Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-18T05:05:50.936Z Has data issue: false hasContentIssue false

Section 9 - Selection of Conditioning Regimen and Challenges with Different Types of T-Cell Depletion Methods

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 247 - 290
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Appelbaum, FR. Hematopoietic-cell transplantation at 50. N Engl J Med. 2007;357(15):1472–5. Epub 2007/10/12. doi: 357/15/1472 [pii]10.1056/NEJMp078166. PubMed PMID: 17928594.Google Scholar
Lazarus, HM, Phillips, GL, Herzig, RH, Hurd, DD, Wolff, SN, Herzig, GP. High-dose melphalan and the development of hematopoietic stem-cell transplantation: 25 years later. J Clin Oncol. 2008;26(14):2240–3. doi: 10.1200/JCO.2007.14.7827. PubMed PMID: 18467711.Google Scholar
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9. PubMed PMID: 15994282.Google Scholar
McSweeney, PA, Niederwieser, D, Shizuru, JA, Sandmaier, BM, Molina, AJ, Maloney, DG, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 2001;97(11):3390–400. PubMed PMID: 11369628.Google Scholar
Abidi, MH, Agarwal, R, Tageja, N, Ayash, L, Deol, A, Al-Kadhimi, Z, et al. A phase I dose-escalation trial of high-dose melphalan with palifermin for cytoprotection followed by autologous stem cell transplantation for patients with multiple myeloma with normal renal function. Biol Blood Marrow Transplant. 2013;19(1):5661. doi: 10.1016/j.bbmt.2012.08.003. PubMed PMID: 22892551; PubMed Central PMCID: PMC3786738.Google Scholar
Vose, JM, Bierman, PJ, Loberiza, FR, Enke, C, Hankins, J, Bociek, RG, et al. Phase II trial of 131-Iodine tositumomab with high-dose chemotherapy and autologous stem cell transplantation for relapsed diffuse large B cell lymphoma. Biol Blood Marrow Transplant. 2013;19(1):123–8. doi: 10.1016/j.bbmt.2012.08.013. PubMed PMID: 22940055.Google Scholar
Brenner, MK, Rill, DR, Holladay, MS, Heslop, HE, Moen, RC, Buschle, M, et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet. 1993;342(8880):1134–7. PubMed PMID: 7901474.Google Scholar
Arcaini, L, Montanari, F, Alessandrino, EP, Tucci, A, Brusamolino, E, Gargantini, L, et al. Immunochemotherapy with in vivo purging and autotransplant induces long clinical and molecular remission in advanced relapsed and refractory follicular lymphoma. Ann Oncol. 2008;19(7):1331–5. doi: 10.1093/annonc/mdn044. PubMed PMID: 18344536.Google Scholar
Philip, T, Guglielmi, C, Hagenbeek, A, Somers, R, Van der Lelie, H, Bron, D, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. New Engl J Med. 1995;333(23):1540–5. doi: 10.1056/NEJM199512073332305. PubMed PMID: 7477169.CrossRefGoogle ScholarPubMed
Weaver, CH, Appelbaum, FR, Petersen, FB, Clift, R, Singer, J, Press, O, et al. High-dose cyclophosphamide, carmustine, and etoposide followed by autologous bone marrow transplantation in patients with lymphoid malignancies who have received dose-limiting radiation therapy. J Clin Oncol. 1993;11(7):1329–35. PubMed PMID: 8315430.Google Scholar
Chen, YB, Lane, AA, Logan, B, Zhu, X, Akpek, G, Aljurf, M, et al. Impact of conditioning regimen on outcomes for patients with lymphoma undergoing high-dose therapy with autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015. doi: 10.1016/j.bbmt.2015.02.005. PubMed PMID: 25687795.Google Scholar
Kalaycio, M, Rybicki, L, Pohlman, B, Sobecks, R, Andresen, S, Kuczkowski, E, et al. Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol. 2006;24(22):3604–10. doi: 10.1200/JCO.2006.06.0673. PubMed PMID: 16877727.Google Scholar
Shaw, PJ, Nath, CE, Lazarus, HM. Not too little, not too much-just right! (Better ways to give high dose melphalan). Bone Marrow Transplant. 2014. doi: 10.1038/bmt.2014.186. PubMed PMID: 25133893.Google Scholar
Moreau, P, Facon, T, Attal, M, Hulin, C, Michallet, M, Maloisel, F, et al. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5. PubMed PMID: 11806971.Google Scholar
Moreau, P, Attal, M, Harousseau, JL. New developments in conditioning regimens before auto-HCT in multiple myeloma. Bone Marrow Transplant. 2011;46(7):911–5. doi: 10.1038/bmt.2011.20. PubMed PMID: 21358678.Google Scholar
Atkins, HL, Muraro, PA, van Laar, JM, Pavletic, SZ. Autologous hematopoietic stem cell transplantation for autoimmune disease – is it now ready for prime time? Biol Blood Marrow Transplant. 2012;18(1 Suppl):S177–83. doi: 10.1016/j.bbmt.2011.11.020. PubMed PMID: 22226104.Google Scholar
Baron, F, Labopin, M, Niederwieser, D, Vigouroux, S, Cornelissen, JJ, Malm, C, et al. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European group for blood and marrow transplantation. Leukemia. 2012;26(12):2462–8. doi: 10.1038/leu.2012.135. PubMed PMID: 22699419.Google Scholar
Craddock, C, Nagra, S, Peniket, A, Brookes, C, Buckley, L, Nikolousis, E, et al. Factors predicting long-term survival after T-cell depleted reduced intensity allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica. 2010;95(6):989–95. Epub 2009/12/03. doi: 10.3324/haematol.2009.013920. PubMed PMID: 19951968; PubMed Central PMCID: PMC2878799.Google Scholar
Bacigalupo, A, Ballen, K, Rizzo, D, Giralt, S, Lazarus, H, Ho, V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33. doi: 10.1016/j.bbmt.2009.07.004. PubMed PMID: 19896087; PubMed Central PMCID: PMC2861656.CrossRefGoogle ScholarPubMed
Deeg, HJ, Sandmaier, BM. Who is fit for allogeneic transplantation? Blood. 2010;116(23):4762–70. doi: 10.1182/blood-2010-07-259358. PubMed PMID: 20702782; PubMed Central PMCID: PMC3253743.Google Scholar
Sorror, ML, Giralt, S, Sandmaier, BM, De Lima, M, Shahjahan, M, Maloney, DG, et al. Hematopoietic cell transplantation specific comorbidity index as an outcome predictor for patients with acute myeloid leukemia in first remission: combined FHCRC and MDACC experiences. Blood. 2007;110(13):4606–13. PubMed PMID: 17873123.Google Scholar
Copelan, EA, Hamilton, BK, Avalos, B, Ahn, KW, Bolwell, BJ, Zhu, X, et al. Better leukemia-free and overall survival in AML in first remission following cyclophosphamide in combination with busulfan compared with TBI. Blood. 2013;122(24):3863–70. doi: 10.1182/blood-2013-07-514448. PubMed PMID: 24065243; PubMed Central PMCID: PMC3854108.CrossRefGoogle ScholarPubMed
Nagler, A, Rocha, V, Labopin, M, Unal, A, Ben Othman, T, Campos, A, et al. Allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia in remission: comparison of intravenous busulfan plus cyclophosphamide (Cy) versus total-body irradiation plus Cy as conditioning regimen – a report from the acute leukemia working party of the European group for blood and marrow transplantation. J Clin Oncol. 2013;31(28):3549–56. doi: 10.1200/JCO.2013.48.8114. PubMed PMID: 23980086.Google Scholar
Socie, G, Clift, RA, Blaise, D, Devergie, A, Ringden, O, Martin, PJ, et al. Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood. 2001;98(13):3569–74. PubMed PMID: 11739158.Google Scholar
Andersson, BS, de Lima, M, Thall, PF, Wang, X, Couriel, D, Korbling, M, et al. Once daily i.v. busulfan and fludarabine (i.v. Bu-Flu) compares favorably with i.v. busulfan and cyclophosphamide (i.v. BuCy2) as pretransplant conditioning therapy in AML/MDS. Biol Blood Marrow Transplant. 2008;14(6):672–84. doi: 10.1016/j.bbmt.2008.03.009. PubMed PMID: 18489993.Google Scholar
Lee, JH, Joo, YD, Kim, H, Ryoo, HM, Kim, MK, Lee, GW, et al. Randomized trial of myeloablative conditioning regimens: busulfan plus cyclophosphamide versus busulfan plus fludarabine. J Clin Oncol. 2013;31(6):701–9. doi: 10.1200/JCO.2011.40.2362. PubMed PMID: 23129746.Google Scholar
Ram, R, Storb, R, Sandmaier, BM, Maloney, DG, Woolfrey, A, Flowers, ME, et al. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica. 2011;96(8):1113–20. Epub 2011/04/22. doi: 10.3324/haematol.2011.040261. PubMed PMID: 21508120; PubMed Central PMCID: PMC3148904.Google Scholar
Slavin, S, Nagler, A, Naparstek, E, Kapelushnik, Y, Aker, M, Cividalli, G, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood. 1998;91(3):756–63. PubMed PMID: 9446633.CrossRefGoogle ScholarPubMed
Giralt, S, Estey, E, Albitar, M, van Besien, K, Rondon, G, Anderlini, P, et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood. 1997;89(12):4531–6. PubMed PMID: 9192777.Google Scholar
Nemecek, ER, Guthrie, KA, Sorror, ML, Wood, BL, Doney, KC, Hilger, RA, et al. Conditioning with treosulfan and fludarabine followed by allogeneic hematopoietic cell transplantation for high-risk hematologic malignancies. Biol Blood Marrow Transplant. 2011;17(3):341–50. doi: 10.1016/j.bbmt.2010.05.007. PubMed PMID: 20685259; PubMed Central PMCID: PMC2974965.Google Scholar
Chevallier, P, Labopin, M, Buchholz, S, Ganser, A, Ciceri, F, Lioure, B, et al. Clofarabine-containing conditioning regimen for allo-HCT in AML/ALL patients: a survey from the Acute Leukemia Working Party of EBMT. Eur J Haematol. 2012;89(3):214–9. doi: 10.1111/j.1600-0609.2012.01822.x. PubMed PMID: 22702414.CrossRefGoogle Scholar
Childs, R, Chernoff, A, Contentin, N, Bahceci, E, Schrump, D, Leitman, S, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. New Engl J Med. 2000;343(11):750–8. doi: 10.1056/NEJM200009143431101. PubMed PMID: 10984562.Google Scholar
Childs, R, Clave, E, Contentin, N, Jayasekera, D, Hensel, N, Leitman, S, et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood. 1999;94(9):3234–41. PubMed PMID: 10556212.Google Scholar
