Skip to main content Accessibility help
×
Home
Hostname: page-component-66d7dfc8f5-zf4m4 Total loading time: 7.995 Render date: 2023-02-08T14:22:27.965Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adlan, A. M., Lip, G. Y., Paton, J. F., Kitas, G. D., & Fisher, J. P. (2014). Autonomic function and rheumatoid arthritis: a systematic review. Seminars in Arthritis and Rheumatism, 44: 283304.CrossRefGoogle ScholarPubMed
Anane, L. H., Edwards, K. M., Burns, V. E., Zanten, J. J., Drayson, M. T., & Bosch, J. A. (2010). Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain, Behavior, and Immunity, 24: 608614.CrossRefGoogle ScholarPubMed
Andersson, U. & Tracey, K. J. (2012). Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 209: 10571068.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J., & Shipley, M. T. (1996). Role of the locus coeruleus in emotional activation, Progress in Brain Research, 107: 379402.CrossRefGoogle ScholarPubMed
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host–bacterial mutualism in the human intestine. Science, 307: 19151920.CrossRefGoogle ScholarPubMed
Banks, W. A. & Farrell, C. L. (2003). Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. American Journal of Physiology: Endocrinology and Metabolism, 285: E10E15.Google ScholarPubMed
Bautista, D. M., Wilson, S. R., & Hoon, M. A. (2014). Why we scratch an itch: the molecules, cells and circuits of itch. Nature Neuroscience, 17: 175182.CrossRefGoogle ScholarPubMed
Bernard, C. (1878). Leçons sur les phénomènes de la vie communes aux animaux et aux végétaux. Paris: B. Baillière et Fils. Trans. Hoff, H. E., Guillemin, R., and Guillemin, L. as Lectures on the Phenomena of Life Common to Animals and Plants. Springfield, IL: Charles C. Thomas, 1974.Google Scholar
Berntson, G. G. (2006). Reasoning about brains. In Cacioppo, J. T., Visser, P. S., & Pickett, C. L. (eds.), Social Neuroscience: People Thinking about People (pp. 111). Cambridge, MA: MIT Press.Google Scholar
Berntson, G. G., Boysen, S. T., & Cacioppo, J. T. (1993a). Neurobehavioral organization and the cardinal principle of evaluative bivalence. Annals of the New York Academy of Sciences, 702: 75102.CrossRefGoogle ScholarPubMed
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Berntson, G. G., & Tassinary, L. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.CrossRefGoogle Scholar
Berntson, G. G. & Cacioppo, J. T. (2013). The functional neuroarchitecture of evaluative processes. In Elliot, A. J. (ed.), Handbook of Approach and Avoidance Motivation (pp. 307–21). New York: Psychology Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994a). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1994b). Autonomic cardiac control: I. Estimation and validation from pharmacological blockades. Psychophysiology 31: 572585.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. J. (1994c). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.CrossRefGoogle ScholarPubMed
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (1998). Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behavioural Brain Research, 94: 225248.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.CrossRefGoogle ScholarPubMed
Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G., & Jeanrenaud, B. (1981). Cephalic phase, reflex insulin secretion. Neuroanatomical and Physiological Characterization. Diabetologia, 20: 393401.Google ScholarPubMed
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 77: 6877.CrossRefGoogle ScholarPubMed
Bohus, B., Benus, R. F., Fokkema, D. S., Koolhaas, J. M., Nyakas, G. A., van Oortmerssen, G. A., … & Steffens, A. B. (1988). Neuroendocrine states and behavioral and physiological stress responses. In Wiegant, M. & de Wied, D. (eds.), Progress in Brain Research, vol. 72 (pp. 5770). Amsterdam: Elsevier.Google Scholar
Bosch, J. A. (2014). The use of saliva markers in psychobiology: mechanisms and methods. Monographs in Oral Science, 24: 99108.CrossRefGoogle ScholarPubMed
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003a). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, and Immunity, 17: 251259.CrossRefGoogle ScholarPubMed
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., & Marucha, P. T. (2005). Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosomatic Medicine, 67: 366375.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Carroll, D., Goedhart, A. D., Anane, L. A., van Zanten, J. J., … & Edwards, K. M. (2009). A general enhancement of autonomic and cortisol responses during social evaluative threat. Psychosomatic Medicine, 71: 877885.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Ligtenberg, T. J., Nazmi, K., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2000). Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosomatic Medicine, 62: 4049.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003b). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.CrossRefGoogle ScholarPubMed
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.CrossRefGoogle ScholarPubMed
Boychuk, C. R., Gyarmati, P., Xu, H., & Smith, B. N. (2015). Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. Journal of Neurophysiology, 114: 9991007.CrossRefGoogle ScholarPubMed
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.CrossRefGoogle ScholarPubMed
Bradley, P. B. & Elkes, J. (1953). The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat. Journal of Physiology, 120: 1415.Google ScholarPubMed
Brody, S., Keller, U., Degen, L., Cox, D. J., & Schächinger, H. (2004). Selective processing of food words during insulin-induced hypoglycemia in healthy humans. Psychopharmacology, 173: 217220.CrossRefGoogle ScholarPubMed
Brydon, L. (2011). Adiposity, leptin and stress reactivity in humans. Biological Psychology, 86: 114120.CrossRefGoogle ScholarPubMed
Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360: 22272235.CrossRefGoogle ScholarPubMed
Butler, J. E. (2007). Drive to the human respiratory muscles. Respiratory Physiology & Neurobiology, 159: 115126.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.CrossRefGoogle Scholar
Cacioppo, J. T., Berntson, G. G., & Klein, D. J. (1992). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions.” Review of Personality and Social Psychology, 14: 6398.Google Scholar
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multi-level integrative analyses of human behavior: the complementing nature of social and biological approaches. Psychological Bulletin, 126: 829843.CrossRefGoogle Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., Berntson, G. G., & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Sandman, C. A. (1978). Physiological differentiation of sensory and cognitive tasks as a function of warning, processing demands, and reported unpleasantness. Biological Psychology, 6: 181192.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., Stonebraker, T. B., & Petty, R. E. (1987). Self-report and cardiovascular measures of arousal: fractionation during residual arousal. Biological Psychology, 25: 135151.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1914). The interrelations of emotions as suggested by recent physiological researches. American Journal of Psychology, 25: 256282.CrossRefGoogle Scholar
