factors. BioScience, 37, 49–57.CrossRefGoogle Scholar
Chapman, R. L. (1984). An assessment of the current state of our knowledge of the Trentepohliaceae. In Systematics of the Green Algae. ed. Irvine, D. E. G. and John, D. M., pp. 233–250. London: Academic Press.Google Scholar
Chen, G.-X., Kazmir, J. and Cheniae, G. M. (1992). Photoinhibition of hydroxylamine-extracted photosystem II membranes: studies of the mechanism. Biochemistry, 31, 11 072–11 083.CrossRefGoogle ScholarPubMed
Chen, S., Wu, D. and Wu, J. (1989). Using lichen communities as SO2 pollution monitors. Journal of Nanjing Normal University (Natural Science), 12, 77–82.Google Scholar
Chooi, Y. H., Stalker, D., Louwhoff, S. and Lawrie, A. (2006). The search for a polyketide synthase gene producing beta-orsellinic acid and methylphloroacetophenone as precursors of depsidones and usnic acid in the lichen Chondropsis semiviridis. Poster presentation, International Mycological Congress, IMC 8, Cairns, Australia.
Cislaghi, C. and Nimis, P. L. (1997). Lichens, air pollution and lung cancer. Nature, 387, 463–464.CrossRefGoogle ScholarPubMed
Clarke, A. K., Campbell, D., Gustafsson, P. and Öquist, G. (1995). Dynamic responses of photosystem II and phycobilisomes to changing light in the cyanobacterium Synechococcus sp. PCC 7942. Planta, 197, 553–562.CrossRefGoogle Scholar
Clauzade, G. and Roux, C. (1976). Les Champignons Lichénicoles non Lichénisés. Montpellier: Université des Sciences et Techniques du Languedoc.Google Scholar
Clayden, S. R. (1992). Chemical divergence of eastern North American and European populations of Arctoparmelia centrifuga and their sympatric usnic acid-deficient chemotypes. Bryologist, 95, 1–4.CrossRefGoogle Scholar
Clayden, S. R. (1997). Intraspecific interactions and parasitism in an association of Rhizocarpon lecanorinum and R. geographicum. Lichenologist, 29, 533–545.CrossRefGoogle Scholar
Clerc, P. (2006). Synopsis of Usnea (lichenized Ascomycetes) from the Azores with additional information on the species in Macaronesia. Lichenologist 38, 191–212.CrossRefGoogle Scholar
Codogno, M., Poelt, J. and Puntillo, D. (1989). Umbilicaria freyi spec. nova und der Formenkreis von Umbilicaria hirsuta in Europa. Plant Systematics and Evolution, 165, 55–69.CrossRefGoogle Scholar
Cohn, F. (1853). Untersuchungen über die Entwicklungsgeschichte microskopischer Algen und Pilze. Novorum actorum academiae caesareae leopoldinae-carolinae naturae curiosorum, 24, 101–256.Google Scholar
Coley, P. D. (1988). Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia, 74, 531–536.CrossRefGoogle ScholarPubMed
Collins, C. R. and Farrar, J. F. (1978). Structural resistances to mass transfer in the lichen Xanthoria parietina. New Phytologist, 31, 71–78.CrossRefGoogle Scholar
Common, R. S. (1991). The distribution and taxonomic significance of lichenan and isolichenan in the Parmeliaceae (lichenized Ascomycotina), as determined by iodine reactions. I. Introduction and methods. II. The genus Alectoria and associated taxa. Mycotaxon, 41, 67–112.Google Scholar
Cook, L. G. and Crisp, M. D. (2005). Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeography. Journal of Biogeography, 32, 741–754.CrossRefGoogle Scholar
Cook, L. M. (2003). The rise and fall of the carbonaria form of the peppered moth. Quarterly Review of Biology, 78, 399–417.CrossRefGoogle ScholarPubMed
Cowan, D. A., Green, T. G. A. and Wilson, A. T. (1979 a). Lichen metabolism. 1. The use of tritium labelled water in studies of anhydrobiotic metabolism in Ramalina celastri and Peltigera polydactyla. New Phytologist, 82, 489–503.CrossRefGoogle Scholar
Cowan, D. A., Green, T. G. A. and Wilson, A. T. (1979 b). Lichen metabolism. 2. Aspects of light and dark physiology. New Phytologist, 83, 761–769.CrossRefGoogle Scholar
Cowan, I. R., Lange, O. L. and Green, T. G. A. (1992). Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta, 187, 282–294.CrossRefGoogle ScholarPubMed
Cowie, R. H. and Holland, B. S. (2006). Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography, 33, 193–198.CrossRefGoogle Scholar
Cox, C. B. and Moore, P. D. (2005). Biogeography: An Ecological and Evolutionary Approach. Oxford: Blackwell Publishing.Google Scholar
Cox, R. J., Hitchman, T. S., Byron, K. J., et al. (1997). Post-translational modification of heterologously expressed Streptomyces Type II polyketide synthase acyl carrier proteins. FEBS Letters, 405, 267–272.CrossRefGoogle ScholarPubMed
Coxson, D. S. (1988). Recovery of net photosynthesis and dark respiration on rehydration of the lichen, Cladina mitis, and the influence of prior exposure to sulphur dioxide while desiccated. New Phytologist, 108, 483–487.CrossRefGoogle Scholar
Coxson, D. S. (1991). Impedance measurement of thallus moisture content in lichens. Lichenologist, 23, 77–84.CrossRefGoogle Scholar
Coxson, D. S. and Curteanu, M. (2002). Decomposition of hair lichens (Alectoria sarmentosa and Bryoria spp.) under snowpack in montane forest, Cariboo Mountains, British Columbia. Lichenologist, 34, 395–402.CrossRefGoogle Scholar
Coxson, D. S. and Nadkarni, N. M. (1995). Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In Forest Canopies, ed. Lowman, M. D. and Nadkarni, N. M., pp. 495–543. London: Academic Press.Google Scholar
Coxson, D. S., Webber, M. R. and Kershaw, K. A. (1984). The thermal operating environment of corticolous and pendulous tree lichens. Bryologist, 87, 197–202.CrossRefGoogle Scholar
Craw, R. C., Grehan, J. R. and Heads, M. J. (1999). Panbiogeography: Tracking the History of Life. Oxford Biogeography Series. Oxford: Oxford University Press, 11, 1–238.Google Scholar
Crespo, A., Bridge, P. D., Hawksworth, D. L., Grube, M and Cubero, O. F. (1999). Comparison of rRNA genotypic variability in the lichen-forming fungus Parmelia sulcata from long established and recolonizing sites following sulfur dioxide amelioration. Plant Systematics and Evolution, 217, 177–183.CrossRefGoogle Scholar
Crespo, A., Lumbsch, H. T., Matsson, J.-E., et al. (2007). Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB-1 gene. Molecular Phylogenetics and Evolution, 44, 812–824.CrossRefGoogle Scholar
Crews, T. E., Kurina, L. M. and Vitousek, P. M. (2001). Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii. Biogeochemistry, 52, 259–279.CrossRefGoogle Scholar
Crisci, J. V., Katinas, L. and Posadas, P. (2003). Historical Biogeography: An Introduction. Cambridge: Harvard University Press.Google Scholar
Crisci, J. V., Sala, O. E., Katinas, L. and Posadas, P. (2006). Bridging historical and ecological approaches to biogeography. Australian Systematic Botany, 19, 1–10.CrossRefGoogle Scholar
Crittenden, P. D. (1975). Nitrogen fixation on the glacial drift of Iceland. New Phytologist, 74, 41–49.CrossRefGoogle Scholar
Crittenden, P. D. (1983). The role of lichens in the nitrogen economy of subarctic woodlands: nitrogen loss from the nitrogen-fixing lichen Stereocaulon paschale during rainfall. In Nitrogen as an Ecological Factor, ed. Boddy, L., Marchant, R. and Read, D. J., pp. 43–68. Oxford: Blackwell Scientific Publications.Google Scholar
Crittenden, P. D. (1989). Nitrogen relations of mat-forming lichens. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R. and Read, D. J., pp. 243–268. Cambridge: Cambridge University Press.Google Scholar
Crittenden, P. D. (1996). The effect of oxygen deprivation on inorganic nitrogen uptake in an Antarctic macrolichen. Lichenologist, 28, 347–354.CrossRefGoogle Scholar
Crittenden, P. D. (1998). Nutrient exchange in an Antarctic macrolichen during summer snowfall snow melt events. New Phytologist, 139, 697–707.CrossRefGoogle Scholar
Crittenden, P. D. and Kershaw, K. A. (1978). A procedure for the simultaneous measurement of net CO2-exchange and nitrogenase activity in lichens. New Phytologist, 80, 393–401.CrossRefGoogle Scholar
Crittenden, P. D. and Kershaw, K. A. (1979). Studies on lichen-dominated systems. XXII. The environmental control of nitrogenase activity in Stereocaulon paschale in spruce-lichen woodland. Canadian Journal of Botany, 53, 236–254.CrossRefGoogle Scholar
Crittenden, P. D., Kalucka, I. and Oliver, E. (1994). Does nitrogen supply limit the growth of lichens?Cryptogamic Botany, 4, 143–155.Google Scholar
Crittenden, P. D., Llimona, X. and Sancho, L. (2004). Nitrogenase activity in Thyrea spp. – preliminary results. In Book of Abstracts of the 5th IAL Symposium, Lichens in Focus, ed. Randlane, T. and Saag, A., p. 44. Tartu: Tartu University Press.Google Scholar
Crowe, J. H., Crowe, L. M. and Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223, 701–703.CrossRefGoogle Scholar
Culberson, C. F. (1972). Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography, 72, 113–125.CrossRefGoogle ScholarPubMed
Culberson, C. F. (1986). Biogenetic relationships of the lichen substances in the framework of systematics. Bryologist, 89, 91–98.CrossRefGoogle Scholar
Culberson, C. F. and Ammann, K. (1979). Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia, 5, 1–24.Google Scholar
Culberson, C. F. and Culberson, W. L. (1976). Chemosyndromic variation in lichens. Systematic Botany, 1, 325–339.CrossRefGoogle Scholar
Culberson, C. F. and Elix, J. A. (1989). Lichen substances. In Methods in Plant Biochemistry, Vol. 1: Plant Phenolics, ed. Dey, P. M. and Harborne, J. B., pp. 509–535. London: Academic Press.Google Scholar
Culberson, C. F. and Johnson, A. (1976). A standardized two-dimensional thin-layer chromatographic method for lichen products. Journal of Chromatography, 128, 253–259.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. and Johnson, A. (1981). A standardized TLC analysis of β-orcinol depsidones. Bryologist, 84, 16–29.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. and Johnson, A. (1985). Orcinol-type depsides and depsidones in the lichens of the Cladonia chlorophaea group (Ascomycotina, Cladoniaceae). Bryologist, 88, 380–387.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. and Johnson, A. (1988). Gene flow in lichens. American Journal of Botany, 75, 1135–1139.CrossRefGoogle Scholar