Kottaridis, PD, Milligan, DW, Chopra, R, Chakraverty, RK, Chakrabarti, S, Robinson, S, et al. In vivo CAMPATH-1H prevents GvHD following nonmyeloablative stem-cell transplantation. Cytotherapy. 2001;3(3):197201. PubMed PMID: 12171726.Google Scholar
Soiffer, RJ, Lerademacher, J, Ho, V, Kan, F, Artz, A, Champlin, RE, et al. Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Blood. 2011;117(25):6963–70. doi: 10.1182/blood-2011-01-332007. PubMed PMID: 21464372; PubMed Central PMCID: PMC3128486.Google Scholar
Lush, RJ, Haynes, AP, Byrne, J, Cull, GM, Carter, GI, Pagliuca, A, et al. Allogeneic stem-cell transplantation for lymphoproliferative disorders using BEAM-CAMPATH (+/- fludarabine) conditioning combined with post-transplant donor-lymphocyte infusion. Cytotherapy. 2001;3(3):203–10. Epub 2002/08/13. doi: 10.1080/146532401753174034. PubMed PMID: 12171727.Google Scholar
Schmid, C, Schleuning, M, Ledderose, G, Tischer, J, Kolb, HJ. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol. 2005;23(24):5675–87. PubMed PMID: 16110027.Google Scholar
Schmid, C, Schleuning, M, Schwerdtfeger, R, Hertenstein, B, Mischak-Weissinger, E, Bunjes, D, et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood. 2006;108(3):1092–9. PubMed PMID: 16551971.Google Scholar
Kohrt, HE, Turnbull, BB, Heydari, K, Shizuru, JA, Laport, GG, Miklos, DB, et al. TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood. 2009;114(5):1099–109. doi: 10.1182/blood-2009-03-211441. PubMed PMID: 19423725; PubMed Central PMCID: PMC2721787.Google Scholar
Benjamin, J, Chhabra, S, Kohrt, HE, Lavori, P, Laport, GG, Arai, S, et al. Total lymphoid irradiation-antithymocyte globulin conditioning and allogeneic transplantation for patients with myelodysplastic syndromes and myeloproliferative neoplasms. Biol Blood Marrow Transplant. 2014;20(6):837–43. doi: 10.1016/j.bbmt.2014.02.023. PubMed PMID: 24607552.Google Scholar
Russell, NH, Kjeldsen, L, Craddock, C, Pagliuca, A, Yin, JA, Clark, RE, et al. A comparative assessment of the curative potential of reduced intensity allografts in acute myeloid leukaemia. Leukemia. 2014. doi: 10.1038/leu.2014.319. PubMed PMID: 25376374.CrossRefGoogle Scholar
Blaise, D, Tabrizi, R, Boher, JM, Le Corroller-Soriano, AG, Bay, JO, Fegueux, N, et al. Randomized study of 2 reduced-intensity conditioning strategies for human leukocyte antigen-matched, related allogeneic peripheral blood stem cell transplantation: prospective clinical and socioeconomic evaluation. Cancer. 2013;119(3):602–11. doi: 10.1002/cncr.27786. PubMed PMID: 22893313.Google Scholar
Pagel, JM, Gooley, TA, Rajendran, J, Fisher, DR, Wilson, WA, Sandmaier, BM, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2009;114(27):5444–53. doi: 10.1182/blood-2009-03-213298. PubMed PMID: 19786617; PubMed Central PMCID: PMC2798861.Google Scholar
Chen, YB, Li, S, Lane, AA, Connolly, C, Del Rio, C, Valles, B, et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(12):2042–8. doi: 10.1016/j.bbmt.2014.09.007. PubMed PMID: 25239228; PubMed Central PMCID: PMC4253683.Google Scholar
Goodyear, OC, Dennis, M, Jilani, NY, Loke, J, Siddique, S, Ryan, G, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119(14):3361–9. Epub 2012/01/12. doi: 10.1182/blood-2011-09-377044. PubMed PMID: 22234690.Google Scholar
Baron, F, Labopin, M, Blaise, D, Lopez-Corral, L, Vigouroux, S, Craddock, C, et al. Impact of in-vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-HCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2014;49(3):389–96. doi: 10.1038/bmt.2013.204. PubMed PMID: 24419525.Google Scholar
Peggs, KS, Sureda, A, Qian, W, Caballero, D, Hunter, A, Urbano-Ispizua, A, et al. Reduced-intensity conditioning for allogeneic haematopoietic stem cell transplantation in relapsed and refractory Hodgkin lymphoma: impact of alemtuzumab and donor lymphocyte infusions on long-term outcomes. Br J Haematol. 2007;139(1):7080. doi: 10.1111/j.1365–2141.2007.06759.x. PubMed PMID: 17854309.Google Scholar
Negrin, RS. Role of regulatory T cell populations in controlling graft vs host disease. Best Pract Res Clin Haematol. 2011;24(3):453–7. doi: 10.1016/j.beha.2011.05.006. PubMed PMID: 21925098; PubMed Central PMCID: PMC3176418.Google Scholar

References

Thomas, E.D., Storb, R., Clift, R.A., et al., Bone-marrow transplantation (second of two parts). N Engl J Med, 1975. 292(17): p. 895902.Google Scholar
Clift, R.A., Buckner, C., Appelbaum, F.R., et al., Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood, 1990. 76(9): p. 1867–71.Google Scholar
Clift, R.A., Buckner, C., Appelbaum, F.R., et al., Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood, 1991. 77(8): p. 1660–5.CrossRefGoogle ScholarPubMed
Gyurkocza, B. and Sandmaier, BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood, 2014. 124(3): p. 344–53.Google Scholar
Liu, S.Y., Eary, J.F., Petersdorf, S.H., et al., Follow-up of relapsed B-cell lymphoma patients treated with iodine-131- labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol, 1998. 16(10): p. 3270–8.Google Scholar
Press, O.W., Eary, J.F., Gooley, T., et al., A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood, 2000. 96(9): p. 2934–42.Google Scholar
Nourigat, C., Badger, C.C., and Bernstein, I.D. Treatment of lymphoma with radiolabeled antibody: elimination of tumor cells lacking target antigen. J Natl Cancer Inst, 1990. 82(1): p. 4750.Google Scholar
Press, O.W., Hansen, J.A., Farr, A., et al., Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res, 1988. 48(8): p. 2249–57.Google Scholar
Press, O.W., Eary, J.F., Badger, C.C., et al., Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol, 1989. 7(8): p. 1027–38.Google Scholar
Geissler, F., Anderson, S.K., and Press, O. Intracellular catabolism of radiolabeled anti-CD3 antibodies by leukemic T cells. Blood, 1991. 78(7): p. 1864–74.Google Scholar
Geissler, F., Anderson, S.K., Venkatesan, P., et al., Intracellular catabolism of radiolabeled anti-mu antibodies by malignant B cells. Cancer Res, 1992. 52(10): p. 2907−15Google Scholar
van der Jagt, R.H., Badger, C.C., Appelbaum, F.R., et al., Localization of radiolabeled antimyeloid antibodies in a human acute leukemia xenograft tumor model. Cancer Res, 1992. 52(1): p. 8994.Google Scholar
Press, O.W., Grogan, T.M., and Fisher, R.I. Evaluation and management of mantle cell lymphoma. Adv Leuk Lymphoma, 1996. 6: p. 311.Google Scholar
Winter, J.N., Inwards, D.J., Spies, S., et al., Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol, 2009. 27(10): p. 1653–9.Google Scholar
Gopal, A.K., Press, O.W., Wilbur, S.M., et al., Rituximab blocks binding of radiolabeled anti-CD20 antibodies (Ab) but not radiolabeled anti-CD45 Ab. Blood, 2008. 112(3): p. 830−5.CrossRefGoogle Scholar
Omary, M.B., Trowbridge, I.S., and Battifora, H.A. Human homologue of murine T200 glycoprotein. J Exp Med, 1980. 152(4): p. 842−52.Google Scholar
Andres, T.L. and Kadin, M.E. Immunologic markers in the differential diagnosis of small round cell tumors from lymphocytic lymphoma and leukemia. Am J Clin Pathol, 1983. 79(5): p. 546−52.Google Scholar
Nakano, A., Harada, T., Morikawa, S., et al., Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathol Jpn, 1990. 40(2): p. 107–15.Google Scholar
Taetle, R., Ostergaard, H., Smedsrud, M., et al., Regulation of CD45 expression in human leukemia cells. Leukemia, 1991. 5(4): p. 309−14.Google Scholar
Press, O.W., Howell-Clark, J., Anderson, S., et al., Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood, 1994. 83(5): p. 1390–7.Google Scholar
Becker, W., Goldenberg, D.M., and Wolf, F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med, 1994. 24(2): p. 142–53.CrossRefGoogle ScholarPubMed
Gray-Owen, S.D. and Blumberg, R.S. CEACAM1: contact-dependent control of immunity. Nat Rev Immunol, 2006. 6(6): p. 433–46.Google Scholar
Wahren, B., Gahrton, G., and Hammarstrom, S. Nonspecific cross-reacting antigen in normal and leukemic myeloid cells and serum of leukemic patients. Cancer Res, 1980. 40(6): p. 2039–44.Google Scholar
Noworolska, A., Harlozinska, A., Richter, R., et al., Non-specific cross-reacting antigen (NCA) in individual maturation stages of myelocytic cell series. Br J Cancer, 1985. 51(3): p. 371–7.Google Scholar
Watt, S.M., Sala-Newby, G., Hoang, T., et al., CD66 identifies a neutrophil-specific epitope within the hematopoietic system that is expressed by members of the carcinoembryonic antigen family of adhesion molecules. Blood, 1991. 78(1): p. 6374.Google Scholar
Carrasco, M., Munoz, L., Bellido, M., et al., CD66 expression in acute leukaemia. Ann Hematol, 2000. 79(6): p. 299303.Google Scholar
Boccuni, P., Di Noto, R., Lo Pardo, C., et al., CD66c antigen expression is myeloid restricted in normal bone marrow but is a common feature of CD10+ early-B-cell malignancies. Tissue Antigens, 1998. 52(1): p. 18.Google Scholar
Bunjes, D., 118Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients wth high-risk acute myeloid leukemia. Leuk Lymphoma. 2002. 43(11): p. 2125–31.Google Scholar
Pollard, J.A., Alonzo, T.A., Loken, M., et al., Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood. 2012. 119(16): p. 3705-11.Google Scholar
Walter, R.B., Appelbaum, F.R., Estey, E.H., et al., Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012. 119(26): p. 6198−208.Google Scholar