Cannon, W. B. (1928). The mechanism of emotional disturbance of bodily functions. New England Journal of Medicine, 198: 877884.CrossRefGoogle Scholar
Cannon, W. B. (1929a). Bodily Changes in Pain, Hunger, Fear, and Rage. Boston, MA: Charles T. Brandford Company.CrossRefGoogle Scholar
Cannon, W. B. (1929b). Organization for physiological homeostasis. Physiological Reviews, 9: 399431.CrossRefGoogle Scholar
Cannon, W. B. (1939). The Wisdom of the Body, 2nd edn. London: Kegan Paul, Trench, Trubner & Co.CrossRefGoogle Scholar
Cannon, W. B. (1942). Voodoo death. American Anthropologist, 44: 169181.CrossRefGoogle Scholar
Carroll, D. (2011). A brief commentary on cardiovascular reactivity at a crossroads. Biological Psychology, 86: 149151.CrossRefGoogle Scholar
Carruthers, M. & Taggart, P. (1973). Vagotonicity of violence: biochemical and cardiac responses to violent films and television programmes. British Medical Journal, 3: 384389.CrossRefGoogle ScholarPubMed
Chida, Y, & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55: 10261032.CrossRefGoogle ScholarPubMed
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Kamp Dush, C., & Bailey, M. T. (2015). Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 45: 118127.CrossRefGoogle ScholarPubMed
Cofer, C. N. & Appley, M. H. (1964). Motivation: Theory and Research. New York: John Wiley.Google Scholar
Cohen, S. & Herbert, T. B. (1996). Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annual Review of Psychology, 47: 113142.CrossRefGoogle ScholarPubMed
Contrada, R. J. (2011). Stress, adaptation, and health. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 19). New York: Springer.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.CrossRefGoogle Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.CrossRefGoogle Scholar
Craig, A. D. (2014). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.CrossRefGoogle Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.CrossRefGoogle ScholarPubMed
Cryan, J. F. & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13: 701712.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26: 8386.CrossRefGoogle ScholarPubMed
Damasio, A. R. (2010). Self Comes to Mind: Contructing the Conscious Brain. New York: Heinemann.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.CrossRefGoogle Scholar
Davis, M., Falls, W. A., Campeau, S., & Kim, M. (1993). Fear-potentiated startle: a neural and pharmacological analysis. Behavioural Brain Research, 58: 175198.CrossRefGoogle ScholarPubMed
de Lecea, L., Carter, M. E., & Adamantidis, A. (2012). Shining light on wakefulness and arousal. Biological Psychiatry, 71: 10461052.CrossRefGoogle ScholarPubMed
de Wit, L., Luppino, F., van Straten, A., Penninx, B., Zitman, F., & Cuijpers, P. (2010). Depression and obesity: a meta-analysis of community-based studies. Psychiatry Research, 178: 230235.CrossRefGoogle ScholarPubMed
Dhabhar, F. S. (2014). Effects of stress on immune function: the good, the bad, and the beautiful. Immunology Research, 58: 193210.CrossRefGoogle ScholarPubMed
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.CrossRefGoogle ScholarPubMed
Dienstbier, R. A. (1989). Arousal and physiological toughness: implications for mental and physical health. Psychological Review, 96: 84100.CrossRefGoogle ScholarPubMed
DiGirolamo, D. J., Clemens, T. L., & Kousteni, S. (2012). The skeleton as an endocrine organ. Nature Reviews Rheumatology, 8: 674683.CrossRefGoogle ScholarPubMed
Dinan, T. G. & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37: 13691378.CrossRefGoogle ScholarPubMed
Dror, O. E. (2014). The Cannon–Bard thalamic theory of emotions: a brief genealogy and reappraisal. Emotion Review, 6: 1320.CrossRefGoogle Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Dworkin, B. R. (1993). Learning and Physiological Regulation. University of Chicago Press.Google Scholar
Dworkin, B. R. & Dworkin, S. (1999). Heterotopic and homotopic classical conditioning of the baroreflex. Integrative Physiology and Behavioral Scinece, 34: 158176.CrossRefGoogle ScholarPubMed
Dworkin, B. R., Elbert, T., Rau, H., Birbaumer, N., Pauli, P., Droste, C., & Brunia, C. H. (1994). Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perceptions. Proceedings of the National Academy of Sciences of the USA, 91: 63296333.CrossRefGoogle Scholar
Edwards, K. M., Bosch, J. A., Engeland, C. G., Cacioppo, J. T., & Marucha, P. T. (2010). Elevated macrophage migration inhibitory factor (MIF) is associated with depressive symptoms, blunted cortisol reactivity to acute stress, and lowered morning cortisol. Brain, Behavior, and Immunity, 24: 12021208.CrossRefGoogle ScholarPubMed
Edwards, L., McIntyre, D., Carroll, D., Ring, C., & Martin, U. (2002). The human nociceptive flexion reflex threshold is higher during systole than diastole. Psychophysiology, 39: 678681.CrossRefGoogle ScholarPubMed
Engel, G. L. (1977). Emotional stress and sudden death. Psychology Today, 11: 114118.Google Scholar
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., … & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18: 965977.CrossRefGoogle ScholarPubMed
Farr, O. M., Tsoukas, M. A., & Mantzoros, C. S. (2015). Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism, 64: 114130.CrossRefGoogle ScholarPubMed
Feldman, S. M. & Waller, H. J. (1962). Dissociation of electrocortical activation and behavioral arousal. Nature, 196: 13201322.CrossRefGoogle Scholar
Ferguson, A. V. (2014). Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function. In De Luca, L. A., Menani, J. V., & Johnson, A. K. (eds.), Neurobiology of Body Fluid Homeostasis: Transduction and Integration (pp. 2336). Boca Raton, FL: CRC Press.Google Scholar
Field, B. C., Chaudhri, O. B., & Bloom, S. R. (2010). Bowels control brain: gut hormones and obesity. Nature Reviews Endocrinology, 6: 444453.CrossRefGoogle ScholarPubMed
Fisher, L. (1990). Stress and cardiovascular physiology in animals. In Brown, M., Koob, G., & Rivier, C. (eds.), Stress: Neurobiology and Neuroendocrinology (pp. 463474). New York: Marcel Dekker.Google Scholar
Folkow, B. (2000). Perspectives on the integrative functions of the “sympatho-adrenomedullary system.” Autonomic Neuroscience, 83: 101115.CrossRefGoogle Scholar
Frankenhaeuser, M. (1982). Challenge–control interaction as reflected in sympathetic-adrenal and pituitary-adrenal activity: comparison between the sexes. Scandinavian Journal of Psychology, Supp. 1: 158164.CrossRefGoogle ScholarPubMed
Friedman, B. H. & Kreibig, S. D. (2010). The biopsychology of emotion: current theoretical, empirical, and methodological perspectives. Biological Psychology, 84: 381382.CrossRefGoogle ScholarPubMed
Galley, J. D. & Bailey, M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390396.CrossRefGoogle ScholarPubMed