Culberson, C. F., Hale, M. E. Jr., Tønsberg, T. and Johnson, A. (1984). New depsides from the lichens Dimelaena oreina and Fuscidea viridis. Mycologia, 76, 148–160.CrossRefGoogle Scholar
Culberson, C. F., Nash, T. H. III and Johnson, A. (1979). 3-α-Hydroxybarbatic acid, a new depside in chemosyndromes of some Xanthoparmeliae with β-orcinol depsides. Bryologist, 82, 154–161.CrossRefGoogle Scholar
Culberson, W. L. (1967). Analysis of chemical and morphological variation in the Ramalina siliquosa species complex. Brittonia, 19, 333–52.CrossRefGoogle Scholar
Culberson, W. L. (1986). Chemistry and sibling speciation in the lichen-forming fungi: ecological and biological considerations. Bryologist, 89, 123–131.CrossRefGoogle Scholar
Culberson, W. L. and Culberson, C. F. (1967). Habitat selection by chemically differentiated races of lichens. Science, 158, 1195–1197.CrossRefGoogle ScholarPubMed
Culberson, W. L. and Culberson, C. F. (1968). The lichen genera Cetrelia and Platismatia (Parmeliaceae). Contributions from the United States National Herbarium, 34, 449–558.Google Scholar
Culberson, W. L. and Culberson, C. F. (1994). Secondary metabolites as a tool in ascomycete systematics: lichenized fungi. In Ascomycetes Systematics: Problems and Perspectives in the Nineties, ed. Hawksworth, D. L.. pp. 155–163. New York: Plenum Press.CrossRefGoogle Scholar
Culberson, W. L., Culberson, C. F. and Johnson, A. (1977). Pseudevernia furfuracea – olivetorina relationships and ecology. Mycologia, 69, 604–614.CrossRefGoogle Scholar
Culberson, W. L., Culberson, C. F. and Johnson, A. (1993). Speciation in the lichens of the Ramalina siliquosa complex (Ascomycotina, Ramalinaceae): gene flow and reproductive isolation. American Journal of Botany, 80, 1472–1481.CrossRefGoogle Scholar
Curtis, C. J., Emmett, B. A., Grant, H., et al. (2005). Nitrogen saturation in UK moorlands: the critical role of bryophytes and lichens in determining retention of atmospheric N deposition. Journal of Applied Ecology, 42, 507–517.CrossRefGoogle Scholar
Czehura, S. J. (1977). A lichen indicator of copper mineralization, Lights Creek District, Plumas County, California. Economic Geology, 72, 796–803.CrossRefGoogle Scholar
Dahl, E. (1998). The Phytogeography of Northern Europe (British Isles, Fennoscandia and Adjacent Areas). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dahl, E. and Krog, H. (1973). Macrolichens of Denmark, Finland, Norway and Sweden. Oslo: Universitetsforlaget.Google Scholar
Dahlkild, A., Kallersjo, M., Lohtander, K. and Tehler, A. (2001). Photobiont diversity in the Physciaceae (Lecanorales). Bryologist, 104, 527–536.CrossRefGoogle Scholar
Dahlman, L. and Palmqvist, K. (2003). Growth in two foliose tripartite lichens Nephroma arcticum and Peltigera aphthosa – empirical modeling of external versus internal factors. Functional Ecology, 17, 821–831.CrossRefGoogle Scholar
Dahlman, L., Näsholm, T. and Palmqvist, K. (2002). Growth, nitrogen uptake, and resource allocation in the two tripartite lichens Nephroma arcticum and Peltigera aphthosa during nitrogen stress. New Phytologist, 153, 307–315.CrossRefGoogle Scholar
Dahlman, L., Persson, J., Näsholm, T. and Palmqvist, K. (2003). Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. Planta, 217, 41–48.Google ScholarPubMed
David, J. C. (1987). Studies on the genus Epigloea. Systema Ascomycetum, 6, 217–221.Google Scholar
David, K. A. and Fay, P. (1977). Effects of long term treatment with C2H2 on N2-fixing microorganisms. Applied Environmental Microbiology, 34, 640–646.Google Scholar
Davis, W. C., Gries, C. and Nash, T. H. III (2000). The ecophysiological response of the aquatic lichen Hydrothyria venosa to nitrate in terms of weight and photosynthesis over long periods of time. Bibliotheca Lichenologica, 75, 201–208.Google Scholar
Davison, J. (1988). Plant beneficial bacteria. Nature Bio/Technology, 6, 282–286.CrossRefGoogle Scholar
Deason, T. R. and Bold, H. C. (1960). Phycological studies. I. Exploratory studies of Texas soil algae. University of Texas Publications, 6022, 1–70.Google Scholar
Debuchy, R. and Turgeon, B. (2006). Mating-type structure, evolution and function in Euascomycetes. In Growth, Differentiation and Sexuality, The Mycota, Vol. 1, ed. Kües, U. and Fischer, R., pp. 293–323. Heidelberg: Springer.CrossRefGoogle Scholar
De Kok, L. J. and Stulen, I. (1993). Role of glutathione in plants under oxidative stress. In Sulfur Nutrition and Assimilation in Higher Plants, ed. Kok, L. J., Stulen, I., Rennenberg, H., Brunold, C. and Rauser, W. E., pp. 295–313. The Hague: SPB Academic Publishing.Google Scholar
Ríos, los A. and Grube, M. (2000). Host-parasite interfaces of some lichenicolous fungi in the Dacampiaceae (Dothideales, Ascomycota). Mycological Research, 104, 1348–1353.CrossRefGoogle Scholar
Ríos, los A., Wierzchos, J., Sancho, L. G., Green, T. G. A. and Ascaso, C. (2005). Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist, 37, 383–395.CrossRefGoogle Scholar
Deltoro, V. I., Gimeno, C., Calatayud, A. and Barreno, E. (1999). Effects of SO2 fumigations on photosynthetic CO2 gas exchange, chlorophyll a fluorescence emission and antioxidant enzymes in the lichens Evernia prunastri and Ramalina farinacea. Physiologia Plantarum, 105, 648–654.CrossRefGoogle Scholar
Dembitsky, V. M. and Tolstikov, G. A. (2005). Organic Metabolites of Lichens. Novosibirsk: Publishing House of SB RAS.Google Scholar
Demmig-Adams, B. (2006). Linking the xanthophyll cycle with thermal energy dissipation. Photosynthesis Research, 76, 73–80.CrossRefGoogle Scholar
Demmig-Adams, B., Máguas, C., Adams, W. W. III, et al. (1990). Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta, 180, 400–409.CrossRefGoogle Scholar
Denison, W. C. (1973). Life in tall trees. Scientific American, 228, 74–80.CrossRefGoogle Scholar
Denison, W. C. (1979). Lobaria oregana, a nitrogen-fixing lichen in old-growth Douglas fir forests. In Symbiotic Nitrogen Fixation in the Management of Temperate Forests, ed. Gordon, J. C., Wheeler, C. T. and Perry, D. A., pp. 266–275. Corvallis: Oregon State University.Google Scholar
DePriest, P. T. (1993 a). Variation in the Cladonia chlorophaea complex. I. Morphological and chemical variation in Southern Appalachian populations. Bryologist, 96, 555–563.CrossRefGoogle Scholar
DePriest, P. T. (1993 b). Variation in southern Appalachian populations of the Cladonia chlorophaea complex. II. ribosomal DNA variation. Bryologist, 97, 117–126.CrossRefGoogle Scholar
DePriest, P. T. (1993 c). Small subunit rDNA variation in a population of lichen fungi due to optional group-I introns. Gene, 134, 314–325.CrossRefGoogle Scholar
DePriest, P. T. (2004). Early molecular investigations of lichen-forming symbionts: 1986–2001. Annual Review of Microbiology, 58, 273–301.CrossRefGoogle ScholarPubMed
DePriest, P. T., Ivanova, N. V., Fahselt, D., Alstrup, V. and Gargas, A. (2000). Sequences of psychrophilic fungi amplified from glacier-preserved ascolichens. Canadian Journal of Botany, 78, 1450–1459.CrossRefGoogle Scholar
Queiroz, A. (2005). The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution, 20, 68–73.CrossRefGoogle ScholarPubMed
des Abbayes, H. (1953). Travaux sur les lichens parus de 1939 à 1952. Bulletin Sociétié Botanique de France, 100, 83–123.CrossRefGoogle Scholar
Vera, J.-P., Horneck, G., Rettberg, P. and Ott, S. (2003). The potential of the lichen symbiosis to cope with extreme conditions of outer space. I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. International Journal of Astrobiology, 1, 285–293.CrossRefGoogle Scholar
Vera, J.-P., Horneck, G., Rettberg, P. and Ott, S. (2004). The potential of the lichen symbiosis to cope with extreme conditions of outer space. II. Germination capacity of lichen ascospores in response to simulated space conditions. Advances in Space Research, 33, 1236–1243.CrossRefGoogle ScholarPubMed
Dibben, M. J. (1971). Whole-lichen culture in a phytotron. Lichenologist, 5, 1–10.CrossRefGoogle Scholar
Diederich, P. (1996). The lichenicolous heterobasidiomycetes. Bibliotheca Lichenologica, 61, 1–198.Google Scholar
Diederich, P. (2003). Review. Bryologist, 106, 629–630.Google Scholar
Dietz, S., Büdel, B., Lange, O. L. and Bilger, W. (2000). Transmittance of light through the cortex of lichens from contrasting habitats. In Aspects in Cryptogamic Research. Contributions in Honour of Ludger Kappen, ed. Schroeter, B., Schlensog, M. and Green, T. G. A., pp. 171–182. Berlin-Stuttgart: Gebrüder Borntraeger Verlagsbuchhandlung.Google Scholar
Divakar, P. K., Crespo, A., Blanco, O. and Lumbsch, H. T. (2006). Phylogenetic significance of morphological characters in the tropical Hypotrachyna clade of parmelioid lichens (Parmeliaceae. Ascomycota). Molecular Phylogenetics and Evolution, 40, 448–458.CrossRefGoogle Scholar
Döbbeler, P. (1984). Symbiosen zwischen Gallertalgen und Gallertpilzen der Gattung Epigloea (Ascomycetes). Beihefte zur Nova Hedwigia, 79, 203–239.Google Scholar
Döbbeler, P. and Poelt, J. (1981). Arthropyrenia endobrya spec nov., eine hepaticole Flechte mit intrazellulärem Thallus aus Brasilien. Plant Systematics and Evolution, 138, 275–281.CrossRefGoogle Scholar
Döring, H. and Lumbsch, H. T. (1998). Ascoma ontogeny: is this character set of any use in the systematics of lichenized ascomycetes? Lichenologist, 30, 489–500.CrossRefGoogle Scholar
Döring, H. and Wedin, M. (2004). Infraspecific variation within Stereocaulon species complexes – genetic markers, individuals, populations and species. In Lichens in Focus, ed. Randlane, T. and Saag, A., p. 26. Tartu: Tartu University Press.Google Scholar
Drew, E. A. (1966). Some aspects of the carbohydrate metabolism of lichens. Ph.D. thesis. Oxford: University of Oxford.