Schlom, J., Eggensperger, D., Colcher, D., et al., Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res, 1992. 52(5): p. 1067–72.Google Scholar
Fujimori, K., Covell, D.G., Fletcher, J.E., et al., A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med, 1990. 31(7): p. 1191–8.Google Scholar
Matthews, D.C., Appelbaum, F.R., Eary, J.F., et al., Radiolabeled anti-CD45 monoclonal antibodies target lymphohematopoietic tissue in the macaque. Blood, 1991. 78(7): p. 1864–74.Google Scholar
Colcher, D., Bird, R., Rosselli, M., et al., In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst, 1990. 82(14): p. 1191–7.CrossRefGoogle ScholarPubMed
Larson, S.M., Improved tumor targeting with radiolabeled, recombinant, single-chain, antigen-binding protein. J Natl Cancer Inst, 1990. 82(14): p. 1173–4.CrossRefGoogle ScholarPubMed
Yokota, T., Milenic, D.E., Whitlow, M., et al., Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res, 1992. 52(12): p. 3402–8.Google Scholar
Matthews, D.C., Badger, C.C., Fisher, D.R., et al., Selective radiation of hematolymphoid tissue delivered by anti-CD45 antibody. Cancer Res, 1992. 52(5): p. 1228–34.Google Scholar
King, D.J., Turner, A., Farnsworth, A.P., et al., Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res, 1994. 54(23): p. 6176–85.Google Scholar
Nieroda, C.A., Milenic, D.E., Carrasquillo, J.A., et al., Improved tumor radioimmunodetection using a single-chain Fv and gamma- interferon: potential clinical applications for radioimmunoguided surgery and gamma scanning. Cancer Res, 1995. 55(13): p. 2858–65.Google Scholar
Milenic, D.E., Yokota, T., Filpula, D.R., et al., Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res, 1991. 51(23 Pt 1): p. 6363–71.Google Scholar
Larson, S.M., El-Shirbiny, A.M., Divgi, C.R., et al., Single chain antigen binding protein (sFv CC49): first human studies in colorectal carcinoma metastatic to liver. Cancer,1997. 80(12 Suppl): p. 2458–68.Google Scholar
Lamborn, K.R., DeNardo, G.L., DeNardo, S.J., et al., Treatment-related parameters predicting efficacy of Lym-1 radioimmunotherapy in patients with B-lymphocytic malignancies. Clin Cancer Res. 1997. 3(8):1253–60.Google Scholar
Press, O.W., Shan, D., Howell-Clark, J., et al., Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res, 1996. 56(9): p. 2123–9.Google Scholar
Wilder, R.B., DeNardo, G.L., and DeNardo, S.J. Radioimmunotherapy: recent results and future directions. J Clin Oncol, 1996. 14(4): p. 1383–400.Google Scholar
Humm, J.L. and Chin, L.M. A model of cell inactivation by alpha-particle internal emitters. Radiat Res, 1993. 134(2): p. 143–50.Google Scholar
Zalutsky, M.R. and Pozzi, O.R. Radioimmunotherapy with alpha-particle emitting radionuclides. Q J Nucl Med Mol Imaging, 2004. 48(4): p. 289–96.Google Scholar
Zhang, M., Yao, Z., Garmestani, K., et al., Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood, 2002. 100(1): p. 208−16.Google Scholar
McDevitt, M.R., Ma, D., Lai, L.T., et al., Tumor therapy with targeted atomic nanogenerators. Science, 2001. 294(5546): p. 1537–40.Google Scholar
Macklis, R.M., Kaplan, W.D., Ferrara, J.L., et al., Biodistribution studies of anti-Thy 1.2 IgM immunoconjugates: implications for radioimmunotherapy. Int J Radiat Oncol Biol Phys, 1988. 15(2): p. 383–9.Google Scholar
Couturier, O., Supiot, S., Degraef-Mougin, M., et al., Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging, 2005. 32(5): p. 601−14.Google Scholar
Chen, P., Wang, J., Hope, K., et al., Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med, 2006. 47(5): p. 827−36.Google Scholar
Kersemans, V., Cornelissen, B., Minden, M.D., et al., Drug-resistant AML cells and primary AML specimens are killed by 111In-anti-CD33 monoclonal antibodies modified with nuclear localizing peptide sequences. J Nucl Med, 2008. 49(9): p. 1546–54.Google Scholar
Ali, S.A., Warren, S.D., Richter, K.Y., et al., Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res, 1990. 50(4): p. 1243–50.Google Scholar
Nemecek, E.R., Hamlin, D.K., Fisher, D.R., et al., Biodistribution of yttrium-90-labeled anti-CD45 antibody in a nonhuman primate model. Clin Cancer Res, 2005. 11(2 Pt 1): p. 787–94.Google Scholar
Burke, J.M., Caron, P.C., Papadopoulos, E.B., et al., Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant, 2003. 32(6): p. 549–56.Google Scholar
Illidge, T.M., Bayne, M., Brown, N.S., et al., Phase 1/2 study of fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood, 2009. 113(7): p. 1412–21.Google Scholar
Bianco, J.A., Sandmaier, B., Brown, P.A., et al., Specific marrow localization of an 131I-labeled anti-myeloid antibody in normal dogs: effects of a “cold” antibody pretreatment dose on marrow localization. Exp Hematol, 1989. 17(9): p. 929−34.Google Scholar
Matthews, D.C., Appelbaum, F.R., Eary, J.F., et al., Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood, 1995. 85(4): p. 1122–31.Google Scholar
Glatting, G., Muller, M., Koop, B., et al., Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med, 2006. 47(8): p. 1335–41.Google Scholar
Fisher, D.R., Internal dosimetry for systemic radiation therapy. Semin Radiat Oncol, 2000. 10(2): p. 123–32.Google Scholar
Rajendran, J.G., Fisher, D.R., Gopal, A.K., et al., High-dose I-131 tositumomab (anti-CD20) radioimmunotherapy for Non-Hodgkin’s Lymphoma: Adjusting radiation absorbed dose to actual organ volumes. J. Nucl Med, 2004. 45(6):1059–64.Google Scholar
Carrasquillo, J.A., Pandit-Taskar, N., O’Donoghue, J.A., et al., (124)I-huA33 antibody PET of colorectal cancer. J Nucl Med, 2011. 52(8): p. 1173–80.Google Scholar
Mulford, D.A., Scheinberg, D.A., and Jurcic, J.G. The promise of targeted {alpha}-particle therapy. J Nucl Med, 2005. 46(Suppl 1): p. 199S204S.Google ScholarPubMed
Clift, R.A., Buckner, C.D., Appelbaum, F.R., et al., Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood, 1998. 92(4): 1455–6.Google Scholar
Knox, S.J., Levy, R., Miller, R.A., et al., Determinants of the antitumor effect of radiolabeled monoclonal antibodies. Cancer Res, 1990. 50(16): p. 4935−40.Google Scholar
Wessels, B.W., Vessella, R.L., Palme, D.F., et al., Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys, 1989. 17(6): p. 1257–63.Google Scholar
Fowler, J.F., Radiobiological aspects of low-dose rates in radioimmunotherapy. Int J Radiat Oncol Biol Phys, 1990. 18(5): p. 1261–9.Google Scholar
Johnson, T.A. and Press, O.W. Synergistic cytotoxicity of iodine-131-anti-CD20 monoclonal antibodies and chemotherapy for treatment of B-cell lymphomas. Int J Cancer, 2000. 85(1): p. 104–12.Google Scholar
Press, O.W., Eary, J.F., Appelbaum, F.R., et al., Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support [see comments]. N Engl J Med, 1993. 329(17): p. 1219–24.Google Scholar
Press, O.W., Eary, J.F., Appelbaum, F.R., et al., Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet, 1995. 346(8971): p. 336–40.Google Scholar
Gopal, A.K., Rajendran, J.G., Gooley, T.A., et al., High-dose [131]tositumomab (anti-CD20) radioimmunotherapy and autologous hematopoietic stem-cell transplantation for adults > or = 60 years old with relapsed or refractory B-cell lymphoma. J Clin Oncol, 2007. 25(11): p. 1396–402.Google Scholar
Berger, M.D., Branger, G., Klaeser, B., et al., Zevalin and BEAM (Z-BEAM) versus rituximab and BEAM (R-BEAM) conditioning chemotherapy prior to autologous stem cell transplantation in patients with mantle cell lymphoma. Hematol Oncol, 2015. doi: 10.1002/hon.2197.Google Scholar
Shimoni, A., Avivi, I., Rowe, J.M., et al., A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer, 2012. 118(19): p. 4706−14.Google Scholar
Vose, J.M., Carter, S., Burns, L.J., et al., Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hemtopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol, 2013. 31(13): p. 1662−8.Google Scholar
Gopal, A.K., Guthrie, K.A., Rajendran, J., et al., 90Y-Ibritumomab tiuxetan, fludarabine, and TBI-based nonmyeloablative allogeneic transplantation conditioning for patients with persistent high-risk B-cell lymphoma. Blood, 2011. 118(4): p. 1132–9.Google Scholar
Bethge, W.A., Wilbur, D.S., and Sandmaier, B.M. Radioimmunotherapy as non-myeloablative conditioning for allogeneic marrow transplantation. Leuk Lymphoma, 2006. 47(7): p. 1205–14.Google Scholar
Appelbaum, F.R., Matthews, D.C., Eary, J.F., et al., The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplanatation for acute myelogenous leukemia. Transplantation, 1992. 54(5): p. 829−33.Google Scholar
Pagel, J.M., Appelbaum, F.R., Eary, J.F., et al., 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hemtopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood, 2006. 107(5): p. 2184–91.Google Scholar
Pagel, J.M., Gooley, T.A., Rajendran, J., et al. Allogeneic hemotpoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood, 2009. 114(27): p. 5444−53.Google Scholar
Mawad, R., Gooley, T.A., Rajendran, J., et al., Radiolabeled-anti-CD45 antibody with reduced-intensity conditioning and allogeneic transplantation for younger patients with advanced acute myeloid leukemia or myelodysplastic syndrome. Biol Blood Marrow Transplant, 2014. 20(9): p. 1363–8.Google Scholar
Klein, S.A., Hermann, S., Dietrich, J.W., et al., Transplantation-related toxicity and acute intestinal graft-versus-host disease after conditioning regimens intensified with Rhenium 188-labeled anti-CD66 monoclonal antibodies. Blood, 2002. 99(6): p. 2270-1.Google Scholar