Gerin, W. (2011). Acute stress responses in the psychophysiological laboratory. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 501514). New York: Springer.Google Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.CrossRefGoogle ScholarPubMed
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.CrossRefGoogle ScholarPubMed
Goldstein, D. S. & Kopin, I. J. (2007). Evolution of concepts of stress. Stress, 10: 109120.CrossRefGoogle ScholarPubMed
Gray, J. A. & McNaughton, N. (1996). The neuropsychology of anxiety: reprise. Nebraska Symposium on Motivation, 43: 61134.Google ScholarPubMed
Gray, T. S. & Bingaman, E. W. (1996). The amygdala: corticotropin-releasing factor, steroids, and stress. Critical Reviews in Neurobiology, 10: 155168.CrossRefGoogle Scholar
Gregg, M. E., Matyas, T. A., & James, J. E. (2002). A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology, 39: 6472.CrossRefGoogle ScholarPubMed
Guyton, A. C. (1991). Blood-pressure control: special role of the kidneys and body fluids. Science, 252: 18131816.CrossRefGoogle ScholarPubMed
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49: 206215.CrossRefGoogle ScholarPubMed
Hagenaars, M. A., Oitzl, M., & Roelofs, K. (2014). Updating freeze: aligning animal and human research. Neuroscience & Biobehavioral Reviews, 47: 165176.CrossRefGoogle ScholarPubMed
Hanlin, L., Price, J., Zhang, G., Assaf, N., Mitchell, J., & Rohleder, N. (2015). Fasting modulates interleukin-6 and cortisol reactivity to the Trier Social Stress Test. Psychoneuroendocrinology, 61: 69.CrossRefGoogle Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66: 407414.CrossRefGoogle ScholarPubMed
Harrison, N. A., Cooper, E., Voon, V., Miles, K., & Critchley, H. D. (2013). Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain, Behavior, and Immunity, 31: 189196.CrossRefGoogle ScholarPubMed
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.CrossRefGoogle Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.CrossRefGoogle ScholarPubMed
Heany, S. J., van Honk, J., Stein, D. J., & Brooks, S. J. (2016). A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain. Metabolic Brain Disease, 31: 157167.CrossRefGoogle ScholarPubMed
Henry, J. P. (1986). Neuroendocrine patterns of emotional response. In Plutchick, R. & Kellerman, H. (eds.), Emotion: Theory, Research and Experiences (pp. 3760). San Diego, CA: Academic Press.Google Scholar
Hofer, P., Lanzenberger, R., & Kasper, S. (2013). Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology. European Neuropsychopharmacology, 23: 7988.CrossRefGoogle ScholarPubMed
Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine, 71: 171186.CrossRefGoogle ScholarPubMed
Inagaki, T. K., Muscatell, K. A., Irwin, M. R., Cole, S. W., & Eisenberger, N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage, 59: 32223226.CrossRefGoogle ScholarPubMed
Iriki, M. & Simon, E. (2012). Differential control of efferent sympathetic activity revisited. Journal of Physiological Science, 62: 275298.CrossRefGoogle ScholarPubMed
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.CrossRefGoogle ScholarPubMed
James, W. (1884). What is an emotion? Mind, 9: 188205.CrossRefGoogle Scholar
Joels, M. & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10: 459466.CrossRefGoogle ScholarPubMed
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience, 8: S438S451.CrossRefGoogle ScholarPubMed
Karsenty, G. & Ferron, M. (2012). The contribution of bone to whole-organism physiology. Nature, 481: 314320.CrossRefGoogle ScholarPubMed
Kataoka, N., Hioki, H., Kaneko, T., & Nakamura, K. (2014). Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabolism, 20: 346358.CrossRefGoogle ScholarPubMed
Kawai, M. & Rosen, C. J. (2010). Minireview: a skeleton in serotonin’s closet? Endocrinology, 151: 41034108.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Gonzalez Bono, E., Rohleder, N., Gessner, C., Pirke, K. M., Salvador, A., & Hellhammer, D. H. (1997). Effects of fasting and glucose load on free cortisol responses to stress and nicotine. Journal of Clinical Endocrinology and Metabolism, 82: 11011105.Google ScholarPubMed
Knox, D., Sarter, M., & Berntson, G. G. (2004). Visceral afferent bias on cortical processing: role of adrenergic afferents to the basal forebrain cholinergic system. Behavioral Neuroscience, 118: 14551459.CrossRefGoogle ScholarPubMed
Kohler, O., Benros, M. E., Nordentoft, M., Farkouh, M. E., Iyengar, R. L., Mors, O., & Krogh, J. (2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 71: 13811391.CrossRefGoogle ScholarPubMed
Koizumi, K. & Kollai, M. (1981). Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions, Journal of the Autonomic Nervous System, 3: 483501.CrossRefGoogle ScholarPubMed
Koizumi, K. & Kollai, M. (1992). Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present, Journal of the Autonomic Nervous System, 41: 1930.CrossRefGoogle ScholarPubMed
Kopin, I. J. (1995). Definitions of stress and sympathetic neuronal responses. Annals of the New York Academy of Sciences, 771: 1930.CrossRefGoogle ScholarPubMed
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.CrossRefGoogle ScholarPubMed
Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubinstein, E. A. & Parloff, M. B. (eds.), Research in Psychotherapy (pp. 160208). Washington: APA.CrossRefGoogle Scholar
Lacey, J. I. (1967). Somatic response patterning and stress: some revisions of activation theory. In Appley, M. H. & Trumbull, R. (eds.), Psychological Stress: Issues in Research (pp. 444). New York: Appleton-Century-Crofts.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of Emotions in Man (pp. 161196). New York: International University Press.Google Scholar
Lacourt, T. E., Houtveen, J. H., Veldhuijzen van Zanten, J. J., Bosch, J. A., Drayson, M. T., & Van Doornen, L. J. (2015). Negative affectivity predicts decreased pain tolerance during low-grade inflammation in healthy women. Brain, Behavior, and Immunity, 44: 3236.CrossRefGoogle ScholarPubMed
Ladwig, K. H., Marten-Mittag, B., Lowel, H., Doring, A., & Koenig, W. (2003). Influence of depressive mood on the association of CRP and obesity in 3205 middle aged healthy men. Brain, Behavior, and Immunity, 17: 268275.CrossRefGoogle ScholarPubMed
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biological Psychiatry, 44: 12481263.CrossRefGoogle ScholarPubMed
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.CrossRefGoogle Scholar
Licht, C. M., Vreeburg, S. A., van Reedt Dortland, A. K., Giltay, E. J., Hoogendijk, W. J., DeRijk, R. H., … & Penninx, B. W. (2010). Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. Journal of Clinical Endocrinology and Metabolism, 95: 24582466.CrossRefGoogle ScholarPubMed
Light, K. C. & Obrist, P. A. (1980). Cardiovascular response to stress: effects of opportunity to avoid, shock experience, and performance feedback. Psychophysiology, 17: 243252.CrossRefGoogle ScholarPubMed
Loewy, A. D. (1990). Autonomic control of the eye. In Loewy, A. D. & Spyer, K. M. (eds.), Central Regulation of Autonomic Function (pp. 268285). Oxford University Press.Google Scholar