Duchesne, L. C. and Larson, W. (1989). Cellulose and the evolution of plant life. BioScience, 4, 238–241.CrossRefGoogle Scholar
Duguay, K. J. and Klironomos, J. M. (2000). Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi. Applied Soil Ecology, 14, 157–164.CrossRefGoogle Scholar
Durrell, L. W. and Newsom, I. E. (1939). Colorado's Poisonous and Injurious Plants. Fort Collins: Colorado Experiment Station.Google Scholar
Dyer, P. S., Murtagh, G. J. and Crittenden, P. D. (2001). Use of RAPD-PCR DNA fingerprinting and vegetative incompatibility tests to investigate genetic variation within lichen-forming fungi. Symbiosis, 31, 213–229.Google Scholar
Easton, R. M. (1994). Lichens and rocks: a review. Geoscience Canada, 21, 59–76.Google Scholar
Ebach, M. C. and Humphries, C. J. (2003). Ontology of biogeography. Journal of Biogeography, 30, 959–962.CrossRefGoogle Scholar
Edmands, S. (1999). Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution, 53, 1757–1768.CrossRefGoogle Scholar
Edwards, T. C. Jr., Cutler, D. R., Geiser, L., Alegria, J. and McKenzie, D. (2004). Assessing rarity of species with low detectability: lichens in Pacific Northwest forests. Ecological Applications, 14, 414–424.CrossRefGoogle Scholar
Egea, J. M. (1996). Catalogue of lichenized and lichenicolous fungi of Morocco. Bocconea, 6, 19–114.Google Scholar
Egea, J. M. and Torrente, P. (1993). The lichen genus Bactrospora. Lichenologist, 25, 211–255.CrossRefGoogle Scholar
Egea, J. M. and Torrente, P. (1994). El género de hongos liquenizados Lecanactis (Ascomycotina). Bibliotheca Lichenologica 54, 1–205.Google Scholar
Ekman, S. (1997). The genus Cliostomum revisited. Symbolae Botanicae Upsalienses, 32, 17–28.Google Scholar
Ekman, S. (2001). Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research, 105, 783–797.CrossRefGoogle Scholar
Ekman, S. and Fröberg, S. (1988). Taxonomical problems in Aspicilia contorta and A. hoffmannii: an effect of hybridization?International Journal of Mycology and Lichenology, 3, 215–225.Google Scholar
Ekman, S. and Jørgensen, P. M. (2002). Towards a molecular phylogeny for the lichen family Pannariaceae (Lecanorales, Ascomycota). Canadian Journal of Botany, 80, 625–634.CrossRefGoogle Scholar
Ekman, S. and Tønsberg, T. (2002). Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycological Research, 106, 1262–1276.CrossRefGoogle Scholar
Ekman, S. and Wedin, M. (2000). The phylogeny of the families Lecanoraceae and Bacidiaceae (lichenized Ascomycota) inferred from nuclear SSU rDNA sequences. Plant Biology, 2, 350–360.CrossRefGoogle Scholar
Elix, J. A. (1991). The lichen genus Relicina in Australasia. In Tropical Lichens: Their Systematics, Conservation and Ecology, ed. Galloway, D. J.. Systematics Association Special Volume 43, pp. 17–34. Oxford: Clarendon Press.Google Scholar
Elix, J. A. (1993). Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. Bryologist, 96, 359–383.CrossRefGoogle Scholar
Elix, J. A. (1994). Xanthoparmelia. Flora of Australia, 55, 201–308.
Elix, J. A. (1999). Detection and identification of secondary lichen substances: contributions by the Uppsala school of lichen chemistry. Symbolae Botanicae Upsalienses, 32, 103–121.Google Scholar
Elix, J. A. and Ernst-Russell, K. D. (1993). A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances, 2nd edn. Canberra: Australian National University.Google Scholar
Elix, J. A, Giralt, M. and Wardlaw, J. H. (2003). New chloro-depsides from the lichen Dimelaena radiata. Bibliotheca Lichenologica, 86, 1–7.Google Scholar
Elix, J. A., Johnston, J. and Parker, J. L. (1988). A computer program for the rapid identification of lichen substances. Mycotaxon, 31, 89–99.Google Scholar
Ellis, C. J. and Coppins, B. J. (2007). 19th century woodland structure controls stand-scale epiphyte diversity in present-day Scotland. Diversity and Distributions, 13, 84–91.CrossRefGoogle Scholar
Ellis, C. J., Crittenden, P. D., Scrimgeour, C. M. and Ashcroft, C. J. (2005). Translocation of 15N indicates nitrogen recycling in the mat-forming lichen Cladonia portentosa. New Phytologist, 168, 423–434.CrossRefGoogle ScholarPubMed
Elstner, E. F. and Oßwald, W. (1994). Mechanisms of oxygen activation during plant stress. Proceeding of the Royal Society of Edinburgh, 102, 131–154.Google Scholar
Elvebakk, A. and Bjerke, J. W. (2006 a). The Skibotn area in North Norway – an example of very high lichen species richness far to the north. Mycotaxon, 96, 141–146.Google Scholar
Elvebakk, A. and Bjerke, J. W. (2006b). The Skibotn area in North Norway – an example of very high lichen species richness far to the north: a supplement with an annotated list of species. Online:
Engelbert, R. and Vonarburg, C. (1995). Lichen diversity and ozone impact in rural areas of central Switzerland. Cryptogamic Botany, 5, 252–263.Google Scholar
Engelmann, M. D. (1966). Energetics, terrestrial field studies, and animal productivity. Advances in Ecological Research, 3, 73–115.CrossRefGoogle Scholar
Englund, B. (1977). The physiology of the lichen Peltigera aphthosa, with special reference to the blue-green phycobiont (Nostoc sp.). Physiologia Plantarum, 41, 298–304.CrossRefGoogle Scholar
Englund, B. (1978). Effects of environmental factors on acetylene reduction by intact thallus and excised cephalodia of Peltigera aphthosa Willd. Ecological Bulletin (Stockholm), 26, 234–246.Google Scholar
Englund, B. and Myerson, H. (1974). In situ measurement of nitrogen fixation at low temperatures. Oikos, 25, 183–187.CrossRefGoogle Scholar
Enriquez, S., Duarte, C. M., Sand-Jensen, K. and Nielsen, S. L. (1996). Broad-scale comparison of photosynthetic rates across phototrophic organisms. Oecologia, 108, 197–206.CrossRefGoogle ScholarPubMed
Eriksson, O. E. (2005). Ascomyceternas ursprung och evolution – Protolichenes-hypotesen. Svensk Mykologisk Tidskrift, 26, 22–29.Google Scholar
Eriksson, O. E. (ed.) (2006 a). Notes on ascomycete systematics Nr. 4324. Myconet, 12, 83–101. Online: Scholar
Eriksson, O. E. (ed.) (2006 b). Outline of Ascomycota, Myconet, 12, 1–82. Online: Scholar
Ernst, A., Kirschenlohr, H., Diez, J. and Boger, P. (1984). Glycogen content and nitrogenase activity in Anabaena variabilis. Archiv für Microbiologie, 140, 120–125.CrossRefGoogle Scholar
Ertl, L. (1951). Über die Lichtverhältnisse in Laubflecten. Planta, 39, 245–270.CrossRefGoogle Scholar
Ertz, D., Christnach, C., Wedin, M. and Diederich, P. (2005). A world monograph of the genus Plectocarpon (Roccellaceae, Arthoniales). Bibliotheca Lichenologica, 91, 1–155.Google Scholar
Esseen, P.-A. and Renhorn, K. E. (1998). Mass loss of epiphytic lichen litter in a boreal forest. Annals Botanica Fennica, 35, 211–217.Google Scholar
Esseen, P.-A., Ehnström, B., Ericson, L. and Sjöberg, K. (1997). Boreal forests. Ecological Bulletins, 45, 16–47.Google Scholar
Esser, K. (1976). Kryptogamen: Blaualgen, Algen, Pilze, Flechten. Berlin: Springer.CrossRefGoogle Scholar
Esslinger, T. L. (1977). A chemosystematic revision of the brown Parmeliae. Journal of the Hattori Botanical Laboratory, 42, 1–211.Google Scholar
Esslinger, T. L. (1989). Systematics of Oropogon (Alectoriaceae) in the New World. Systematic Botany Monographs, 28, 1–111.CrossRefGoogle Scholar
Ettl, H. and Gärtner, G. (1984). Über die Bedeutung der Cytologie für die Algentaxonomie, dargestellt an Trebouxia (Chlorellales, Chlorophyceae). Plant Systematics and Evolution, 148, 135–147.CrossRefGoogle Scholar