Ringhoffer, M., Blumstein, N., Neumaier, B., et al., 118Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. Br J Haematol, 2005. 130(4): p. 604−13.Google Scholar
Koenecke, C., Hofmann, M., Bolte, O., et al., Radioimmunotherapy with [(188)Re]-labelled anti-CD66 antibody in the conditioning for allogeneic stem cell transplantation for high-risk acute myeloid leukemia. Int J Hematol, 2008. 87(4): p. 414−21.Google Scholar
Grossbard, M.L., Press, O.W., Applebaum, F.R., et al., Monoclonal antibody-based therapies of leukemia and lymphoma. Blood, 1992. 80(4): p. 863−78.Google Scholar
Waldmann, T.A., White, J.D., Carrasquillo, J.A., et al., Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood, 1995. 86(11): p. 4063–75.Google Scholar
Waldmann, T.A., Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene, 2007. 26(25): p. 3699–703.Google Scholar
Zhang, M., Yao, Z., Zhang, Z., et al., The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res, 2006. 66(16): p. 8227−32.Google Scholar
Zhang, M., Yao, Z., Patel, H., et al., Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc Natl Acad Sci U S A, 2007. 104(20): p. 8444−8.Google Scholar
Alinari, L., Lapalombella, R., Andritsos, L., et al., Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene, 2007. 26(25): p. 3644–53.Google Scholar
Tam, C.S. and Keating, M.J. Chemoimmunotherapy of chronic lymphocytic leukemia. Best Pract Res Clin Haematol, 2007. 20(3): p. 479–98.Google Scholar
Robak, T., Recent progress in the management of chronic lymphocytic leukemia. Cancer Treat Rev, 2007. 33(8): p. 710−28.Google Scholar
De Decker, M., Bacher, K., Thierens, H., et al., In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol, 2008. 35(5): p. 599604.Google Scholar
Mavromatis, B. and Cheson, B.D., Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol, 2003. 21(9): p. 1874–81.Google Scholar
Cheson, B.D., Monoclonal antibody therapy of chronic lymphocytic leukemia. Cancer Immunol Immunother, 2006. 55(2): p. 188–96.Google Scholar
Witzig, T.E., Tomblyn, M.B., Misleh, J.G., et al., Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: a phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica, 2014. 99(11): p. 1738–45.Google Scholar
Friesen, C., Glatting, G., Koop, B., et al., Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res, 2007. 67(5): p. 1950–8.Google Scholar
Vandenbulcke, K., Thierens, H., De Vos, F., et al., In vitro screening for synergism of high-linear energy transfer 213Bi-radiotherapy with other therapeutic agents for the treatment of B-cell chronic lymphocytic leukemia. Cancer Biother Radiopharm, 2006. 21(4): p. 364–72.Google Scholar
Scheinberg, D.A. and McDevitt, M.R. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm, 2011. 4(4): p. 306−20.Google Scholar
Ma, D., McDevitt, M.R., Barendswaard, E., et al., Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia, 2002. 16(1): p. 60−6.Google Scholar
Vallera, D.A., Elson, M., Brechbiel, M.W., et al., Radiotherapy of CD19 expressing Daudi tumors in nude mice with Yttrium-90-labeled anti-CD19 antibody. Cancer Biother Radiopharm, 2004. 19(1): p. 1123.Google Scholar
Vallera, D.A., Brechbiel, M.W., Burns, L.J., et al., Radioimmunotherapy of CD22-expressing Daudi tumors in nude mice with a 90Y-labeled anti-CD22 monoclonal antibody. Clin Cancer Res, 2005. 11(21): p. 7920–8.Google Scholar
Wesley, J.N., McGee, E.C., Garmestani, K., et al., Systemic radioimmunotherapy using a monoclonal antibody, anti-Tac directed toward the alpha subunit of the IL-2 receptor armed with the alpha-emitting radionuclides (212)Bi or (211)At. Nucl Med Biol, 2004. 31(3): p. 357–64.Google Scholar
Vandenbulcke, K., DeVos, F., Offner, F., et al., In vitro evaluation of 213Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage. Eur J Nucl Med Mol Imaging, 2003. 30(10): p. 1357–64.Google Scholar
Michel, R.B., Andrews, P.M., Rosario, A.V., et al., 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol, 2005. 32(3): p. 269–78.Google Scholar
Postema, E.J., Frielink, C., Oyen, W.J., et al., Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm, 2003. 18(4): p. 525−33.Google Scholar
Press, O.W., Corcoran, M., Subbiah, K., et al., A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood, 2001. 98(8): p. 2535–43.Google Scholar
Pagel, J.M., Lin, Y., Hedin, N., et al., Comparison of a tetravalent single-chain antibody-strepavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas. Blood, 2006. 108(1): p. 328–36.Google Scholar
Axworthy, D.B., Reno, J.M., Hylarides, M.D., et al., Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1802–7.Google Scholar
Forero, A., Weiden, P.L., Vose, J.M., et al., Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood., 2004. 104(1): p. 227–36. Epub 2004 Mar 2.Google Scholar
Forero-Torres, A., Shen, S., Breitz, H., et al., Pretargeted radioimmunotherapy (RIT) with a novel anti-TAG-72 fusion protein. Cancer Biother Radiopharm, 2005. 20(4): p. 379–90.Google Scholar
Knox, S.J., Goris, M.L., Tempero, M., et al., Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res, 2000. 6(2): p. 406−14.Google Scholar
Linden, O., Kurkus, J., Garkavij, M., et al., A novel platform for radioimmunotherapy: extracorporeal depletion of biotinylated and 90Y-labeled rituximab in patients with refractory B-cell lymphoma. Cancer Biother Radiopharm, 2005. 20(4): p. 457–66.Google Scholar
Moghimi, S.M., Hunter, A.C., and Murray, J.C., Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 2001. 53(2): p. 283318.Google Scholar
Zhang, H., Burnum, K.E., Luna, M.L., et al., Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 2011. 11(23): p. 4569–77.Google Scholar
Torchilin, V.P., Multifunctional nanocarriers. Adv Drug Deliv Rev, 2006. 58(14): p. 1532–55.Google Scholar
Alexis, F., Pridgen, E., Molnar, L.K., et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008. 5(4): p. 505−15.Google Scholar
Fang, C., Shi, B., Pei, Y.Y., et al., In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci, 2006. 27(1): p. 2736.Google Scholar
Cole, A.J., David, A.E., Wang, J., et al., Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials, 2011. 32(26): p. 6291−301.Google Scholar
Goncalves, C., Torrado, E., Martins, T., et al., Dextrin nanoparticles: studies on the interaction with murine macrophages and blood clearance. Colloids Surf B Biointerfaces, 2010. 75(2): p. 483–9.Google Scholar
Karmali, P.P., Chao, Y., Park, J.H., et al., Different effect of hydrogelation on antifouling and circulation properties of dextran-iron oxide nanoparticles. Mol Pharm, 2012. 9(3): p. 539−45.Google Scholar
Bartlett, D.W., Su, H., Hildebrandt, I.J., et al., Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15549–54.Google Scholar
Henriksen, G., Schoultz, B.W., Michaelsen, T.E., et al., Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol, 2004. 31(4): p. 441–9.Google Scholar
Jonasdottir, T.J., Fisher, D.R., Borrebaek, J., et al., First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res, 2006. 26(4B): p. 2841–8.Google Scholar
van Vlerken, L.E., Vyas, T.K., and Amiji, M.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res, 2007. 24(8): p. 1405-14.Google Scholar
Kommareddy, S. and Amiji, M. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci, 2007. 96(2): p. 397407.Google Scholar
DeNardo, G.L., Hok, S., Van Natarajan, A., et al., Characteristics of dimeric (bis) bidentate selective high affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin’s lymphoma. Int J Oncol, 2007. 31(4): p. 729−40.Google Scholar
Balhorn, R., Hok, S., Burke, P.A., et al., Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res, 2007. 13(18 Pt 2): p. 5621s5628s.Google Scholar
DeNardo, G.L., Kukis, D.L., DeNardo, S.J., et al., Enhancement of 67Cu-2IT-BAT-LYM-1 therapy in mice with human Burkitt’s lymphoma (Raji) using interleukin-2. Cancer, 1997. 80(12 Suppl): p. 2576–82.Google Scholar

References

Socie, G, Stone, JV, Wingard, JR, et al: Long-term survival and late deaths after allogeneic bone marrow transplantation. Late Effects Working Committee of the International Bone Marrow Transplant Registry. N Engl J Med 341:1421, 1999Google Scholar
Patterson, J, Prentice, HG, Brenner, MK, et al: Graft rejection following HLA-matched T-lymphocyte depleted bone marrow transplantation. Br J Haematol 63:221–30, 1986Google Scholar
Zutter, MM, Martin, PJ, Sale, GE, et al: Epstein–Barr virus lymphoproliferation after bone marrow transplantation. Blood 72:520–9, 1988Google Scholar
Marmont, AM, Horowitz, MM, Gale, RP, et al: T-cell depletion of HLA-identical transplants in leukemia. Blood 78:2120–30, 1991Google Scholar
Goldman, JM, Gale, RP, Horowitz, MM, et al: Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 108:806–14, 1988Google Scholar
Wagner, JE, Thompson, JS, Carter, SL, et al: Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial. Lancet 366:733–41, 2005Google Scholar
Marek, A, Stern, M, Chalandon, Y, et al: The impact of T-cell depletion techniques on the outcome after haploidentical hematopoietic SCT. Bone Marrow Transplant 49:5561, 2014Google Scholar
Kernan, NA, Collins, NH, Juliano, L, et al: Clonable T lymphocytes in T-cell depleted bone marrow transplants correlate with development of graft-versus-host disease. Blood 68:770773, 1986Google Scholar