Lucini, D., Norbiato, G., Clerici, M., & Pagani, M. (2002). Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension, 39: 184188.CrossRefGoogle ScholarPubMed
Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67: 220229.CrossRefGoogle ScholarPubMed
Magoun, H. W. (1963). The Waking Brain. Springfield, IL: Charles C. Thomas.Google Scholar
Malliani, A. (2005). Heart rate variability: from bench to bedside. European Journal of Internal Medicine, 16: 1220.CrossRefGoogle ScholarPubMed
Mason, J. W. (1975a). A historical view of the stress field: part 1. Journal of Human Stress, 1: 612.CrossRefGoogle Scholar
Mason, J. W. (1975b). A historical view of the stress field: part 2. Journal of Human Stress, 1: 2236.CrossRefGoogle Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 34: 1549015496.CrossRefGoogle ScholarPubMed
McCabe, P. M. & Schneiderman, P. (1985). Psychophysiologic reactions to stress. In Schneiderman, N. & Tapp, J. T. (eds.), Behavioral Medicine: The Biopsychosocial Approach (pp. 99131). London: Lawrence Erlbaum Associates.Google Scholar
McCusker, R. H. & Kelley, K. W. (2013). Immune–neural connections: how the immune system’s response to infectious agents influences behavior. Journal of Experimental Biology, 216: 8498.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338: 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews, 87: 873904.CrossRefGoogle Scholar
McEwen, B. S. & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186: 190222.CrossRefGoogle ScholarPubMed
McEwen, B. S. & Wingfield, J. C. (2010). What is in a name? Integrating homeostasis, allostasis and stress. Hormones and Behavior, 57: 105111.CrossRefGoogle Scholar
McInnis, C. M., Thoma, M. V., Gianferante, D., Hanlin, L., Chen, X., Breines, J. G., … & Rohleder, N. (2014). Measures of adiposity predict interleukin-6 responses to repeated psychosocial stress. Brain, Behavior, and Immunity, 42: 3340.CrossRefGoogle ScholarPubMed
Miller, G. E., Freedland, K. E., Carney, R. M., Stetler, C. A., & Banks, W. A. (2003). Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain, Behavior, and Immunity, 17: 276285.CrossRefGoogle ScholarPubMed
Moieni, M., Irwin, M. R., Jevtic, I., Breen, E. C., & Eisenberger, N. I. (2015). Inflammation impairs social cognitive processing: a randomized controlled trial of endotoxin. Brain, Behavior, and Immunity, 48: 132138.CrossRefGoogle ScholarPubMed
Nagy, T., van Lien, R., Willemsen, G., Proctor, G., Efting, M., Fulop, M., … & Bosch, J. A. (2015). A fluid response: alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate. Biological Psychology, 109: 111119.CrossRefGoogle ScholarPubMed
Nater, U. M., Ditzen, B., Strahler, J., & Ehlert, U. (2013). Effects of orthostasis on endocrine responses to psychosocial stress. International Journal of Psychophysiology, 90: 341346.CrossRefGoogle ScholarPubMed
Neumann, I. D. & Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry, 79: 213221.CrossRefGoogle ScholarPubMed
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.CrossRefGoogle Scholar
Norman, G. J., Cacioppo, J. T., Morris, J. S., Malarkey, W. B., Berntson, G. G., & DeVries, A. C. (2011a). Oxytocin increases autonomic cardiac control: moderation by loneliness. Biological Psychology, 86(3): 174180.CrossRefGoogle ScholarPubMed
Norman, G. J., DeVries, A. C., Cacioppo, J. T., & Berntson, G. G. (2011b). Multilevel analyses of stress. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 619634). New York: Springer.Google Scholar
Norman, G. J., Hawkley, L. C., Cole, S. W., Berntson, G. G., & Cacioppo, J. T. (2012). Social neuroscience: the social brain, oxytocin, and health. Social Neuroscience, 7: 1829.CrossRefGoogle ScholarPubMed
Obrist, P. A. (1981). Cardiovascular Psychophysiology: A Perspective. New York: Plenum Press.CrossRefGoogle Scholar
Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E., & Weiss, R. (2006). Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology, 43: 4656.CrossRefGoogle ScholarPubMed
Pacak, K. & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22: 502548.CrossRefGoogle ScholarPubMed
Packard, M. G. & Goodman, J. (2012). Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 6: 14.CrossRefGoogle ScholarPubMed
Paine, N. J., Bosch, J. A., & Van Zanten, J. J. (2012). Inflammation and vascular responses to acute mental stress: implications for the triggering of myocardial infarction. Current Pharmaceutical Design, 18: 14941501.CrossRefGoogle ScholarPubMed
Paine, N. J., Ring, C., Bosch, J. A., Drayson, M. T., Aldred, S., & Veldhuijzen van Zanten, J. J. (2014). Vaccine-induced inflammation attenuates the vascular responses to mental stress. International Journal of Psychophysiology, 93: 340348.CrossRefGoogle ScholarPubMed
Pape, H. C., Jungling, K., Seidenbecher, T., Lesting, J., & Reinscheid, R. K. (2010). Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology, 58: 2934.CrossRefGoogle ScholarPubMed
Parvizi, J. & Damasio, A. (2001). Consciousness and the brainstem. Cognition, 79: 135160.CrossRefGoogle ScholarPubMed
Pedersen, B. K. & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8: 457465.CrossRefGoogle ScholarPubMed
Pfaff, D. W., Kieffer, B. L., & Swanson, L. W. (2008). Mechanisms for the regulation of state changes in the central nervous system: an introduction. Annals of the New York Academy of Sciences, 1129: 17.CrossRefGoogle Scholar
Qureshi, I. A. & Mehler, M. F. (2013). Towards a “systems”-level understanding of the nervous system and its disorders. Trends in Neurosciences, 36: 674684.CrossRefGoogle ScholarPubMed
Raison, C. L. & Miller, A. H. (2013). Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. Modern Trends in Pharmacopsychiatry, 28: 3348.CrossRefGoogle ScholarPubMed
Ramsay, D. S. & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychological Review, 121: 225247.CrossRefGoogle ScholarPubMed
Reagan, L. P. (2007). Insulin signaling effects on memory and mood. Current Opinion in Pharmacology, 7: 633637.CrossRefGoogle Scholar
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … & Trivedi, M. H. (2013). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18: 11191124.CrossRefGoogle ScholarPubMed
Riddell, N. E., Burns, V. E., Wallace, G. R., Edwards, K. M., Drayson, M., Redwine, L. S., … & Bosch, J. A. (2015). Progenitor cells are mobilized by acute psychological stress but not beta-adrenergic receptor agonist infusion. Brain, Behavior, and Immunity, 49: 4953.CrossRefGoogle Scholar
Ring, C., Burns, V. E., & Carroll, D. (2002). Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology, 39: 585590.CrossRefGoogle ScholarPubMed
Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention: implications for drug abuse. Annals of the New York Academy of Sciences, 846: 222237.CrossRefGoogle ScholarPubMed
Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. Circulation Research, 14: 400411.CrossRefGoogle Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.CrossRefGoogle ScholarPubMed