Evans, C. A. and Hutchinson, T. C. (1996). Mercury accumulation in transplanted moss and lichens at high elevation sites in Quebec. Water, Air, and Soil Pollution, 90, 475–488.CrossRefGoogle Scholar
Evans, D. J. A., Archer, S. and Wilson, D. J. H. (1999). A comparison of the lichenometric and Schmidt hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers. Quaternary Science Reviews, 18, 13–41.CrossRefGoogle Scholar
Evans, J. R. (1983). Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology, 72, 297–302.CrossRefGoogle Scholar
Evans, J. R. (1989). Photosynthesis and nitrogen relationships of C-3 plants. Oecologia, 78, 9–19.CrossRefGoogle Scholar
Evans, R. D. and Johansen, J. R. (1999). Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences, 18, 183–225.CrossRefGoogle Scholar
Evans, R. D., Belnap, J. Garcia-Pichel, F. and Phillips, S. L. (2001). Global change and the future of biological soil crusts. In Biological Soil Crusts: Structure, Function and Management, ed. Belnap, J. and Lange, O. L., pp. 417–429. Berlin: Springer.Google Scholar
Eversman, S. (1978). Effects of low-level SO2 on Usnea hirta and Parmelia chlorochroa. Bryologist, 81, 368–377.CrossRefGoogle Scholar
Eversman, S. and Sigal, L. L. (1987). Effects of SO2, O3, and SO2 and O3 in combination on photosynthesis and ultrastructure of two lichen species. Canadian Journal of Botany, 65, 1806–1818.CrossRefGoogle Scholar
Eversman, S., Johnson, C. and Gustafson, D. (1987). Vertical distribution of epiphytic lichens on three tree species in Yellowstone National Park. Bryologist, 90, 212–216.CrossRefGoogle Scholar
Fahselt, D. (1984). Interthalline variability in levels of lichen products within stands of Cladina stellaris. Bryologist, 87, 50–56.CrossRefGoogle Scholar
Fahselt, D. (1985). Multiple enzyme forms in lichens. In Lichen Physiology and Cell Biology, ed. Brown, D. H., pp. 129–143. New York: Plenum Publishing.CrossRefGoogle Scholar
Fahselt, D. (1987). Electrophoretic analysis of esterase and alkaline phosphatase enzyme forms in single spore cultures of Cladonia cristatella. Lichenologist, 19, 71–75.CrossRefGoogle Scholar
Fahselt, D. (1989). Enzyme polymorphism in sexual and asexual umbilicate lichens from Sverdrup Pass, Ellesmere Island, Canada. Lichenologist, 21, 279–285.CrossRefGoogle Scholar
Fahselt, D. (1991). Enzyme similarity as an indicator of evolutionary divergence: Stereocaulon saxatile H. Magn. Symbiosis, 11, 119–130.Google Scholar
Fahselt, D. (1992). Geothermal effects on multiple enzyme forms in the lichen Cladonia mitis. Lichenologist, 24, 181–192.Google Scholar
Fahselt, D. (1994 a). Secondary biochemistry of lichens. Symbiosis, 16, 117–165.Google Scholar
Fahselt, D. (1994 b). Carbon metabolism in lichens. Symbiosis, 17, 127–182.Google Scholar
Fahselt, D. (1995). Lichen sexuality from the perspective of multiple enzyme forms. Cryptogamic Botany, 5, 137–143.Google Scholar
Fahselt, D. (2001). Analysing lichen enzymes by isoelectricfocussing. In Protocols in Lichenology, ed. Kranner, I., Varma, A. and Beckett, P., pp. 307–331. Berlin: Springer.Google Scholar
Fahselt, D. and Alstrup, V. (1997). High performance liquid chromatography of phenolics in recent and subfossil lichens. Canadian Journal Botany, 75, 1148–1154.CrossRefGoogle Scholar
Fahselt, D. and Hageman, C. (1994). Rhizine and upper thallus isozymes in umbilicate lichens. Symbiosis, 16, 95–103.Google Scholar
Fahselt, D. and Krol, M. (1989). Biochemical comparison of two ecologically distinctive forms of Xanthoria elegans in the Canadian High Arctic. Lichenologist, 21, 135–145.CrossRefGoogle Scholar
Fahselt, D., Krol, M., Hüner, N. and Tønsberg, T. (2000). Pigmentation of Cladonia infected by the lichenicolous fungus Arthrorhaphis aeroguinosa. Lichenologist, 32, 300–303.CrossRefGoogle Scholar
Fahselt, D., Madzia, S. and Alstrup, V. (2001). Scanning electron microscopy of invasive fungi in lichens. Bryologist, 104, 24–39.CrossRefGoogle Scholar
Fahselt, D., Tavares, S. and Mazdia, S. (1997). Isozyme variation in lichens in relation to mine dust exposure. In Progress and Problems in Lichenology in the Nineties, ed. Türk, R. and Zorer, R.. Bibliotheca Lichenologica, 68, 111–127.Google Scholar
Farkas, E. E. and Sipman, H. J. M. (1993). Bibliography and checklist of foliicolous lichenized fungi up to 1992. Tropical Bryology, 7, 93–148.Google Scholar
Farkas, E. and Sipman, H. J. M. (1997). Checklist of foliicolous lichenized fungi – after Farkas and Sipman (1993), with additions to 1996. Abstracta Botanica, 21, 173–206.Google Scholar
Farrar, J. F. (1976 a) Ecological physiology of the lichen Hypogymnia physodes. I. Some effects of constant water saturation. New Phytologist, 77, 93–103.CrossRefGoogle Scholar
Farrar, J. F. (1976 b). Ecological physiology of the lichen Hypogymnia physodes. II. Effects of wetting and drying cycles and the concept of physiological buffering. New Phytologist, 77, 105–113.CrossRefGoogle Scholar
Farrar, J. F. (1976 c). The lichen as an ecosystem: observation and experiment. In Lichenology: Progress and Problems, ed. Brown, D. H., Hawksworth, D. L. and Bailey, R. H., pp. 385–406. London: Academic Press.Google Scholar
Farrar, J. F. (1976 d). The uptake and metabolism of phosphate by the lichen Hypogymnia physodes. New Phytologist, 77, 127–134.CrossRefGoogle Scholar
Farrar, J. F. (1988). Physiological buffering. In CRC Handbook of Lichenology, Vol. 2, ed. Galun, M., pp. 101–105. Boca Raton: CRC Press.Google Scholar
Farrar, J. F. and Smith, D. C. (1976). Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase. New Phytologist, 77, 115–125.CrossRefGoogle Scholar
Feige, G. B. (1973). Untersuchungen zur Ökologie und Physiologie der marinen Blaualgenflechte Lichina pygmaea Ag. II. Die Reversibilität der Osmoregulation. Zeitschrift für Pflanzenphyiologie, 68, 415–421.CrossRefGoogle Scholar
Feige, G. B. and Jensen, M. (1992). Basic carbon and nitrogen metabolism of lichens. In Algae and Symbioses, ed. Reisser, W., pp. 277–299. Bristol: Biopress Limited.Google Scholar
Feige, G. B., Lumbsch, H. T., Huneck, S. and Elix, J. A. (1993). The identification of lichen substances by a standardized high-performance liquid chromatographic method. Journal of Chromatography, 646, 417–427.CrossRefGoogle Scholar
Fenn, M. E., Baron, J. S., Allen, E. B., et al. (2003). Ecological effects of nitrogen deposition in the western United States. BioScience, 53, 404–420.CrossRefGoogle Scholar
Ferber, T. (2002). The age and origin of talus cones in the light of lichenometric research. The Skalnisty and Zielony talus cones, High Tatra Mountains, Poland. Studia Geomorphologica Carpatho-Balcanica, 36, 77–90.Google Scholar
Ferraro, L. I., Lücking, R. and Sérusiaux, E. (2001). A world monograph of the lichen genus Gyalectidium (Gomphillaceae). Botanical Journal of the Linnean Society, 137, 311–345.CrossRefGoogle Scholar
Ferry, B. W. and Baddeley, M. S. (1976). Sulphur dioxide uptake in lichens. In Lichenology: Progress and Problems, ed. Brown, D. H., Hawksworth, D. L. and Bailey, R. H., pp. 407–418. London: Academic Press.Google Scholar
Feuerer, T. (ed.) (2006). Checklists of lichens and lichenicolous fungi. Version 1 June 2006. Online:
Fewer, D., Friedl, T. and Büdel, B. (2002). Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other's closest living relatives. Molecular Phylogenetics and Evolution, 41, 498–506.Google Scholar
Fiechter, E. (1990). Thallusdifferenzierung und intrathalline Sekundärstoffverteilung bei Parmeliaceae (Lecanorales, lichenisierte Ascomyceten). Inauguraldissertation. Zürich: Universität Zürich.