Wagner, JE, Donnenberg, AD, Noga, SJ, et al: Lymphocyte depletion of donor bone marrow by counterflow centrifugal elutriation: results of a phase I clinical trial. Blood 72:1168–76, 1988Google Scholar
Urbano-Ispizua, A, Rozman, C, Pimentel, P, et al: The number of donor CD3(+) cells is the most important factor for graft failure after allogeneic transplantation of CD34(+) selected cells from peripheral blood from HLA-identical siblings. Blood 97:383–7, 2001Google Scholar
Kanate, AS, Craig, M, Cumpston, A, et al: Higher infused CD34+ cell dose and overall survival in patients undergoing in vivo T-cell depleted, but not t-cell repleted, allogeneic peripheral blood hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther 4:149–56, 2011Google Scholar
Champlin, RE, Passweg, JR, Zhang, MJ, et al: T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood 95:39964003, 2000Google Scholar
Soiffer, RJ, Gonin, R, Murray, C, et al: Prediction of graft-versus-host disease by phenotypic analysis of early immune reconstitution after CD6-depleted allogeneic bone marrow transplantation. Blood 82:2216–23, 1993Google Scholar
Nimer, SD, Giorgi, J, Gajewski, JL, et al: Selective depletion of CD8+ cells for prevention of graft-versus-host disease after bone marrow transplantation. A randomized controlled trial. Transplantation 57:82–7, 1994Google Scholar
Ho, VT, Kim, HT, Li, S, et al: Partial CD8+ T-cell depletion of allogeneic peripheral blood stem cell transplantation is insufficient to prevent graft-versus-host disease. Bone Marrow Transplant 34:987–94, 2004Google Scholar
Alyea, EP, Soiffer, RJ, Canning, C, et al: Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 91:3671–80, 1998Google Scholar
Meyer, RG, Britten, CM, Wehler, D, et al: Prophylactic transfer of CD8-depleted donor lymphocytes after T-cell-depleted reduced-intensity transplantation. Blood 109:374–82, 2007Google Scholar
Antin, JH, Bierer, BE, Smith, BR, et al: Selective depletion of bone marrow T lymphocytes with anti-CD5 monoclonal antibodies: effective prophylaxis for graft-versus-host disease in patients with hematologic malignancies. Blood 78:2139–49, 1991Google Scholar
Soiffer, RJ, Murray, C, Mauch, P, et al: Prevention of graft-versus-host disease by selective depletion of CD6-positive T lymphocytes from donor bone marrow. J Clin Oncol 10:1191–200, 1992Google Scholar
Filipovich, AH, Vallera, D, McGlave, P, et al: T cell depletion with anti-CD5 immunotoxin in histocompatible bone marrow transplantation. The correlation between residual CD5 negative T cells and subsequent graft-versus-host disease. Transplantation 50:410–5, 1990Google Scholar
Hale, G, Jacobs, P, Wood, L, et al: CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 26:6976, 2000Google Scholar
Young, JW, Papadopoulos, EB, Cunningham, I, et al: T-cell-depleted allogeneic bone marrow transplantation in adults with acute nonlymphocytic leukemia in first remission. Blood 79:3380–7, 1992Google Scholar
Kernan, NA, Bartsch, G, Ash, RC, et al: Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. N Engl J Med 328:593602, 1993Google Scholar
Bensinger, WI, Buckner, CD, Shannon-Dorcy, K, et al: Transplantation of allogeneic CD34+ peripheral blood stem cells in patients with advanced hematologic malignancy. Blood 88:4132–8, 1996Google Scholar
Urbano-Ispizua, A, Solano, C, Brunet, S, et al: Allogeneic transplantation of selected CD34+ cells from peripheral blood: experience of 62 cases using immunoadsorption or immunomagnetic technique. Spanish Group of Allo-PBT. Bone Marrow Transplant 22:519–25, 1998Google Scholar
O’Donnell, PV, Myers, B, Edwards, J, et al: CD34 selection using three immunoselection devices: comparison of T-cell depleted allografts. Cytotherapy 3:483–8, 2001Google Scholar
Jakubowski, AA, Small, TN, Kernan, NA, et al: T cell-depleted unrelated donor stem cell transplantation provides favorable disease-free survival for adults with hematologic malignancies. Biol Blood Marrow Transplant 17:1335–42, 2011Google Scholar
Devine, SM, Carter, S, Soiffer, RJ, et al: Low-risk of chronic graft-versus-host disease and relapse associated with T cell-depleted peripheral blood stem cell transplantation for acute myelogenous leukemia in first remission: results of the blood and marrow transplant clinical trials network protocol 0303. Biol Blood Marrow Transplant 17:1343–51, 2011Google Scholar
Keever-Taylor, CA, Devine, SM, Soiffer, RJ, et al: Characteristics of CliniMACS(R) System CD34-enriched T cell-depleted grafts in a multicenter trial for acute myeloid leukemia-Blood and Marrow Transplant Clinical Trials Network (BMT CTN) protocol 0303. Biol Blood Marrow Transplant 18:690–7, 2012Google Scholar
Pasquini, MC, Devine, S, Mendizabal, A, et al: Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. J Clin Oncol 30:3194–201, 2012Google Scholar
Bayraktar, UD, de Lima, M, Saliba, RM, et al: Ex vivo T cell depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biol Blood Marrow Transplant,19:898903, 2013Google Scholar
Soiffer, RJ, Mauch, P, Fairclough, D, et al: CD6+ T cell depleted allogeneic bone marrow transplantation from genotypically HLA nonidentical related donors. Biol Blood Marrow Transplant 3:11–7, 1997Google Scholar
Mehta, J, Singhal, S, Gee, AP, et al: Bone marrow transplantation from partially HLA-mismatched family donors for acute leukemia: single-center experience of 201 patients. Bone Marrow Transplant 33:389–96, 2004Google Scholar
Aversa, F, Tabilio, A, Velardi, A, et al: Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 339:1186–93, 1998Google Scholar
Marks, DI, Khattry, N, Cummins, M, et al: Haploidentical stem cell transplantation for children with acute leukaemia. Br J Haematol 134:196201, 2006Google Scholar
Ciceri, F, Labopin, M, Aversa, F, et al: A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood 112:3574–81, 2008Google Scholar
Ruggeri, L, Capanni, M, Casucci, M, et al: Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94:333–9, 1999Google Scholar
Hsu, KC, Keever-Taylor, CA, Wilton, A, et al: Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105:4878–84, 2005Google Scholar
Geyer, MB, Ricci, AM, Jacobson, JS, et al: T cell depletion utilizing CD34(+) stem cell selection and CD3(+) addback from unrelated adult donors in paediatric allogeneic stem cell transplantation recipients. Br J Haematol 157:205–19, 2012Google Scholar
Di Ianni, M, Falzetti, F, Carotti, A, et al: Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117:3921–8, 2011Google Scholar
Bertaina, A, Merli, P, Rutella, S, et al: HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood 124:822–6, 2014Google Scholar
Bashey, A, Solomon, SR: T-cell replete haploidentical donor transplantation using post-transplant CY: an emerging standard-of-care option for patients who lack an HLA-identical sibling donor. Bone Marrow Transplant 49:9991008, 2014Google Scholar
Luznik, L, O’Donnell, PV, Symons, HJ, et al: HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 14:641–50, 2008Google Scholar
Ayuk, F, Maywald, N, Hannemann, S, et al: Comparison of the cytotoxicity of 4 preparations of anti-T-cell globulins in various hematological malignancies. Anticancer Res 29:1355–60, 2009Google Scholar
Russell, JA, Turner, AR, Larratt, L, et al: Adult recipients of matched related donor blood cell transplants given myeloablative regimens including pretransplant antithymocyte globulin have lower mortality related to graft-versus-host disease: a matched pair analysis. Biol Blood Marrow Transplant 13:299306, 2007Google Scholar
Bredeson, CN, Zhang, MJ, Agovi, MA, et al: Outcomes following HSCT using fludarabine, busulfan, and thymoglobulin: a matched comparison to allogeneic transplants conditioned with busulfan and cyclophosphamide. Biol Blood Marrow Transplant 14:9931003, 2008Google Scholar
Mohty, M, Labopin, M, Balere, ML, et al: Antithymocyte globulins and chronic graft-vs-host disease after myeloablative allogeneic stem cell transplantation from HLA-matched unrelated donors: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Leukemia 24:1867–74, 2010Google Scholar
Malladi, RK, Peniket, AJ, Littlewood, TJ, et al: Alemtuzumab markedly reduces chronic GVHD without affecting overall survival in reduced-intensity conditioning sibling allo-SCT for adults with AML. Bone Marrow Transplant 43:709–15, 2009Google Scholar
Veys, P, Wynn, RF, Ahn, KW, et al: Impact of immune modulation with in vivo T-cell depletion and myleoablative total body irradiation conditioning on outcomes after unrelated donor transplantation for childhood acute lymphoblastic leukemia. Blood 119:6155–61, 2012Google Scholar
Bacigalupo, A, Lamparelli, T, Bruzzi, P, et al: Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood 98:2942–7, 2001Google Scholar
Bacigalupo, A, Lamparelli, T, Barisione, G, et al: Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biol Blood Marrow Transplant 12:560–5, 2006Google Scholar
Finke, J, Bethge, WA, Schmoor, C, et al: Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol 10:855–64, 2009Google Scholar
Socie, G, Schmoor, C, Bethge, WA, et al: Chronic graft-versus-host disease: long-term results from a randomized trial on graft-versus-host disease prophylaxis with or without anti-T-cell globulin ATG-Fresenius. Blood 117:6375–82, 2011Google Scholar
Westphal, S, Brinkmann, H, Kalupa, M, et al: Anti-tumor effects of anti-T-cell globulin. Exp Hematol 42:875–82, 2014Google Scholar