Romanovsky, A. A. (2004). Do fever and anapyrexia exist? Analysis of set point-based definitions. American Journal of Physiology: Regulatory and Integrative Comparative Physiology, 287: R992R995.Google ScholarPubMed
Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W., & Steinhoff, M. (2006). Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiological Reviews, 86: 13091379.CrossRefGoogle ScholarPubMed
Rosen, C. J. (2009). Bone: serotonin, leptin and the central control of bone remodeling. Nature Reviews Rheumatology, 5: 657658.CrossRefGoogle ScholarPubMed
Sacco, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., … & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension (Greenwich), 15: 600605.CrossRefGoogle ScholarPubMed
Santisteban, M. M., Ahmari, N., Carvajal, J. M., Zingler, M. B., Qi, Y., Kim, S., … & Zubcevic, J. (2015). Involvement of bone marrow cells and neuroinflammation in hypertension. Circulation Research, 117: 178191.CrossRefGoogle ScholarPubMed
Saper, C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annual Review of Neuroscience, 25: 433469.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21: 5589.Google ScholarPubMed
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.CrossRefGoogle Scholar
Sarter, M., Bruno, J. P., & Berntson, G. G. (2003). Reticular activating system. In Nadel, L. (ed.), Encyclopedia of Cognitive Science, vol. 3 (pp. 963967). London: Nature Publishing Group.Google Scholar
Satpute, A. B., Wager, T. D., Cohen-Adad, J., Bianciardi, M., Choi, J. K., Buhle, J. T., … & Feldman Barrett, L. (2013). Identification of discrete functional subregions of the human periaqueductal gray. Proceedings of the National Academy of Sciences of the USA, 110: 1710117106.CrossRefGoogle ScholarPubMed
Schaible, H. G. (2014). Nociceptive neurons detect cytokines in arthritis. Arthritis Research & Therapy, 16: 470.CrossRefGoogle ScholarPubMed
Schellekens, H., Finger, B. C., Dinan, T. G., & Cryan, J. F. (2012). Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacology & Therapeutics, 135: 316326.CrossRefGoogle ScholarPubMed
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual Review of Clinical Psychology, 1: 607628.CrossRefGoogle ScholarPubMed
Schneiderman, N. & McCabe, P. M. (1989). Psychophysiologic strategies in laboratory research. In Schneiderman, N., Weiss, S. M., & Kaufman, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 349364). New York: Plenum Press.CrossRefGoogle Scholar
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65: 450460.CrossRefGoogle ScholarPubMed
Schroeder, J. P. & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17: 14821488.CrossRefGoogle ScholarPubMed
Schulkin, J. (ed.) (2004). Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge University Press.CrossRefGoogle Scholar
Schulkin, J. (2011). Social allostasis: anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2: 111.CrossRefGoogle ScholarPubMed
Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: an update and integration. Neuroscience & Biobehavioral Reviews, 36: 17401749.CrossRefGoogle Scholar
Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1: 13831392.CrossRefGoogle ScholarPubMed
Selye, H. (1956). The Stress of Life. New York: McGraw-Hill.Google Scholar
Selye, H. (1973). Homeostasis and heterostasis. Perspectives in Biology and Medicine, 16: 441445.CrossRefGoogle ScholarPubMed
Selye, H. (1975). Confusion and controversy in the stress field. Journal of Human Stress, 1: 3744.CrossRefGoogle ScholarPubMed
Selye, H. (1976). Stress in Health and Disease. Boston, MA: Butterworths.Google Scholar
Shelton, R. C. & Miller, A. H. (2011). Inflammation in depression: is adiposity a cause? Dialogues in Clinical Neuroscience, 13: 4153.Google ScholarPubMed
Shih, C. D., Chan, S. H., & Chan, J. Y. (1995). Participation of hypothalamic paraventricular nucleus in locus ceruleus-induced baroreflex suppression in rats. American Journal of Physiology, 269: H4652.Google ScholarPubMed
Slominski, A. T., Zmijewski, M. A., Skobowiat, C., Zbytek, B., Slominski, R. M., & Steketee, J. D. (2012). Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Advances in Anatomy, Embryology, and Cell Biology, 212: v, vii, 1115.Google ScholarPubMed
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. New York: Macmillan.Google Scholar
Spencer, S. J., Emmerzaal, T. L., Kozicz, T., & Andrews, Z. B. (2015). Ghrelin’s role in the hypothalamic–pituitary–adrenal axis stress response: implications for mood disorders. Biological Psychiatry, 78: 1927.CrossRefGoogle ScholarPubMed
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48: 258264.CrossRefGoogle ScholarPubMed
Steinberg, B. E., Tracey, K. J., & Slutsky, A. S. (2014). Bacteria and the neural code. New England Journal of Medicine, 371: 21312133.CrossRefGoogle ScholarPubMed
Sterling, P. (2004). Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In Schulkin, J. (ed.), Allostasis, Homeostasis, and the Costs of Physiological Adaptation (pp. 1764). Cambridge University Press.CrossRefGoogle Scholar
Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 515.CrossRefGoogle ScholarPubMed
Sterling, P. & Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (eds.), Handbook of Life Stress, Cognition and Health (pp. 629649). New York: John Wiley.Google Scholar
Stern, R. M. & Sison, C. E. E. (1990). Response patterning. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 193216). Cambridge University Press.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: a meta-analysis. European Neuropsychopharmacology, 25: 15321543.CrossRefGoogle ScholarPubMed
Sved, A. F., Cano, G., & Card, J. P. (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clinical and Experimental Pharmacology & Physiology, 28: 115119.CrossRefGoogle ScholarPubMed
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107: 411429.CrossRefGoogle Scholar
Thayer, J. F. & Fischer, J. E. (2009). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. Journal of Internal Medicine, 265: 439447.CrossRefGoogle ScholarPubMed
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119: 488531.CrossRefGoogle Scholar
Ulrich-Lai, Y. M. & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10: 397409.CrossRefGoogle ScholarPubMed
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.CrossRefGoogle ScholarPubMed
Van Roon, A. M., Mulder, L. J. M., Veldman, J. B. P., & Mulder, G. (1995). Beat-to-beat blood-pressure measurements applied in studies on mental workload. Homeostasis in Health and Disease, 36: 316324.Google Scholar
Vingerhoets, A. J. (1985). The role of the parasympathetic division of the autonomic nervous system in stress and the emotions. International Journal of Psychosomatics, 32: 2834.Google ScholarPubMed
Vingerhoets, A. J., Ratliff-Crain, J., Jabaaij, L., Menges, L. J., & Baum, A. (1996). Self-reported stressors, symptom complaints and psychobiological functioning: I. Cardiovascular stress reactivity. Journal of Psychosomatic Research, 40: 177190.CrossRefGoogle ScholarPubMed