Fields, R. D. (1988). Physiological responses of lichens to air pollutant fumigations. In Lichens, Bryophytes and Air Quality, ed. Nash, T. H. III and Wirth, V., pp. 175–200. Bibliotheca Lichenologica 30. Berlin-Stuttgart: J. Cramer.Google Scholar
Fields, R. D. and St. Clair, L. L. (1984). The effects of SO2 on photosynthesis and carbohydrate transfer in the two lichens: Collema polycarpon and Parmelia chlorochroa. American Journal of Botany, 71, 986–998.CrossRefGoogle Scholar
Fletcher, A. (1980). Marine and maritime lichens of rocky shores: their ecology, physiology and biological interactions. In The Shore Environment, Vol. 2: Ecosystems, ed. Price, J. H., Irvine, D. E. G. and Farnham, W. F., pp. 789–842. London: Academic Press.Google Scholar
Fletcher, J. (2002). Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. BioEssays, 24, 27–37.CrossRefGoogle ScholarPubMed
Fogg, G. E., Fay, P. and Walsby, A. E. (1973). The Bluegreen Algae. London: Academic Press.Google Scholar
Follmann, G. (2002). South America as diversity centre of the lichen family Roccellaceae (Arthoniales). Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg, 30–32, 61–77.Google Scholar
Forman, R. T. T. (1975). Canopy lichens with blue-green algae: a nitrogen source in a Columbian rain forest. Ecology, 56, 1176–1184.CrossRefGoogle Scholar
Forman, R. T. T. and Dowden, D. L. (1977). Nitrogen fixing lichen roles from desert to alpine in the Sangre de Cristo Mountains, New Mexico. Bryologist, 80, 561–70.CrossRefGoogle Scholar
Foyer, C. and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25.CrossRefGoogle ScholarPubMed
Frank, H. A., Young, A., Britton, G. and Cogdell, R. J. (1999). The Photochemistry of Carotenoids. Berlin: Springer.Google Scholar
Freedman, B., Zobens, V., Hutchinson, T. C. and Gizyn, W. I. (1990). Intense, natural pollution affects Arctic tundra vegetation at the Smoking Hills, Canada. Ecology, 71, 492–503.CrossRefGoogle Scholar
Fremstad, E., Paal, J. and Möls, T. (2005). Impacts of increased nitrogen supply on Norwegian lichen-rich alpine communities: a 10-year experiment. Journal of Ecology, 93, 471–481.CrossRefGoogle Scholar
Friedl, T. (1987). Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist, 19, 183–191.CrossRefGoogle Scholar
Friedl, T. (1989 a). Comparative ultrastructure of pyrenoids in Trebouxia (Microthamniales, Chlorophyta). Plant Systematics and Evolution, 164, 145–159.CrossRefGoogle Scholar
Friedl, T. (1989b). Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (lichenisierte Ascomyceten). Ph.D. thesis. Bayreuth: Universtät Bayreuth.
Friedl, T. (1993). New aspects of the reproduction by autospores in the lichen alga Trebouxia (Microthamniales, Chlorophyta). Archiv für Protistenkunde, 143, 153–161.CrossRefGoogle Scholar
Friedl, T. and Gärtner, G. (1988). Trebouxia (Pleurastrales, Chlorophyta) as a phycobiont in the lichen genus Diploschistes. Archiv für Protistenkunde, 135, 147–158.CrossRefGoogle Scholar
Friedl, T. and Zeltner, C. (1994). Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18S rRNA gene sequence comparisons. Journal of Phycology, 30, 500–506.CrossRefGoogle Scholar
Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.CrossRefGoogle ScholarPubMed
Friedmann, E. I. and Sun, H. J. (2005). Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models. I. Hypothesis. Microbial Ecology, 49, 523–527.CrossRefGoogle ScholarPubMed
Fritz-Sheridan, R. P. (1985). Impact of simulated acid rain on nitrogenase activity in Peltigera aphthosa and P. polydactyla. Lichenologist, 17, 27–31.CrossRefGoogle Scholar
Fritz-Sheridan, R. P. and Coxson, D. S. (1988 a). Nitrogen fixation on the tropical volcano, La Soufrière (Guadeloupe): nitrogen fixation, photosynthesis and respiration during the prevailing cloud/shroud climate by Stereocaulon virgatum. Lichenologist, 20, 41–61.CrossRefGoogle Scholar
Fritz-Sheridan, R. P. and Coxson, D. S. (1988 b). Nitrogen fixation on the tropical volcano, La Soufrière (Guadeloupe): the interaction of temperature, moisture, and light with net photosynthesis and nitrogenase activity in Stereocaulon virgatum and response to periods of insolation shock. Lichenologist, 20, 63–81.CrossRefGoogle Scholar
Fröberg, L., Berg, C. O., Baur, A. and Baur, B. (2001). Viability of lichen photobionts after passing through the digestive tract of a land snail. Lichenologist, 33, 543–545.CrossRefGoogle Scholar
Fujii, I., Watanabe, A., Sankawa, U. and Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthapyrone synthase of Aspergillus nidulans. Chemical Biology, 8, 187–197.CrossRefGoogle Scholar
Gagunashvili, A. and Andrésson, O. (2006). Heterologous expression of a lichen polyketide synthase in filamentous fungi. EUKETIDES Meeting, Turku, Finland.
Gaio-Oliveira, G., Dahlman, L., Máguas, C. and Palmqvist, K. (2004 a). Growth in relation to microclimatic conditions and physiological characteristics of four Lobaria pulmonaria populations in two contrasting habitats. Ecography, 27, 13–28.CrossRefGoogle Scholar
Gaio-Oliveira, G., Dahlman, L., Martins-Loução, M. A., Máguas, C. and Palmqvist, K. (2005 a). Nitrogen uptake in relation to excess supply and its effects on the lichens Evernia prunastri (L.) Ach and Xanthoria parietina (L.) Th. Fr. Planta, 220, 794–803.CrossRefGoogle Scholar
Gaio-Oliveira, G., Dahlman, L., Palmqvist, K. and Máguas, C. (2004 b). Ammonium uptake in the nitrophytic lichen Xanthoria parietina and its effects on vitality and balance between symbionts. Lichenologist, 36, 75–86.CrossRefGoogle Scholar
Gaio-Oliveira, G., Dahlman, L., Palmqvist, K. and Máguas, C. (2005 b). Responses of the lichen Xanthoria parietina (L.) Th. Fr. to varying thallus nitrogen concentrations. Lichenologist, 37, 171–179.CrossRefGoogle Scholar
Gaio-Oliveira, G., Moen, J., Danell, O. and Palmqvist, K. (2006). Effect of simulated reindeer grazing on the re-growth capacity of mat-forming lichens. Basic and Applied Ecology, 7, 109–121.CrossRefGoogle Scholar
Galley, C. and Linder, H. P. (2006). Geographical affinities of the Cape flora, South Africa. Journal of Biogeography, 33, 236–250.CrossRefGoogle Scholar
Galloway, D. J. (1991 a). Chemical evolution in the order Peltigerales: triterpenoids. Symbiosis, 11, 327–344.Google Scholar
Galloway, D. J. (1991 b). Phytogeography of Southern Hemisphere lichens. In Quantitative Approaches to Phytogeography, ed. Nimis, P. L. and Crovello, T. J., pp. 233–262. Dordrecht: Kluwer Academic.Google Scholar
Galloway, D. J. (1993). Global environmental change: lichens and chemistry. Bibliotheca Lichenologica, 53, 87–95.Google Scholar
Galloway, D. J. (1994 a). Pseudocyphellaria lacerata new to the Faeroe Islands. Lichenologist, 26, 391–393.CrossRefGoogle Scholar
Galloway, D. J. (1994 b). Studies on the lichen genus Sticta (Schreber) Ach. I. Southern South American species. Lichenologist, 26, 223–282.CrossRefGoogle Scholar
Galloway, D. J. (1995 a). The extra-European lichen collections of Archibald Menzies MD, FLS (1754–1842). Edinburgh Journal of Botany, 52, 95–139.CrossRefGoogle Scholar
Galloway, D. J. (1995 b). Studies on the lichen genus Sticta (Schreber) Ach. III. Notes on species described by Bory de St-Vincent, William Hooker, and Delise, between 1804 and 1825. Nova Hedwigia, 61, 147–188.Google Scholar
Galloway, D. J. (1996). Lichen biogeography. In Lichen Biology, ed. Nash, T. H. III, pp. 199–216. Cambridge: Cambridge University Press.Google Scholar
Galloway, D. J. (1997). Studies on the lichen genus Sticta (Schreber) Ach. IV. New Zealand species. Lichenologist, 29, 105–168.CrossRefGoogle Scholar
Galloway, D. J. (1999). Notes on the lichen genus Leptogium (Collemataceae, Ascomycota) in New Zealand. Nova Hedwigia, 69, 317–355.Google Scholar
Galloway, D. J. (2001). Sticta. Flora of Australia, 58A, 78–97.