Walker, I, Schultz, KR, Toze, CL, et al: Thymoglobulin decreases the need for immunosuppression at 12 months after myeloablative and nonmyeloablative unrelated donor transplantation: CBMTG 0801, a randomized, controlled trial. Blood 124:38, 2014Google Scholar
Yu, ZP, Ding, JH, Wu, F, et al: Quality of life of patients after allogeneic hematopoietic stem cell transplantation with antihuman thymocyte globulin. Biol Blood Marrow Transplant 18:593–9, 2012Google Scholar
Perez-Simon, JA, Kottaridis, PD, Martino, R, et al: Nonmyeloablative transplantation with or without alemtuzumab: comparison between 2 prospective studies in patients with lymphoproliferative disorders. Blood 100:3121–7, 2002Google Scholar
Chakrabarti, S, Mackinnon, S, Chopra, R, et al: High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 99:4357–63, 2002Google Scholar
Mohty, M, Jacot, W, Faucher, C, et al: Infectious complications following allogeneic HLA-identical sibling transplantation with antithymocyte globulin-based reduced intensity preparative regimen. Leukemia 17:2168–77, 2003Google Scholar
Peggs, KS, Kayani, I, Edwards, N, et al: Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for Hodgkin’s lymphoma. J Clin Oncol 29:971–8, 2011Google Scholar
Thomson, KJ, Morris, EC, Milligan, D, et al: T-cell-depleted reduced-intensity transplantation followed by donor leukocyte infusions to promote graft-versus-lymphoma activity results in excellent long-term survival in patients with multiply relapsed follicular lymphoma. J Clin Oncol 28:3695–700, 2010Google Scholar
Koreth, J, Kim, HT, Nikiforow, S, et al: Donor chimerism early after reduced-intensity conditioning hematopoietic stem cell transplantation predicts relapse and survival. Biol Blood Marrow Transplant 20:1516–21, 2014Google Scholar
Baron, F, Schaaf-Lafontaine, N, Humblet-Baron, S, et al: T-cell reconstitution after unmanipulated, CD8-depleted or CD34-selected nonmyeloablative peripheral blood stem-cell transplantation. Transplantation 76:1705–13, 2003Google Scholar
Soiffer, RJ, Lerademacher, J, Ho, V, et al: Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Blood 117:6963–70, 2011Google Scholar
Baron, F, Labopin, M, Niederwieser, D, et al: Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European group for blood and marrow transplantation. Leukemia 26:2462–8, 2012Google Scholar
Baron, F, Labopin, M, Blaise, D, et al: Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 49:389–96, 2014Google Scholar
Wolschke, C, Zabelina, T, Ayuk, F, et al: Effective prevention of GvHD using in vivo T-cell depletion with anti-lymphocyte globulin in HLA-identical or -mismatched sibling peripheral blood stem cell transplantation. Bone Marrow Transplant 49:126–30, 2014Google Scholar
Devillier, R, Crocchiolo, R, Castagna, L, et al: The increase from 2.5 to 5 mg/kg of rabbit anti-thymocyte-globulin dose in reduced intensity conditioning reduces acute and chronic GVHD for patients with myeloid malignancies undergoing allo-SCT. Bone Marrow Transplant 47:639–45, 2012Google Scholar
Mohty, M, Bay, JO, Faucher, C, et al: Graft-versus-host disease following allogeneic transplantation from HLA-identical sibling with antithymocyte globulin-based reduced-intensity preparative regimen. Blood 102:470–6, 2003Google Scholar
Ayuk, F, Diyachenko, G, Zabelina, T, et al: Comparison of two doses of antithymocyte globulin in patients undergoing matched unrelated donor allogeneic stem cell transplantation. Biol Blood Marrow Transplant 14:913–9, 2008Google Scholar
Wang, Y, Fu, HX, Liu, DH, et al: Influence of two different doses of antithymocyte globulin in patients with standard-risk disease following haploidentical transplantation: a randomized trial. Bone Marrow Transplant 49:426–33, 2014Google Scholar
Remberger, M, Sundberg, B: Low serum levels of total rabbit-IgG is associated with acute graft-versus-host disease after unrelated donor hematopoietic stem cell transplantation: results from a prospective study. Biol Blood Marrow Transplant 15:996–9, 2009Google Scholar
Podgorny, PJ, Ugarte-Torres, A, Liu, Y, et al: High rabbit-antihuman thymocyte globulin levels are associated with low likelihood of graft-vs-host disease and high likelihood of posttransplant lymphoproliferative disorder. Biol Blood Marrow Transplant 16:915–26, 2010Google Scholar
Remberger, M, Persson, M, Mattsson, J, et al: Effects of different serum-levels of ATG after unrelated donor umbilical cord blood transplantation. Transpl Immunol 27:5962, 2012Google Scholar
Hoegh-Petersen, M, Amin, MA, Liu, Y, et al: Anti-thymocyte globulins capable of binding to T and B cells reduce graft-vs-host disease without increasing relapse. Bone Marrow Transplant 48:105–14, 2013Google Scholar
Jol-van der Zijde, CM, Bredius, RG, Jansen-Hoogendijk, AM, et al: Antibodies to anti-thymocyte globulin in aplastic anemia patients have a negative impact on hematopoietic SCT. Bone Marrow Transplant 47:1256–8, 2012Google Scholar
Ho, VT, Weller, E, Lee, SJ, et al: Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7:223–9, 2001Google Scholar
Huisman, C, van der Straaten, HM, Canninga-van Dijk, MR, et al: Pulmonary complications after T-cell-depleted allogeneic stem cell transplantation: low incidence and strong association with acute graft-versus-host disease. Bone Marrow Transplant 38:561–6, 2006Google Scholar
Moscardo, F, Urbano-Ispizua, A, Sanz, GF, et al: Positive selection for CD34+ reduces the incidence and severity of veno-occlusive disease of the liver after HLA-identical sibling allogeneic peripheral blood stem cell transplantation. Exp Hematol 31:545–50, 2003Google Scholar
Voogt, PJ, Fibbe, WE, Marijt, WA, et al: Rejection of bone-marrow graft by recipient-derived cytotoxic T lymphocytes against minor histocompatibility antigens. Lancet 335:131–4, 1990Google Scholar
Fleischhauer, K, Kernan, NA, O’Reilly, RJ, et al: Bone marrow-allograft rejection by T lymphocytes recognizing a single amino acid difference in HLA-B44. N Engl J Med 323:1818–22, 1990Google Scholar
Jakubowski, AA, Small, TN, Young, JW, et al: T cell depleted stem-cell transplantation for adults with hematologic malignancies: sustained engraftment of HLA-matched related donor grafts without the use of antithymocyte globulin. Blood 110:4552–9, 2007Google Scholar
Burnett, AK, Hann, IM, Robertson, AG, et al: Prevention of graft-versus-host disease by ex vivo T cell depletion: reduction in graft failure with augmented total body irradiation. Leukemia 2:300–3, 1988Google Scholar
Roux, E, Helg, C, Dumont-Girard, F, et al: Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 87:3984–92, 1996Google Scholar
Wu, CJ, Chillemi, A, Alyea, EP, et al: Reconstitution of T-cell receptor repertoire diversity following T-cell depleted allogeneic bone marrow transplantation is related to hematopoietic chimerism. Blood 95:352–9, 2000Google Scholar
Hochberg, EP, Chillemi, AC, Wu, CJ, et al: Quantitation of T-cell neogenesis in vivo after allogeneic bone marrow transplantation in adults. Blood 98:1116–21, 2001Google Scholar
Small, TN, Papadopoulos, EB, Boulad, F, et al: Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood 93:467–80, 1999Google Scholar
Bosch, M, Dhadda, M, Hoegh-Petersen, M, et al: Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy 14:1258–75, 2012Google Scholar
Avivi, I, Chakrabarti, S, Milligan, DW, et al: Incidence and outcome of adenovirus disease in transplant recipients after reduced-intensity conditioning with alemtuzumab. Biol Blood Marrow Transplant 10:186–94, 2004Google Scholar
van Burik, JA, Carter, SL, Freifeld, AG, et al: Higher risk of cytomegalovirus and aspergillus infections in recipients of T cell-depleted unrelated bone marrow: analysis of infectious complications in patients treated with T cell depletion versus immunosuppressive therapy to prevent graft-versus-host disease. Biol Blood Marrow Transplant 13:1487–98, 2007Google Scholar
Brunstein, CG, Weisdorf, DJ, DeFor, T, et al: Marked increased risk of Epstein–Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood 108:2874–80, 2006Google Scholar
Lindemans, CA, Chiesa, R, Amrolia, PJ, et al: Impact of thymoglobulin prior to pediatric unrelated umbilical cord blood transplantation on immune reconstitution and clinical outcome. Blood 123:126–32, 2014CrossRefGoogle ScholarPubMed
Kuehnle, I, Huls, MH, Liu, Z, et al: CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 95:1502–5, 2000Google Scholar
Stevens, SJ, Verschuuren, EA, Pronk, I, et al: Frequent monitoring of Epstein–Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood 97:1165–71, 2001Google Scholar
Papadopoulos, EB, Ladanyi, M, Emanuel, D, et al: Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 330:1185–91, 1994Google Scholar
Doubrovina, E, Oflaz-Sozmen, B, Prockop, SE, et al: Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119:2644–56, 2012Google Scholar
Gerdemann, U, Keirnan, JM, Katari, UL, et al: Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther 20:1622–32, 2012Google Scholar
Leen, AM, Myers, GD, Sili, U, et al: Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med 12:1160–6, 2006Google Scholar
Perales, MA, Goldberg, JD, Yuan, J, et al: Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood 120:4882–91, 2012Google Scholar
Goldberg, GL, Alpdogan, O, Muriglan, SJ, et al: Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol 178:7473–84, 2007Google Scholar