Vrijkotte, T. G., van den Born, B. J., Hoekstra, C. M., Gademan, M. G., van Eijsden, M., de Rooij, S. R., & Twickler, M. (2015). Cardiac autonomic nervous system activation and metabolic profile in young children: the ABCD study. PLoS One, 10: e0138302.CrossRefGoogle ScholarPubMed
Watson, D. & Pennebaker, J. W. (1989). Health complaints, stress, and distress: exploring the central role of negative affectivity. Psychological Review, 96: 234254.CrossRefGoogle ScholarPubMed
Weiner, H. (1992). Perturbing the Organism: The Biology of Stressful Experience. University of Chicago Press.Google Scholar
Wenger, M. A. (1941). The measurement of individual differences in autonomic balance. Psychosomatic Medicine, 3: 427434.CrossRefGoogle Scholar
Werner, J. (1988). Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. Pharmacology & Therapeutics, 37: 123.CrossRefGoogle ScholarPubMed
Wheaton, B. & Montazer, S. (2009). Stressors, stress, and distress. In Scheid, T. L. & Brown, T. N. (eds.), A Handbook for the Study of Mental Health: Social Contexts, Theories, and Systems, 2nd edn. (pp. 171199). Cambridge University Press.CrossRefGoogle Scholar
Winsky-Sommerer, R., Boutrel, B., & de Lecea, L. (2005). Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Molecular Neurobiology, 32: 285294.CrossRefGoogle ScholarPubMed
Wirtz, P. H., Ehlert, U., Emini, L., & Suter, T. (2008). Higher body mass index (BMI) is associated with reduced glucocorticoid inhibition of inflammatory cytokine production following acute psychosocial stress in men. Psychoneuroendocrinology, 33: 11021110.CrossRefGoogle ScholarPubMed
Zigman, J. M., Bouret, S. G., & Andrews, Z. B. (2016). Obesity impairs the action of the neuroendocrine Ghrelin system. Trends in Endocrinology and Metabolism, 27: 5463.CrossRefGoogle ScholarPubMed

References

Ainley, V., Maister, L., Brokfeld, J., Farmer, H., & Tsakiris, M. (2013). More of myself: manipulating interoceptive awareness by heightened attention to bodily and narrative aspects of the self. Consciousness and Cognition, 22: 12311238.CrossRefGoogle ScholarPubMed
Ainley, V., Tajadura-Jimenez, A., Fotopoulou, A., & Tsakiris, M. (2012). Looking into myself: changes in interoceptive sensitivity during mirror self-observation. Psychophysiology, 49: 16721676.CrossRefGoogle ScholarPubMed
Antony, M. M., Brown, T. A., Craske, M. G., Barlow, D. H., Mitchell, W. B., & Meadows, E. A. (1995). Accuracy of heartbeat perception in panic disorder, social phobia and non-anxious subjects. Journal of Anxiety Disorders, 9: 355371.CrossRefGoogle Scholar
Armstrong, A. M. & Dienes, Z. (2013). Subliminal understanding of negation: unconscious control by subliminal processing of word pairs. Consciousness and Cognition, 22: 10221040.CrossRefGoogle ScholarPubMed
Avery, J. A., Drevets, W. C., Moseman, S. E., Bodurka, J., Barcalow, J. C., & Simmons, W. K. (2014). Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biological Psychiatry, 76: 258266.CrossRefGoogle ScholarPubMed
Barrett, L. F., Gross, J., Christensen, T. C., & Benvenuto, M. (2001). Knowing what you’re feeling and knowing what to do about it: mapping the relation between emotion differentiation and emotion regulation. Cognition & Emotion, 15: 713724.CrossRefGoogle Scholar
Barrett, L. F. & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16: 419429.CrossRefGoogle Scholar
Barsky, A. J., Cleary, P. D., Sarnie, M. K., & Ruskin, J. N. (1994). Panic disorder, palpitations, and the awareness of cardiac activity. Journal of Nervous and Mental Disease, 182: 6371.CrossRefGoogle ScholarPubMed
Beacher, F. D. C. C., Gray, M. A., Mathias, C. J., & Critchley, H. D. (2009). Vulnerability to simple faints is predicted by regional differences in brain anatomy. NeuroImage, 47: 937945.CrossRefGoogle ScholarPubMed
Bechara, A. & Damasio, A. R. (2005). The somatic marker hypothesis: a neural theory of economic decision. Games and Economic Behavior, 52: 336372.CrossRefGoogle Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50: 715.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.CrossRefGoogle ScholarPubMed
Birch, L. L., Fisher, J. O., & Davison, K. K. (2003). Learning to overeat: maternal use of restrictive feeding practices promotes girls’ eating in the absence of hunger. American Journal of Clinical Nutrition, 78: 215220.CrossRefGoogle ScholarPubMed
Bornemann, B., Herbert, B. M., Mehling, W. E., & Singer, T. (2015). Differential changes in self-reported aspects of interoceptive awareness through 3 months of contemplative training. Frontiers in Psychology, 5: 1504.CrossRefGoogle ScholarPubMed
Brannigan, M., Stevenson, R. J., & Francis, H. (2015). Thirst interoception and its relationship to a Western-style diet. Physiology & Behavior, 139: 423429.CrossRefGoogle ScholarPubMed
Brener, J. & Kluvitse, C. (1988). Heartbeat detection: judgments of the simultaneity of external stimuli and heartbeats. Psychophysiology, 25: 554561.CrossRefGoogle ScholarPubMed
Brener, J., Knapp, K., & Ring, C. (1995). The effects of manipulating beliefs about heart-rate on the accuracy of heartbeat counting in the Schandry task. Psychophysiology, 32: S22.Google Scholar
Brener, J., Liu, X. Q., & Ring, C. (1993). A method of constant stimuli for examining heartbeat detection: comparison with the Brener-Kluvitse and Whitehead methods. Psychophysiology, 30: 657665.CrossRefGoogle ScholarPubMed
Brener, J. & Ring, C. (eds.) (1995). Perception and Heart Beat Detection. Frankfurt: Peter Lang.Google Scholar
Brydon, L., Harrison, N. A., Walker, C., Steptoe, A., & Critchley, H. D. (2008). Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biological Psychiatry, 63: 10221029.CrossRefGoogle ScholarPubMed
Buchanan, T. W., Etzel, J. A., Adolphs, R., & Tranel, D. (2006). The influence of autonomic arousal and semantic relatedness on memory for emotional words. International Journal of Psychophysiology, 61: 2633.CrossRefGoogle ScholarPubMed
Cameron, O. G. (2001). Visceral Sensory Neuroscience: Interoception. Oxford University Press.Google Scholar
Canales-Johnson, A., Silva, C., Huepe, D., Rivera-Rei, A., Noreika, V., Garcia, M. D., … & Bekinschtein, T. A. (2015). Auditory feedback differentially modulates behavioral and neural markers of objective and subjective performance when tapping to your heartbeat. Cerebral Cortex, 25: 44904503.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1931). Again the James–Lange and the thalamic theories of emotion. Psychological Review, 38: 281295.CrossRefGoogle Scholar
Ceunen, E., Van Diest, I., & Vlaeyen, J. W. S. (2013). Accuracy and awareness of perception: related, yet distinct (commentary on Herbert et al., 2012). Biological Psychology, 92: 426427.CrossRefGoogle Scholar
Couto, B., Adolfi, F., Sedeno, L., Salles, A., Canales-Johnson, A., Alvarez-Abut, P., … & Ibanez, A. (2015). Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus. Frontiers in Psychology, 6: 503.CrossRefGoogle ScholarPubMed