Galloway, D. J. (2002). Taxonomic notes on the lichen genus Placopsis (Agyriaceae: Ascomycotina) on southern South America, with a key to species. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 30–32, 70–107.Google Scholar
Galloway, D. J. (2003). Additional lichen records from New Zealand 40. Buellia aethalea (Ach.) Th. Fr., Catillaria contristans (Nyl.) Zahlbr., Frutidella caesioatra (Schaer.) Kalb, Placynthium rosulans (Th.Fr.) Zahlbr. and Pseudocyphellaria mallota. Australasian Lichenology, 53, 20–29.Google Scholar
Galloway, D. J. (2004 a). Placopsis hertelii (Agyriaceae, Ascomycota) endemic to New Zealand, with descriptions of four additional new species of Placopsis (Nyl.) Linds, from New Zealand. Bibliotheca Lichenologica, 88, 147–161.Google Scholar
Galloway, D. J. (2004 b). New lichen taxa and names in the New Zealand mycobiota. New Zealand Journal of Botany, 42, 105–120.CrossRefGoogle Scholar
Galloway, D. J. (2007). Flora of New Zealand Lichens, Including Lichen-forming and Lichenicolous Fungi, 2nd edn. Lincoln: Manaaki Whenua.Google Scholar
Galloway, D. J. (2008). Southern Hemisphere lichens. New Zealand Journal of Botany (In review,)Google Scholar
Galloway, D. J. and Aptroot, A. (1995). Bipolar lichens: a review. Cryptogamic Botany, 5, 184–191.Google Scholar
Galloway, D. J. and Quilhot, W. (1998) [“1999”]. Checklist of Chilean lichen-forming and lichenicolous fungi. Gayana (Botanica), 55, 111–185.Google Scholar
Galloway, D. J. and Thomas, M. A. (2004). Sticta. In Lichen Flora of the Greater Sonoran Desert Region, Vol. 2, ed. Nash, T. H. III, Ryan, B. D., Diederich, P., Gries, C. and Bungartz, F., pp. 513–524. Tempe: Lichens Unlimited.Google Scholar
Galloway, D. J., Hafellner, J. and Elix, J. A. (2005). Stirtoniella, a new genus for Catillaria kelica (Lecanorales: Ramalinaceae). Lichenologist, 37, 261–271.CrossRefGoogle Scholar
Galloway, D. J., Kantvilas, G. and Elix, J. A. (2001). Pseudocyphellaria. Flora of Australia, 58A, 47–77.
Galun, M. (1988 a). Handbook of Lichenology, Vols. 1, 2 and 3, Boca Raton: CRC Press.Google Scholar
Galun, M. (1988 b). Carbon metabolism. In Handbook of Lichenology, Vol. I, ed. Galun, M., pp. 147–156. Boca Raton: CRC Press.Google Scholar
Galun, M. and Bubrick, P. (1984). Physiological interactions between the partners of the lichen symbiosis. In Cellular Interactions: Encyclopedia of Plant Physiology, ed. Linskens, H. F. and Heslop-Harrison, J., pp. 362–401. Berlin: Springer.CrossRefGoogle Scholar
Galun, M. and Mukhtar, A. (1996). Checklist of the lichens of Israel. Bocconea, 6, 149–171.Google Scholar
Galun, M. and Ronen, R. (1988). Interactions of lichens and pollutants. In CRC Handbook of Lichenology, Vol. III, ed. Galun, M., pp. 55–72. Boca Raton: CRC Press.Google Scholar
Galun, M. and Shomer-Ilan, A. (1988). Secondary metabolic products. In CRC Handbook of Lichenology, Vol. III, ed. Galun, M., pp. 3–8. Boca Raton: CRC Press.Google Scholar
Ganderton, P. and Coker, P. (2005). Environmental Biogeography. Harlow, Essex: Pearson Education Ltd.Google Scholar
Garbaye, J. (1994). Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist, 128, 197–210.CrossRefGoogle Scholar
Garcia-Molina, F., Hiner, A. N., Fenoll, L. G., et al. (2005). Mushroom tyrosinase: catalase activity, inhibition, and suicide inactivation. Journal of Agricultural and Food Chemistry, 53, 3702–3709.CrossRefGoogle ScholarPubMed
Gargas, A., DePriest, P. T., Grube, M. and Tehler, A. (1995). Multiple origins of lichen symbiosis in fungi suggested by SSU rDNA phylogeny. Science, 268, 1492–1495.CrossRefGoogle ScholarPubMed
Garrett, R. M. (1972). Electrostatic charges on freshly discharged lichen ascospores. Lichenologist, 5, 311–313.CrossRefGoogle Scholar
Gärtner, G. (1985). Die Gattung Trebouxia PUYMALY (Chlorellales, Chlorophyceae). Archiv für Hydrobiologie, Supplementband, 74, (Algological Studies, 41), 495–548.Google Scholar
Gärtner, G. (1992). Taxonomy of symbiotic eukaryotic algae. In Algae and Symbioses, ed. Reisser, W., pp. 325–338. Bristol: Biopress Limited.Google Scholar
Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Review in Plant Sciences, 20, 309–371.CrossRefGoogle Scholar
Garty, J., Cohen, Y., Kloog, N. and Karnieli, A. (1997). Effect of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens. Environmental Toxicology and Chemistry, 16, 1396–1402.CrossRefGoogle Scholar
Garty, J., Galun, M. and Kessel, M. (1979). Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytologist, 82, 159–168.CrossRefGoogle Scholar
Garty, J.Karary, Y., Harel, J. and Lurie, S. (1993). The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (De Not.) Bagl. transplanted to industrial sites in Israel. Archives of Environmental Contamination and Toxicology, 24, 455–460.CrossRefGoogle Scholar
Garty, J., Perry, A. S. and Mozel, J. (1982). Accumulation of polychlorinated biphenyls (PCBs) in the transplanted lichen Ramalina duriaei in air quality biomonitoring experiments. Nordic Journal of Botany, 2, 583–586.CrossRefGoogle Scholar
Gaugh, H. G. Jr. (1982). Multivariate Analysis in Community Ecology. Cambridge: Cambridge University Press.Google Scholar
Gauslaa, Y. (2006). Trade-off between reproduction and growth in the foliose old forest lichen Lobaria pulmonaria. Basic and Applied Ecology, 7, 455–460.CrossRefGoogle Scholar
Gauslaa, Y. and McEvoy, M. (2005). Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic and Applied Ecology, 6, 75–82.CrossRefGoogle Scholar
Gauslaa, Y. and Solhaug, K. A. (1998). The significance of thallus size for the water economy of the cyanobacterial old-forest lichen Degelia plumbea. Oecologia, 116, 76–84.CrossRefGoogle ScholarPubMed
Gauslaa, Y. and Solhaug, K. A. (1999). High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria – interactions of irradiance, exposure duration and high temperature. Journal of Experimental Botany, 50, 697–705.Google Scholar
Gauslaa, Y. and Solhaug, K. A. (2001). Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia, 126, 462–471.CrossRefGoogle ScholarPubMed
Gauslaa, Y. and Ustvedt, E. M. (2003). Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina?Photochemical and Photobiological Sciences, 2, 424–432.CrossRefGoogle Scholar
Gauslaa, Y., Holien, H., Ohlson, M. and Solhøy, T. (2006 a). Does snail grazing affect growth of the old forest lichen Lobaria pulmonaria?Lichenologist, 38, 587–593.CrossRefGoogle Scholar
Gauslaa, Y., Lie, M., Solhaug, K. and Ohlson, M. (2006 b). Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia, 147, 406–416.CrossRefGoogle ScholarPubMed
Gauslaa, Y., Ohlson, M., Solhaug, K. A., Bilger, W. and Nybakken, L. (2001). Aspect dependent high-irradiance damage to two transplanted foliose forest lichens Lobaria pulmonaria and Parmelia sulcata. Canadian Journal of Forest Research, 31, 1639–1649.CrossRefGoogle Scholar
Gaya, E., Lutzoni, F., Zoller, S. and Navarro-Rosinés, P. (2003). Phylogenetic study of Fulgensia and allied Caloplaca and Xanthoria species (Teloschistaceae, lichen-forming Ascomycota). American Journal of Botany, 90, 1095–1103.CrossRefGoogle Scholar
Geebelen, W. and Hoffmann, M. (2001). Evaluation of bio-indication methods using epiphytes by correlating with SO2-pollution parameters. Lichenologist, 33, 249–260.CrossRefGoogle Scholar
Gehrig, H., Schüssler, A. and Kluge, M. (1996). Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. Journal of Molecular Evolution, 43, 71–81.CrossRefGoogle ScholarPubMed
Geitler, L. (1932). Cyanophyceae von Europa unter Berücksichtigung der anderen Kontinente. In Rabenhorst's Kryptogamenflora von Deutschland, Österreich und der Schweiz, 2nd edn., Vol. 14, ed. Kolkwitz, R., pp. 1–1196. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Geitler, L. (1934). Beiträge zur Kenntnis der Flechtensymbiose. IV, V. Archiv für Protistenkunde 82, 51–85.Google Scholar
Geitler, L. (1937). Beiträge zur Kenntnis der Flechtensymbiose. VI. Die Verbindung von Pilz und Alge bei den Pyrenopsidaceen Synalissa, Thyrea, Peccania und Psorotichia. Archiv für Protistenkunde, 88, 161–179.Google Scholar
Gerson, U. and Seaward, M. R. D. (1977). Lichen-invertebrate associations. In Lichen Ecology, ed. Seaward, M. R. D., pp. 69–119. London: Academic Press.Google Scholar
Geyer, M., Feuerer, T. and Feige, G. B. (1984). Chemie und Systematik in der Flechtengattung Rhizocarpon: Hochdruckflüssigkeitschromatographie (HPLC) der Flechten-Sekundärstoffe der Rhizocarpon superficiale-Gruppe. Plant Systematics and Evolution, 145, 41–54.CrossRefGoogle Scholar
Gignac, D. and Dale, M. R. T. (2005). Effects of fragment size and habitat heterogeneity on cryptogam diversity in the low-boreal forest of western Canada. Bryologist, 108, 50–66.CrossRefGoogle Scholar