Hessner, MJ, Endean, DJ, Casper, JT, et al: Use of unrelated marrow grafts compensates for reduced graft-versus-leukemia reactivity after T-cell-depleted allogeneic marrow transplantation for chronic myelogenous leukemia. Blood 86:3987–96, 1995Google Scholar
Devergie, A, Apperley, JF, Labopin, M, et al: European results of matched unrelated donor bone marrow transplantation for chronic myeloid leukemia. Impact of HLA class II matching. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 20:11–9, 1997Google Scholar
Sullivan, KM, Weiden, PL, Storb, R, et al: Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood 73:1720–8, 1989Google Scholar
Kolb, HJ, Mittermuller, J, Clemm, C, et al: Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–5, 1990Google Scholar
Collins, RH Jr., Shpilberg, O, Drobyski, WR, et al: Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15:433–44, 1997Google Scholar
Soiffer, RJ, Fairclough, D, Robertson, M, et al: CD6-depleted allogeneic bone marrow transplantation for acute leukemia in first complete remission. Blood 89:3039–47, 1997Google Scholar
Papadopoulos, EB, Carabasi, MH, Castro-Malaspina, H, et al: T-cell-depleted allogeneic bone marrow transplantation as postremission therapy for acute myelogenous leukemia: freedom from relapse in the absence of graft-versus-host disease. Blood 91:1083–90, 1998Google Scholar
Remberger, M, Ringden, O, Aschan, J, et al: Long-term follow-up of a randomized trial comparing T-cell depletion with a combination of methotrexate and cyclosporine in adult leukemic marrow transplant recipients. Transplant Proc 26:1829–30, 1994Google Scholar
Montero, A, Savani, BN, Shenoy, A, et al: T-cell depleted peripheral blood stem cell allotransplantation with T-cell add-back for patients with hematological malignancies: effect of chronic GVHD on outcome. Biol Blood Marrow Transplant 12:1318–25, 2006Google Scholar
Soiffer, RJ, Alyea, EP, Hochberg, E, et al: Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol Blood Marrow Transplant 8:625–32, 2002Google Scholar
Sehn, LH, Alyea, EP, Weller, E, et al: Comparative outcomes of T-cell-depleted and non-T-cell-depleted allogeneic bone marrow transplantation for chronic myelogenous leukemia: impact of donor lymphocyte infusion. J Clin Oncol 17:561–8, 1999Google Scholar
Chalandon, Y, Roosnek, E, Mermillod, B, et al: Can only partial T-cell depletion of the graft before hematopoietic stem cell transplantation mitigate graft-versus-host disease while preserving a graft-versus-leukemia reaction? A prospective phase II study. Biol Blood Marrow Transplant 12:102–10, 2006Google Scholar
Peggs, KS, Sureda, A, Qian, W, et al: Reduced-intensity conditioning for allogeneic haematopoietic stem cell transplantation in relapsed and refractory Hodgkin lymphoma: impact of alemtuzumab and donor lymphocyte infusions on long-term outcomes. Br J Haematol 139:7080, 2007Google Scholar

References

Nash, RA, Antin, JH, Karanes, C, Fay, JW, Avalos, BR, Yeager, AM, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96(6):2062–8. PubMed PMID: 10979948. Epub 2000/09/09. eng.Google Scholar
Inamoto, Y, Flowers, ME, Appelbaum, FR, Carpenter, PA, Deeg, HJ, Furlong, T, et al. A retrospective comparison of tacrolimus versus cyclosporine with methotrexate for immunosuppression after allogeneic hematopoietic cell transplantation with mobilized blood cells. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2011;17(7):1088–92. PubMed PMID: 21421070. Pubmed Central PMCID: Pmc3114191. Epub 2011/03/23. eng.Google Scholar
Martin, PJ, Rowley, SD, Anasetti, C, Chauncey, TR, Gooley, T, Petersdorf, EW, et al. A phase I-II clinical trial to evaluate removal of CD4 cells and partial depletion of CD8 cells from donor marrow for HLA-mismatched unrelated recipients. Blood. 1999;94(7):2192–9. PubMed PMID: 10498588. Epub 1999/09/25. eng.Google Scholar
Alyea, EP, Weller, E, Fisher, DC, Freedman, AS, Gribben, JG, Lee, S, et al. Comparable outcome with T-cell-depleted unrelated-donor versus related-donor allogeneic bone marrow transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2002;8(11):601–7. PubMed PMID: 12463479. Epub 2002/12/05. eng.Google Scholar
Jakubowski, AA, Small, TN, Kernan, NA, Castro-Malaspina, H, Collins, N, Koehne, G, et al. T cell-depleted unrelated donor stem cell transplantation provides favorable disease-free survival for adults with hematologic malignancies. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2011;17(9):1335–42. PubMed PMID: 21232623. Pubmed Central PMCID: Pmc3094599. Epub 2011/01/15. eng.Google Scholar
Jakubowski, AA, Small, TN, Young, JW, Kernan, NA, Castro-Malaspina, H, Hsu, KC, et al. T cell depleted stem-cell transplantation for adults with hematologic malignancies: sustained engraftment of HLA-matched related donor grafts without the use of antithymocyte globulin. Blood. 2007;110(13):4552–9. PubMed PMID: 17717135. Pubmed Central PMCID: Pmc2234775. Epub 2007/08/25. eng.Google Scholar
Papadopoulos, EB, Carabasi, MH, Castro-Malaspina, H, Childs, BH, Mackinnon, S, Boulad, F, et al. T-cell-depleted allogeneic bone marrow transplantation as postremission therapy for acute myelogenous leukemia: freedom from relapse in the absence of graft-versus-host disease. Blood. 1998;91(3):1083–90. PubMed PMID: 9446672. Epub 1998/02/03. eng.Google Scholar
Young, JW, Papadopoulos, EB, Cunningham, I, Castro-Malaspina, H, Flomenberg, N, Carabasi, MH, et al. T-cell-depleted allogeneic bone marrow transplantation in adults with acute nonlymphocytic leukemia in first remission. Blood. 1992;79(12):3380–7. PubMed PMID: 1596577. Epub 1992/06/15. eng.Google Scholar
Aversa, F, Terenzi, A, Carotti, A, Felicini, R, Jacucci, R, Zei, T, et al. Improved outcome with T-cell-depleted bone marrow transplantation for acute leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1999;17(5):1545–50. PubMed PMID: 10334542. Epub 1999/05/20. eng.Google Scholar
Reisner, Y, Kapoor, N, Kirkpatrick, D, Pollack, MS, Dupont, B, Good, RA, et al. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet. 1981;2(8242):327–31. PubMed PMID: 6115110. Epub 1981/08/15. eng.Google Scholar
de Witte, T, Hoogenhout, J, de Pauw, B, Holdrinet, R, Janssen, J, Wessels, J, et al. Depletion of donor lymphocytes by counterflow centrifugation successfully prevents acute graft-versus-host disease in matched allogeneic marrow transplantation. Blood. 1986;67(5):1302–8. PubMed PMID: 3516253. Epub 1986/05/01. eng.Google Scholar
Wagner, JE, Donnenberg, AD, Noga, SJ, Cremo, CA, Gao, IK, Yin, HJ, et al. Lymphocyte depletion of donor bone marrow by counterflow centrifugal elutriation: results of a phase I clinical trial. Blood. 1988;72(4):1168–76. PubMed PMID: 3048436. Epub 1988/10/01. eng.Google Scholar
Sao, H, Kitaori, K, Kasai, M, Shimokawa, T, Kato, C, Yamanishi, H, et al. A new marrow T cell depletion method using anti-CD6 monoclonal antibody-conjugated magnetic beads and its clinical application for prevention of acute graft-vs.-host disease in allogeneic bone marrow transplantation: results of a phase I-II trial. International journal of hematology. 1999;69(1):2735. PubMed PMID: 10641440. Epub 2000/01/21. eng.Google Scholar
Handgretinger, R. Negative depletion of CD3(+) and TcRalphabeta(+) T cells. Current Opinion in Hematology. 2012;19(6):434–9. PubMed PMID: 22914586. Epub 2012/08/24. eng.Google Scholar
Aversa, F, Terenzi, A, Tabilio, A, Falzetti, F, Carotti, A, Ballanti, S, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005;23(15):3447–54. PubMed PMID: 15753458. Epub 2005/03/09. eng.Google Scholar
Devine, SM, Carter, S, Soiffer, RJ, Pasquini, MC, Hari, PN, Stein, A, et al. Low-risk of chronic graft-versus-host disease and relapse associated with T cell-depleted peripheral blood stem cell transplantation for acute myelogenous leukemia in first remission: results of the blood and marrow transplant clinical trials network protocol 0303. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2011;17(9):1343–51. PubMed PMID: 21320619. Pubmed Central PMCID: Pmc3150599. Epub 2011/02/16. eng.Google Scholar
Finke, J, Brugger, W, Bertz, H, Behringer, D, Kunzmann, R, Weber-Nordt, RM, et al. Allogeneic transplantation of positively selected peripheral blood CD34+ progenitor cells from matched related donors. Bone Marrow Transplantation. 1996 Dec;18(6):1081–6. PubMed PMID: 8971376. Epub 1996/12/01. eng.Google Scholar
Urbano-Ispizua, A, Brunet, S, Solano, C, Moraleda, JM, Rovira, M, Zuazu, J, et al. Allogeneic transplantation of CD34+-selected cells from peripheral blood in patients with myeloid malignancies in early phase: a case control comparison with unmodified peripheral blood transplantation. Bone Marrow Transplantation. 2001;28(4):349–54. PubMed PMID: 11571506. Epub 2001/09/26. eng.Google Scholar
Watts, MJ, Somervaille, TC, Ings, SJ, Ahmed, F, Khwaja, A, Yong, K, et al. Variable product purity and functional capacity after CD34 selection: a direct comparison of the CliniMACS (v2.1) and Isolex 300i (v2.5) clinical scale devices. British Journal of Haematology. 2002;118(1):117–23. PubMed PMID: 12100134. Epub 2002/07/09. eng.Google Scholar
Martin, PJ, Hansen, JA, Buckner, CD, Sanders, JE, Deeg, HJ, Stewart, P, et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood. 1985;66(3):664–72. PubMed PMID: 3896348. Epub 1985/09/01. eng.Google Scholar