Couto, B., Salles, A., Sedeno, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … & Ibanez, A. (2014). The man who feels two hearts: the different pathways of interoception. Social Cognitive and Affective Neuroscience, 9: 12531260.CrossRefGoogle ScholarPubMed
Cowie, D., Makin, T. R., & Bremner, A. J. (2013). Children’s responses to the rubber-hand illusion reveal dissociable pathways in body representation. Psychological Science, 24: 762769.CrossRefGoogle ScholarPubMed
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.CrossRefGoogle Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.CrossRefGoogle Scholar
Craig, A. D. (2015). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.CrossRefGoogle Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.CrossRefGoogle ScholarPubMed
Critchley, H. D., Lewis, P. A., Orth, M., Josephs, O., Deichmann, R., Trimble, M. R., … & Dolan, R. J. (2007). Vagus nerve stimulation for treatment-resistant depression: behavioral and neural effects on encoding negative material. Psychosomatic Medicine, 69: 1722.CrossRefGoogle ScholarPubMed
Critchley, H. D., Mathias, C. T., & Dolan, R. J. (2001). Neuroanatomical basis for first- and second-order representations of bodily states. Nature Neuroscience, 4: 207212.CrossRefGoogle ScholarPubMed
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7: 189195.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351: 14131420.Google ScholarPubMed
Damasio, A. R. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. New York: Harcourt Brace.Google Scholar
Damasio, A. R. (2010). Self Comes to Mind: Constructing the Conscious Brain. London: Vintage Books.Google Scholar
Damasio, A. R., Tranel, D., & Damasio, H. C. (1991). Somatic markers and the guidance of behavior: theory and preliminary testing. In Levin, H. S., Eisenberg, H. M., & Benton, A. L. (eds.), Frontal Lobe Function and Dysfunction (pp. 217229). Oxford University Press.Google Scholar
Daubenmier, J., Sze, J., Kerr, C. E., Kemeny, M. E., & Mehling, W. (2013). Follow your breath: respiratory interoceptive accuracy in experienced meditators. Psychophysiology, 50: 777789.CrossRefGoogle ScholarPubMed
Dembovsky, K. & Seller, H. (eds.) (1995). Arterial Baroreceptor Reflexes. Frankfurt: Peter Lang.Google Scholar
Depascalis, V., Alberti, M. L., & Pandolfo, R. (1984). Anxiety, perception, and control of heart-rate. Perceptual and Motor Skills, 59: 203211.CrossRefGoogle Scholar
Dienes, Z. & Berry, D. (1997). Implicit learning: below the subjective threshold. Psychonomic Bulletin & Review, 4: 323.CrossRefGoogle Scholar
Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11: 8689.CrossRefGoogle ScholarPubMed
Dunn, B. D., Dalgleish, T., Ogilvie, A. D., & Lawrence, A. D. (2007). Heartbeat perception in depression. Behaviour Research and Therapy, 45: 19211930.CrossRefGoogle ScholarPubMed
Dunn, B. D., Evans, D., Makarova, D., White, J., & Clark, L. (2012). Gut feelings and the reaction to perceived inequity: the interplay between bodily responses, regulation, and perception shapes the rejection of unfair offers on the ultimatum game. Cognitive, Affective, & Behavioral Neuroscience, 12: 419429.CrossRefGoogle ScholarPubMed
Dunn, B. D., Galton, H. C., Morgan, R., Evans, D., Oliver, C., Meyer, M., … & Dalgleish, T. (2010a). Listening to your heart: how interoception shapes emotion experience and intuitive decision making. Psychological Science, 21: 18351844.CrossRefGoogle ScholarPubMed
Dunn, B. D., Stefanovitch, I., Evans, D., Oliver, C., Hawkins, A., & Dalgleish, T. (2010b). Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions. Behaviour Research and Therapy, 48: 11331138.CrossRefGoogle ScholarPubMed
Eccles, J. A., Garfinkel, S. N., Harrison, N. A., Ward, J., Taylor, R. E., Bewley, A. P., & Critchley, H. D. (2015). Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation. Neuropsychologia, 77: 9096.CrossRefGoogle ScholarPubMed
Ehlers, A. & Breuer, P. (1992). Increased cardiac awareness in panic disorder. Journal of Abnormal Psychology, 101: 371382.CrossRefGoogle ScholarPubMed
Ehlers, A., Margraf, J., Roth, W. T., Taylor, C. B., & Birbaumer, N. (1988). Anxiety induced by false heart rate feedback in patients with panic disorder. Behaviour Research and Therapy, 26: 111.CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Lotze, M., Wietek, B., Amunts, K., Enck, P., & Zilles, K. (2006). Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. NeuroImage, 31: 10041014.CrossRefGoogle ScholarPubMed
Elam, M., Svensson, T. H., & Thoren, P. (1985). Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic-nerves. Brain Research, 358: 7784.CrossRefGoogle ScholarPubMed
Elam, M., Yao, T., Svensson, T. H., & Thoren, P. (1984). Regulation of locus coeruleus neurons and splanchnic, sympathetic-nerves by cardiovascular afferents. Brain Research, 290: 281287.CrossRefGoogle ScholarPubMed
Fairclough, S. H. & Goodwin, L. (2007). The effect of psychological stress and relaxation on interoceptive accuracy: implications for symptom perception. Journal of Psychosomatic Research, 62: 289295.CrossRefGoogle ScholarPubMed
Farb, N., Daubenmier, J., Price, C. J., Gard, T., Kerr, C., Dunn, B. D., … & Mehling, W. E. (2015). Interoception, contemplative practice, and health. Frontiers in Psychology, 6: 763.CrossRefGoogle ScholarPubMed
Fassino, S., Piero, A., Gramaglia, C., & Abbate-Daga, G. (2004). Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology, 37: 168174.CrossRefGoogle ScholarPubMed
Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79: 259265.CrossRefGoogle ScholarPubMed
Furman, D. J., Waugh, C. E., Bhattacharjee, K., Thompson, R. J., & Gotlib, I. H. (2013). Interoceptive awareness, positive affect, and decision making in major depressive disorder. Journal of Affective Disorders, 151: 780785.CrossRefGoogle ScholarPubMed
Fustos, J., Gramann, K., Herbert, B. M., & Pollatos, O. (2013). On the embodiment of emotion regulation: interoceptive awareness facilitates reappraisal. Social Cognitive and Affective Neuroscience, 8: 911917.CrossRefGoogle ScholarPubMed
Ganos, C., Garrido, A., Navalpotro-Gomez, I., Ricciardi, L., Martino, D., Edwards, M. J., … & Bhatia, K. P. (2015). Premonitory urge to tic in Tourette’s is associated with interoceptive awareness. Movement Disorders, 30: 11981202.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Barrett, A. B., Minati, L., Dolan, R. J., Seth, A. K., & Critchley, H. D. (2013). What the heart forgets: cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiology, 50: 505512.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. Journal of Neuroscience, 34: 65736582.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104: 6574.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Tilly, C., O’Keeffe, S., Harrison, N. A., Seth, A. K., & Critchley, H. D. (2016a). Discrepancies between interoceptive dimensions in autism: implications for emotion and anxiety. Biological Psychology, 114: 117126.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Zorab, E., Navaratnam, N., Engels, M., Mallorqui-Bague, N., Minati, L., … & Critchley, H. D. (2016b). Anger in brain and body: the neural and physiological perturbation of decision-making by emotion. Social Cognitive and Affective Neuroscience, 11: 150158.CrossRefGoogle Scholar