Gilbert, O. L. (1970). Further studies on the effect of sulphur dioxide on lichens and bryophytes. New Phytologist, 69, 605–627.CrossRefGoogle Scholar
Gilbert, O. L. (1971). The effect of airborne fluorides on lichens. Lichenologist, 5, 26–32.CrossRefGoogle Scholar
Gilbert, O. L. (1985). Environmental effects of airborne fluorides from aluminium smelting at Invergordon, Scotland 1971–1983. Environmental Pollution, Series A, 39, 293–302.CrossRefGoogle Scholar
Gilbert, O. L. (1992). Lichen reinvasion with declining air pollution. In Bryophytes and Lichens in a Changing Environment, ed. Bates, J. W. and Farmer, A. M., pp. 159–177. Oxford: Clarendon Press.Google Scholar
Gillespie, J. H. (1991). The Causes of Molecular Evolution. Oxford: Oxford University Press.Google Scholar
Gjerde, I., Sætersdal, M., Rolstad, J., et al. (2005). Productivity–diversity relationships for plants, bryophytes, lichens and polypore fungi in six northern forest landscapes. Ecography, 28, 705–720.CrossRefGoogle Scholar
Gob, F., Oetit, F., Bravard, J. P., Ozer, A. and Gob, A. (2003). Lichenometric application to historical and subrecent dynamics and sediment transport of a Corsican stream (Figarella River, France). Quaternary Science Reviews, 22, 2111–2124.CrossRefGoogle Scholar
Goebel, K. (1926). Die Wasseraufnahme der Flechten. Berichte der deutschen botanischen Gesellschaft, 44, 158–161.Google Scholar
Goffinet, B. and Bayer, R. J. (1997). Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA. Fungal Genetics and Biology, 21, 228–237.CrossRefGoogle ScholarPubMed
Goldner, W. R., Hoffman, F. M. and Medve, R. J. (1986). Allelopathic effects of Cladonia cristatella on ectomycorrhizal fungi common to bituminous strip-mine spoils. Canadian Journal of Botany, 64, 1586–1590.CrossRefGoogle Scholar
Golm, G. T., Hill, P. S. and Wells, H. (1993). Life expectancy in a Tulsa cemetery: growth and population structure of the lichen Xanthoparmelia cumberlandia. American Midland Naturalist, 129, 373–383.CrossRefGoogle Scholar
Gombert, S., Asta, J. and Seaward, M. R. D. (2003). Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environmental Pollution, 123, 281–290.CrossRefGoogle Scholar
Gordy, V. R. and Hendrix, D. L. (1982). Respiratory response of the lichens Ramalina stenospora Mull. Arg. and Ramalina complanata (Sw.) Ach. to azide, cyanide, salicylhydroxamic acid and bisulfate during thallus hydration. Bryologist, 85, 361–374.CrossRefGoogle Scholar
Gorin, P. A. J., Baron, M. and Iacomini, M. (1988). Storage products of lichens. In CRC Handbook of Lichenology, Vol. 3, ed. Galun, M., pp. 9–24. Boca Raton: CRC Press.Google Scholar
Gough, L. P., Severson, R. C. and Jackson, L. L. (1988). Determining baseline element composition of lichens. I. Parmelia sulcata at Theodore Roosevelt National Park, North Dakota. Water, Air, and Soil Pollution, 38, 157–167.Google Scholar
Goward, T. (1994). Notes on old growth-dependent epiphytic macrolichens in inland British Columbia, Canada. Acta Botanica Fennica, 150, 31–38.Google Scholar
Goward, T. (1995). Nephroma occultum and the maintenance of lichen diversity in British Columbia. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, 70, 93–101.Google Scholar
Goward, T. (1996). Lichens of British Columbia: Rare Species and Priorities for Inventory. Victoria: Province of British Columbia, Ministry of Forests Research Program. Working Paper 08/1996, pp. i–viii + 1–34.
Goward, T. and Ahti, T. (1997). Notes on the distributional ecology of the Cladoniaceae (lichenized ascomycetes) in temperate and boreal western North America. Journal of the Hattori Botanical Laboratory, 82, 143–155.Google Scholar
Goyal, R. and Seaward, M. R. D. (1982). Metal uptake in terricolous lichens. III. Translocation in the thallus of Peltigera canina. New Phytologist, 90, 85–98.CrossRefGoogle Scholar
Grace, B., Gillespie, T. J. and Puckett, K. J. (1985 a). Sulphur dioxide threshold concentration values for Cladina rangiferina in the Mackenzie Valley, N. W. T. Canadian Journal of Botany, 63, 806–812.CrossRefGoogle Scholar
Grace, B., Gillespie, T. J. and Puckett, K. J. (1985 b). Uptake of gaseous sulphur dioxide by the lichen Cladina rangiferina. Canadian Journal of Botany, 63, 797–805.CrossRefGoogle Scholar
Grace, J. (1997). Toward models of resource allocation by plants. In Plant Resource Allocation, ed. Bazzaz, F. A. and Grace, J., pp. 279–291. San Diego: Academic Press.Google Scholar
Gradstein, S. and Lücking, R. (1997). Synthesis of the Symposium (on Foliicolous Cryptogams) and priorities for future research. Abstracta Botanica, 21, 207–214.Google Scholar
Grant, B. S., Owen, D. F. and Clarke, C. A. (1996). Parallel rise and fall of melanic peppered moths in America and Britain. Journal of Heredity, 87, 351–357.CrossRefGoogle Scholar
Green, T. G. A. and Lange, O. L. (1995). Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In Ecophysiology of Photosynthesis, ed. Schulze, E. D. and Caldwell, M. M., pp. 71–101. Berlin: Springer.Google Scholar
Green, T. G. A., Büdel, B., Heber, U., et al. (1993). Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytologist, 125, 723–731.CrossRefGoogle Scholar
Green, T. G. A, Büdel, B., Meyer, A., Zellner, H. and Lange, O. L. (1997). Temperate rainforest lichens in New Zealand: light response of photosynthesis. New Zealand Journal of Botany, 35, 493–504.CrossRefGoogle Scholar
Green, T. G. A., Horstmann, J., Bonnett, H., Wilkins, A. and Silvester, W. B. (1980). Nitrogen fixation by members of the Stictaceae (Lichens) of New Zealand. New Phytologist, 84, 339–348.CrossRefGoogle Scholar
Green, T. G. A., Meyer, A., Büdel, B., Zellner, H. and Lange, O. L. (1995). Diel patterns of CO2-exchange for six lichens from a temperate rain forest in New Zealand. Symbiosis, 18, 251–273.Google Scholar
Green, T. G. A., Schlensog, M., Sancho, L. G., et al. (2002). The photobiont (cyanobacterial or green algal) determines the pattern of photosynthetic activity within a lichen photosymbiodeme: evidence obtained from in situ measurements of chlorophyll a fluorescence. Oecologia, 130, 191–198.CrossRefGoogle Scholar
Green, T. G. A., Schroeter, B., Kappen, L., Seppelt, R. D. and Maseyk, K. (1998). An assessment of the relationship between chlorophyll a fluorescence and CO2 gas exchange from field measurements on a moss and lichen. Planta, 206, 611–618.CrossRefGoogle Scholar
Green, T. G. A., Schroeter, B. and Sancho, L. G. (1999). Plant life in Antarctica. In Handbook of Functional Plant Ecology, ed. Pugnaire, F. I. and Valladares, F., pp. 495–543. New York: Marcel Dekker, Inc.Google Scholar
Green, T. G. A., Schroeter, B. and Sancho, L. G. (2007). Plant life in Antarctica. In Functional Plant Ecology, 2nd edn., ed. Pugnaire, F. I. and Valladares, F., pp. 389–433. New York: Marcel Dekker.Google Scholar
Green, T. G. A., Snelgar, W. P. and Wilkins, A. L. (1985). Photosynthesis, water relations and thallus structure of Stictaceae lichens. In Lichen Physiology and Cell Biology, ed. Brown, D. H., pp. 57–75. New York: Plenum Press.CrossRefGoogle Scholar
Gregory, K. J. (1975). Lichens and the determination of river channel capacity. Earth Surface Processes, 1, 273–285.CrossRefGoogle Scholar
Grehan, J. R. (2001). Panbiogeography from tracks to ocean basins: evolving perspectives. Journal of Biogeography, 28, 413–429.CrossRefGoogle Scholar
Gries, C., Nash, T. H. III and Kesselmeier, J. (1994). Exchange of reduced sulfur gases between lichens and the atmosphere. Biogeochemistry, 23, 25–39.CrossRefGoogle Scholar
Gries, C., Romagni, J. G., Nash, T. H. III, Kuhn, U. and Kesselmeier, J. (1997 a). The relation of H2S release to SO2. New Phytologist, 136, 703–711.CrossRefGoogle Scholar
Gries, C., Sanz, M.-J. and Nash, T. H. III (1995). The effect of SO2 fumigation on CO2 gas exchange, chlorophyll fluorescence and chlorophyll degradation in different lichen species from western North America. Cryptogamic Botany, 5, 239–246.Google Scholar
Gries, C., Sanz, M.-J., Romagni, J. G., et al. (1997 b). The uptake of gaseous sulphur dioxide by non-gelatinous lichens. New Phytologist, 135, 595–602.CrossRefGoogle Scholar
Griffith, M. and Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9, 399–405.CrossRefGoogle ScholarPubMed
Grime, J. P. (1979). Plant Strategies and Vegetation Processes. Chichester: Wiley.Google Scholar
Grime, J. P., Hodgson, J. P. and Hunt, R. (1988). Comparative Plant Ecology: a Functional Approach to Common British Species. London: Unwin Hyman.CrossRefGoogle Scholar
Grodzinska, K., Godzik, B. and Bienkowski, P. (1999). Cladina stellaris (Opiz) Brodo as a bioindicator of atmospheric deposition on the Kola Peninsula, Russia. Polar Research, 18, 105–110.CrossRefGoogle Scholar