Dykes, JH, Toporski, J, Juliusson, G, Bekassy, AN, Lenhoff, S, Lindmark, A, et al. Rapid and effective CD3 T-cell depletion with a magnetic cell sorting program to produce peripheral blood progenitor cell products for haploidentical transplantation in children and adults. Transfusion. 2007;47(11):2134–42. PubMed PMID: 17958543. Epub 2007/10/26. eng.Google Scholar
Schumm, M, Lang, P, Bethge, W, Faul, C, Feuchtinger, T, Pfeiffer, M, et al. Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy. 2013;15(10):1253–8. PubMed PMID: 23993299. Epub 2013/09/03. eng.Google Scholar
Castro-Malaspina, H, Harris, RE, Gajewski, J, Ramsay, N, Collins, R, Dharan, B, et al. Unrelated donor marrow transplantation for myelodysplastic syndromes: outcome analysis in 510 transplants facilitated by the National Marrow Donor Program. Blood. 2002;99(6):1943–51. PubMed PMID: 11877264. Epub 2002/03/06. eng.Google Scholar
Laurent, G, Maraninchi, D, Gluckman, E, Vernant, JP, Derocq, JM, Gaspard, MH, et al. Donor bone marrow treatment with T101 Fab fragment-ricin A-chain immunotoxin prevents graft-versus-host disease. Bone Marrow Transplantation. 1989;4(4):367–71. PubMed PMID: 2789084. Epub 1989/07/01. eng.Google Scholar
Mitsuyasu, RT, Champlin, RE, Gale, RP, Ho, WG, Lenarsky, C, Winston, D, et al. Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double-blind trial. Annals of Internal Medicine. 1986;105(1):20–6. PubMed PMID: 3521427. Epub 1986/07/01. eng.Google Scholar
Prentice, HG, Blacklock, HA, Janossy, G, Gilmore, MJ, Price-Jones, L, Tidman, N, et al. Depletion of T lymphocytes in donor marrow prevents significant graft-versus-host disease in matched allogeneic leukaemic marrow transplant recipients. Lancet. 1984;1(8375):472–6. PubMed PMID: 6142207. Epub 1984/03/03. eng.Google Scholar
Soiffer, RJ, Fairclough, D, Robertson, M, Alyea, E, Anderson, K, Freedman, A, et al. CD6-depleted allogeneic bone marrow transplantation for acute leukemia in first complete remission. Blood. 1997;89(8):3039–47. PubMed PMID: 9108425. Epub 1997/04/15. eng.Google Scholar
Bayraktar, UD, de Lima, M, Saliba, RM, Maloy, M, Castro-Malaspina, HR, Chen, J, et al. Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(6):898903. PubMed PMID: 23467126. Pubmed Central PMCID: Pmc4059063. Epub 2013/03/08. eng.Google Scholar
Pasquini, MC, Devine, S, Mendizabal, A, Baden, LR, Wingard, JR, Lazarus, HM, et al. Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(26):3194–201. PubMed PMID: 22869882. Pubmed Central PMCID: Pmc3434978. Epub 2012/08/08. eng.Google Scholar
Clarke, E, Potter, MN, Hale, G, Waldmann, H, Lankester, A, Cornish, JM, et al. Double T cell depletion of bone marrow using sequential positive and negative cell immunoaffinity or CD34+ cell selection followed by Campath-1M; effect on CD34+ cells and progenitor cell recoveries. Bone Marrow Transplantation. 1998;22(2):117–24. PubMed PMID: 9707017. Epub 1998/08/26. eng.Google Scholar
Butt, NM, McGinnity, N, Clark, RE. CD34 positive selection as prophylaxis against graft versus host disease in allogeneic peripheral blood stem cell transplantation. Leukemia & Lymphoma. 2003;44(9):1509–13. PubMed PMID: 14565652. Epub 2003/10/21. eng.Google Scholar
Sehn, LH, Alyea, EP, Weller, E, Canning, C, Lee, S, Ritz, J, et al. Comparative outcomes of T-cell-depleted and non-T-cell-depleted allogeneic bone marrow transplantation for chronic myelogenous leukemia: impact of donor lymphocyte infusion. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1999;17(2):561–8. PubMed PMID: 10080600. Epub 1999/03/18. eng.Google Scholar
Goldberg, JD, Linker, A, Kuk, D, Ratan, R, Jurcic, J, Barker, JN, et al. T cell-depleted stem cell transplantation for adults with high-risk acute lymphoblastic leukemia: long-term survival for patients in first complete remission with a decreased risk of graft-versus-host disease. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(2):208–13. PubMed PMID: 22982534. Pubmed Central PMCID: Pmc3963704. Epub 2012/09/18. eng.Google Scholar
Lewin, SR, Heller, G, Zhang, L, Rodrigues, E, Skulsky, E, van den Brink, MR, et al. Direct evidence for new T-cell generation by patients after either T-cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood. 2002;100(6):2235–42. PubMed PMID: 12200390. Epub 2002/08/30. eng.Google Scholar
McIver, Z, Melenhorst, JJ, Wu, C, Grim, A, Ito, S, Cho, I, et al. Donor lymphocyte count and thymic activity predict lymphocyte recovery and outcomes after matched-sibling hematopoietic stem cell transplant. Haematologica. 2013;98(3):346–52. PubMed PMID: 23065508. Pubmed Central PMCID: Pmc3659951. Epub 2012/10/16. eng.Google Scholar
Clave, E, Busson, M, Douay, C, Peffault de Latour, R, Berrou, J, Rabian, C, et al. Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood. 2009;113(25):6477–84. PubMed PMID: 19258596. Epub 2009/03/05. eng.Google Scholar
Olkinuora, H, von Willebrand, E, Kantele, JM, Vainio, O, Talvensaari, K, Saarinen-Pihkala, U, et al. The impact of early viral infections and graft-versus-host disease on immune reconstitution following paediatric stem cell transplantation. Scandinavian Journal of Immunology. 2011;73(6):586–93. PubMed PMID: 21323694. Epub 2011/02/18. eng.Google Scholar
Small, TN, Avigan, D, Dupont, B, Smith, K, Black, P, Heller, G, et al. Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and posttransplant graft rejection prophylaxis. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 1997;3(2):6575. PubMed PMID: 9267666. Epub 1997/06/01. eng.Google Scholar
Small, TN, Papadopoulos, EB, Boulad, F, Black, P, Castro-Malaspina, H, Childs, BH, et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood. 1999;93(2):467–80. PubMed PMID: 9885208. Epub 1999/01/13. eng.Google Scholar
van Heijst, JW, Ceberio, I, Lipuma, LB, Samilo, DW, Wasilewski, GD, Gonzales, AM, et al. Quantitative assessment of T cell repertoire recovery after hematopoietic stem cell transplantation. Nature Medicine. 2013;19(3):372–7. PubMed PMID: 23435170. Pubmed Central PMCID: Pmc3594333. Epub 2013/02/26. eng.Google Scholar
Geyer, MB, Ricci, AM, Jacobson, JS, Majzner, R, Duffy, D, Van de Ven, C, et al. T cell depletion utilizing CD34(+) stem cell selection and CD3(+) addback from unrelated adult donors in paediatric allogeneic stem cell transplantation recipients. British Journal of Haematology. 2012;157(2):205–19. PubMed PMID: 22313507. Epub 2012/02/09. eng.Google Scholar
Perales, MA, Goldberg, JD, Yuan, J, Koehne, G, Lechner, L, Papadopoulos, EB, et al. Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood. 2012;120(24):4882–91. PubMed PMID: 23012326. Pubmed Central PMCID: Pmc3520625. Epub 2012/09/27. eng.Google Scholar
Goldberg, GL, Zakrzewski, JL, Perales, MA, van den Brink, MR. Clinical strategies to enhance T cell reconstitution. Seminars in Immunology. 2007;19(5):289–96. PubMed PMID: 17964803. Pubmed Central PMCID: Pmc2696308. Epub 2007/10/30. eng.Google Scholar
Incefy, GS, Flomenberg, N, Heller, G, Kernan, NA, Brochstein, J, Kirkpatrick, D, et al. Evidence that appearance of thymulin in plasma follows lymphoid chimerism and precedes development of immunity in patients with lethal combined immunodeficiency transplanted with T cell-depleted haploidentical marrow. Transplantation. 1990;50(1):5561. PubMed PMID: 2368151. Epub 1990/07/01. eng.Google Scholar
Reisner, Y, Kapoor, N, Kirkpatrick, D, Pollack, MS, Cunningham-Rundles, S, Dupont, B, et al. Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61(2):341–8. PubMed PMID: 6217853. Epub 1983/02/01. eng.Google Scholar
Castro-Malaspina, H, Jabubowski, AA, Papadopoulos, EB, Boulad, F, Young, JW, Kernan, NA, et al. Transplantation in remission improves the disease-free survival of patients with advanced myelodysplastic syndromes treated with myeloablative T cell-depleted stem cell transplants from HLA-identical siblings. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2008;14(4):458–68. PubMed PMID: 18342789. Epub 2008/03/18. eng.Google Scholar
Perales, MA, Jenq, R, Goldberg, JD, Wilton, AS, Lee, SS, Castro-Malaspina, HR, et al. Second-line age-adjusted International Prognostic Index in patients with advanced non-Hodgkin lymphoma after T-cell depleted allogeneic hematopoietic SCT. Bone Marrow Transplantation. 2010;45(9):1408–16. PubMed PMID: 20062091. Pubmed Central PMCID: Pmc3076892. Epub 2010/01/12. eng.Google Scholar
Bethge, WA, Faul, C, Bornhauser, M, Stuhler, G, Beelen, DW, Lang, P, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells, Molecules & Diseases. 2008;40(1):13–9. PubMed PMID: 17869547. Epub 2007/09/18. eng.Google Scholar
Federmann, B, Bornhauser, M, Meisner, C, Kordelas, L, Beelen, DW, Stuhler, G, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica. 2012;97(10):1523–31. PubMed PMID: 22491731. Pubmed Central PMCID: Pmc3487553. Epub 2012/04/12. eng.Google Scholar
Eissens, DN, Schaap, NP, Preijers, FW, Dolstra, H, van Cranenbroek, B, Schattenberg, AV, et al. CD3+/CD19+-depleted grafts in HLA-matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A. Leukemia. 2010;24(3):583–91. PubMed PMID: 20033055. Epub 2009/12/25. eng.Google Scholar
Wagner, JE, Thompson, JS, Carter, SL, Kernan, NA. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial. Lancet. 2005;366(9487):733–41. PubMed PMID: 16125590. Epub 2005/08/30. eng.Google Scholar