Groombridge, B., ed. (1992). Global Biodiversity: Status of the Earth's Living Resources. London: Chapman and Hall.CrossRefGoogle Scholar
Grube, M. (1998). Classification and phylogeny in the Arthoniales (lichenized Ascomycetes). Bryologist, 101, 377–391.CrossRefGoogle Scholar
Grube, M. and Blaha, J. (2003). On the pylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycological Research, 107, 1419–1426.CrossRefGoogle Scholar
Grube, M. and Los Ríos, A. (2001). Observations on Biatoropsis usnearum, a lichenicolous heterobasidiomycete, and other gall-forming fungi, using different microscopical techniques. Mycological Research, 105, 1116–1122.CrossRefGoogle Scholar
Grube, M. and Hafellner, F. (1990). Studien an flechtenbewohnenden Pilzen der Sammelgattung Didymella (Ascomycetes, Dothideales). Nova Hedwigia, 51, 283–360.Google Scholar
Grube, M. and Kantvilas, G. (2006). Siphula represents a remarkable case of morphological congruence in sterile lichens. Lichenologist, 38, 241–249.CrossRefGoogle Scholar
Grube, M. and Kroken, S. (2000). Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research, 104, 1284–1294.CrossRefGoogle Scholar
Grube, M., Baloch, E. and Lumbsch, H. T. (2004). The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycological Research, 108, 1111–1118.CrossRefGoogle ScholarPubMed
Guenther, J. E. and Melis, A. (1990). Dynamics of photosystem II heterogeneity in Dunaliella salina (green alga). Photosynthesis Research, 23, 195–203.CrossRefGoogle Scholar
Gugger, M. F. and Hoffmann, L. (2004). Polyphyly of true branching cyanobacteria (Stigonematales). International Journal of Systematic and Evolutionary Microbiology, 54, 349–357.CrossRefGoogle Scholar
Gunn, J., Keller, W., Negusanti, J., et al. (1995). Ecosystem recovery after emission reductions: Sudbury, Canada. Water, Air, and Soil Pollution, 85, 1783–1788.CrossRefGoogle Scholar
Gunther, A. J. (1988). Effects of simulated acid rain on nitrogenase activity in the lichen genus Peltigera under field and laboratory conditions. Water, Air, and Soil Pollution, 38, 379–385.Google Scholar
Gunther, A. J. (1989). Nitrogen fixation by lichens in a subarctic Alaskan watershed. Bryologist, 92, 202–208.CrossRefGoogle Scholar
Gupta, V. (2005). Application of lichenometry to slided materials in the Higher Himalayan landslide zone. Current Science, 89, 1032–1036.Google Scholar
Haas, D. and Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117–153.CrossRefGoogle ScholarPubMed
Hafellner, J. (1984). Studien in Richtung einer naturlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beitrage zur Lichenologie. Festschrift J. Poelt. Beihefte zur Nova Hedwigia, 79, 241–371.Google Scholar
Hafellner, J. (1995) A new checklist of lichens and lichenicolous fungi of insular Laurimacaronesia including a lichenological bibliography for the area. Fristchiana 5, 3–132.Google Scholar
Hafellner, J., Hertel, H., Rambold, G. and Timdal, E. (1993). A New Outline of the Lecanorales. Graz: Privately published by the authors.Google Scholar
Häffner, E., Lomský, B., Hynek, V.,et al. (2001). Air pollution and lichen physiology. Physiological responses of different lichens in a transplant experiment following an SO2-gradient. Water, Air, and Soil Pollution, 131, 185–201.CrossRefGoogle Scholar
Hageman, C. M. (1989). Enzyme electromorph variation in the lichen family Umbilicariaceae. Ph.D. thesis. London, Ontario: University of Western Ontario.
Hageman, C. M. and Fahselt, D. (1986). A comparison of isozyme patterns of morphological variants in the lichen Umbilicaria muhlenbergii (Ach.) Tuck. Bryologist, 89, 285–290.CrossRefGoogle Scholar
Hageman, C. M. and Fahselt, D. (1990). Enzyme electromorph variation in the lichen family Umbilicariaceae: within-stand polymorphism in umbilicate lichens of eastern Canada. Canadian Journal of Botany, 68, 2636–2643.CrossRefGoogle Scholar
Hageman, C. M. and Fahselt, D. (1992). Geographical distance and enzyme polymorphisms in the lichen Umbilicaria mammulata. Bryologist, 93, 316–323.CrossRefGoogle Scholar
Hahn, S. C., Tenhunen, J. D., Popp, P. W., Meyer, A. and Lange, O. L. (1993). Upland tundra in the foothills of the Brooks Range, Alaska: diurnal CO2 exchange patterns of characteristic lichen species. Flora, 188, 125–143.CrossRefGoogle Scholar
Hale, M. E. (1973). Growth. In The Lichens, ed. Ahmadjian, V. and Hale, M. E., pp. 473–492. New York: Academic Press.Google Scholar
Hale, M. E. (1974). The Biology of Lichens. 2nd edn. London: Edward Arnold.Google Scholar
Hale, M. E. (1983). The Biology of Lichens. 3rd edn. London: Edward Arnold.Google Scholar
Hale, M. E. (1984). The lichen line and high water levels in a freshwater stream in Florida. Bryologist, 87, 261–265.CrossRefGoogle Scholar
Hale, M. E. (1990). A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Contributions to Botany, 74, 1–250.CrossRefGoogle Scholar
Hallbom, L. and Bergman, B. (1979). Influence of certain herbicides and a forest fertilizer on the nitrogen fixation by the lichen Peltigera praetextata. Oecologia, 40, 19–27.CrossRefGoogle Scholar
Hällgren, J.-E. and Huss, K. (1975). Effects of SO2 on photosynthesis and nitrogen fixation. Physiologia Plantarum, 34, 171–176.CrossRefGoogle Scholar
Hallingbäck, T. (1991). Blue-green algae and cyanophilic lichens are threatened by air pollution and fertilization. Svensk Botanisk Tidskrift, 85, 87–104.Google Scholar
Hallingbäck, T. and Kellner, O. (1992). Effects of simulated nitrogen rich and acid rain on the nitrogen-fixing lichen Peltigera aphthosa (L.) Willd. New Phytologist, 120, 99–103.CrossRefGoogle Scholar
Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.CrossRefGoogle ScholarPubMed
Halliwell, B. and Gutteridge, J. M. C. (1999). Free Radicals in Biology and Medicine. Oxford: Oxford University Press.Google Scholar
Hamada, N., Miyawaki, H. and Yamada, A. (1995). Distribution pattern of air pollution and epiphytic lichens in the Osaka Plain (Japan). Journal of Plant Research, 108, 483–491.CrossRefGoogle Scholar
Hamada, N., Tanahashi, T., Miyagawa, H. and Miyawaki, H. (2001). Characteristics of secondary metabolites from isolated lichen mycobionts. Symbiosis, 31, 23–33.Google Scholar
Hammer, S. (2003). Notocladonia, a new genus in the Cladoniaceae. Bryologist, 106, 162–167.CrossRefGoogle Scholar
Hardy, R. W. F., Burns, R. C. and Holsten, R. D. (1973). Applications of the C2H2 reduction assay for measurement of N2 fixation. Soil Biology and Biochemistry, 5, 47–81.CrossRefGoogle Scholar
Harper, K. T. and Marble, J. R. (1988). A role of nonvascular plants in management of semiarid rangelands. In Vegetation Science Applications for Rangeland Analysis and Management, ed. Tueller, P. T., pp. 135–169. London: Kluwer Academic.CrossRefGoogle Scholar
Harris, G. B. (1971). The ecology of corticolous lichens. I. The zonation on oak and birch in South Devon. Journal of Ecology, 59, 431–439.CrossRefGoogle Scholar
Harrison, S. and Winchester, V. (2000). Nineteenth- and twentieth-century glacier fluctuations and climatic implications in the Arco and Colonia valleys, Hielo Patagónico Norte, Chile. Arctic, Antarctic, and Alpine Research, 32, 55–63.CrossRefGoogle Scholar
Hasegawa, M., Kishino, H. and Yano, K. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.CrossRefGoogle ScholarPubMed
Hasenhüttl, G. and Poelt, J. (1978). Über die Brutkörner bei der Flechtengattung Umbilicaria. Berichte der deutschen botanischen Gesellschaft, 91, 275–296.Google Scholar
Hasse, H. E. (1913). The lichen flora of southern California. Contributions from the United States National Herbarium, 17, 1–132.Google Scholar
Hauck, M. and Paul, A. (2005). Manganese as a site factor for epiphytic lichens. Lichenologist, 37, 409–423.CrossRefGoogle Scholar
Hauck, M. and Spribille, T. (2005). The significance of precipitation and substrate chemistry for epiphytic lichen diversity in spruce-fir forests of the Salish Mountains, northwestern Montana. Flora, 200, 547–562.CrossRefGoogle Scholar
Hauck, M. and Zoller, T. (2003). Copper sensitivity of soredia of the epiphytic lichen Hypogymnia physodes. Lichenologist, 35, 271–274.CrossRefGoogle Scholar
Hauck, M., Hesse, V., Jung, R., Zöller, T. and Runge, M. (2001). Long-distance transported sulphur as a limiting factor for the abundance of Lecanora conizaeoides in montane spruce forests. Lichenologist, 33, 267–269.CrossRefGoogle Scholar
Hauck, M., Hesse, V. and Runge, M. (2002 a). Correlations between the Mn/Ca ratio in stemflow and epiphytic lichen abundance in a dieback-affected spruce forest of the Harz Mountains, Germany. Flora, 197, 361–369.CrossRefGoogle Scholar