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63: 577586.CrossRefGoogle ScholarPubMed
Gray, M. A., Beacher, F. D., Minati, L., Nagai, Y., Kemp, A. H., Harrison, N. A., & Critchley, H. D. (2012). Emotional appraisal is influenced by cardiac afferent information. Emotion, 12: 180191.CrossRefGoogle ScholarPubMed
Gray, M. A., Taggart, P., Sutton, P. M., Groves, D., Holdright, D. R., Bradbury, D., … & Critchley, H. D. (2007). A cortical potential reflecting cardiac function. Proceedings of the National Academy of Sciences of the USA, 104: 68186823.CrossRefGoogle ScholarPubMed
Gross, J. J. & John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85: 348362.CrossRefGoogle ScholarPubMed
Grynberg, D. & Pollatos, O. (2015). Perceiving one’s body shapes empathy. Physiology & Behavior, 140: 5460.CrossRefGoogle ScholarPubMed
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.CrossRefGoogle Scholar
Harrison, N. A., Singer, T., Rotshtein, P., Dolan, R. J., & Critchley, H. D. (2006). Pupillary contagion: central mechanisms engaged in sadness processing. Social Cognitive and Affective Neuroscience, 1: 517.CrossRefGoogle ScholarPubMed
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.CrossRefGoogle ScholarPubMed
Heaver, B. & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory, 19: 398405.CrossRefGoogle ScholarPubMed
Herbert, B. M., Blechert, J., Hautzinger, M., Matthias, E., & Herbert, C. (2013). Intuitive eating is associated with interoceptive sensitivity: effects on body mass index. Appetite, 70: 2230.CrossRefGoogle ScholarPubMed
Herbert, B. M., Muth, E. R., Pollatos, O., & Herbert, C. (2012). Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One, 7: e36646.CrossRefGoogle ScholarPubMed
Herbert, B. M. & Pollatos, O. (2014). Attenuated interoceptive sensitivity in overweight and obese individuals. Eating Behaviors, 15: 445448.CrossRefGoogle ScholarPubMed
Herrick, C. J. (1947). The proprioceptive nervous system. Journal of Nervous and Mental Disease, 106: 355358.CrossRefGoogle ScholarPubMed
Hobday, D. I., Aziz, Q., Thacker, N., Hollander, I., Jackson, A., & Thompson, D. G. (2001). A study of the cortical processing of ano-rectal sensation using functional MRI. Brain, 124: 361368.CrossRefGoogle ScholarPubMed
Hyett, M. P., Breakspear, M. J., Friston, K. J., Guo, C. C., & Parker, G. B. (2015). Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia. JAMA Psychiatry, 72: 350358.CrossRefGoogle ScholarPubMed
Immanuel, S. A., Pamula, Y., Kohler, M., Martin, J., Kennedy, D., Nalivaiko, E., … & Baumert, M. (2014). Heartbeat evoked potentials during sleep and daytime behavior in children with sleep-disordered breathing. American Journal of Respiratory and Critical Care Medicine, 190: 11491157.CrossRefGoogle ScholarPubMed
James, W. (1884). What is an Emotion? Mind, 9: 188205.CrossRefGoogle Scholar
Jones, G. E., Leonberger, T. F., Rouse, C. H., Caldwell, J. A., & Jones, K. R. (1986). Preliminary data exploring the presence of an evoked-potential associated with cardiac visceral activity. Psychophysiology, 23: 445.Google Scholar
Katkin, E. S., Cestaro, V. L., & Weitkunat, R. (1991). Individual differences in cortical evoked potentials as a function of heartbeat detection ability. International Journal of Neuroscience, 61: 269276.CrossRefGoogle ScholarPubMed
Katkin, E. S., Wiens, S., & Ohman, A. (2001). Nonconscious fear conditioning, visceral perception, and the development of gut feelings. Psychological Science, 12: 366370.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Rudrauf, D., Damasio, A. R., Davidson, R. J., Lutz, A., & Tranel, D. (2008). Interoceptive awareness in experienced meditators. Psychophysiology, 45: 671677.CrossRefGoogle ScholarPubMed
Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009). The pathways of interoceptive awareness. Nature Neuroscience, 12: 14941496.CrossRefGoogle ScholarPubMed
Kirk, U., Downar, J., & Montague, P. R. (2011). Interoception drives increased rational decision-making in meditators playing the ultimatum game. Frontiers in Neuroscience, 5: 49.CrossRefGoogle ScholarPubMed
Kleckner, I. R., Wormwood, J. B., Simmons, W. K., Barrett, L. F., & Quigley, K. S. (2015). Methodological recommendations for a heartbeat detection-based measure of interoceptive sensitivity. Psychophysiology, 52: 14321440.CrossRefGoogle ScholarPubMed
Knapp, K., Ring, C., & Brener, J. (1997). Sensitivity to mechanical stimuli and the role of general sensory and perceptual processes in heartbeat detection. Psychophysiology, 34: 467473.CrossRefGoogle ScholarPubMed
Knapp-Kline, K. & Kline, J. P. (2005). Heart rate, heart rate variability, and heartbeat detection with the method of constant stimuli: slow and steady wins the race. Biological Psychology, 69: 387396.CrossRefGoogle ScholarPubMed
Knoll, J. F. & Hodapp, V. (1992). A comparison between 2 methods for assessing heartbeat perception. Psychophysiology, 29: 218222.CrossRefGoogle ScholarPubMed
Koch, A. & Pollatos, O. (2014a). Cardiac sensitivity in children: sex differences and its relationship to parameters of emotional processing. Psychophysiology, 51: 932941.CrossRefGoogle ScholarPubMed
Koch, A. & Pollatos, O. (2014b). Interoceptive sensitivty, body weight and eating behavior in children: a prospective study. Frontiers in Psychology, 5: 1003.CrossRefGoogle Scholar
Kouakam, C., Lacroix, D., Klug, D., Baux, P., Marquie, C., & Kacet, S. (2002). Prevalence and prognostic significance of psychiatric disorders in patients evaluated for recurrent unexplained syncope. American Journal of Cardiology, 89: 530535.CrossRefGoogle ScholarPubMed
Lane, R. D. (2008). Neural substrates of implicit and explicit emotional processes: a unifying framework for psychosomatic medicine. Psychosomatic Medicine, 70: 214231.CrossRefGoogle ScholarPubMed
Lange, C. G. (ed.) (1885/1912). The Mechanisms of the Emotions. Boston, MA: Houghton Mifflin.Google Scholar
Lenggenhager, B., Azevedo, R. T., Mancini, A., & Aglioti, S. M. (2013). Listening to your heart and feeling yourself: effects of exposure to interoceptive signals during the ultimatum game. Experimental Brain Research, 230: 233241.CrossRefGoogle ScholarPubMed
Leopold, C. & Schandry, R. (2001). The heartbeat-evoked brain potential in patients suffering from diabetic neuropathy and in healthy control persons. Clinical Neurophysiology, 112: 674682.CrossRefGoogle ScholarPubMed
Liu, J., Wei, W., Kuang, H., Zhao, F., & Tsien, J. Z. (2013). Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories. PLoS One, 8: e63590.CrossRefGoogle ScholarPubMed
Marcel, A. J. (1983). Conscious and unconscious perception: experiments on visual masking and word recognition. Cognitive Psychology, 15: 197237.CrossRefGoogle ScholarPubMed
Marron, K., Wharton, J., Sheppard, M. N., Fagan, D., Royston, D., Kuhn, D. M., … & Polak, J. M. (1995). Distribution, morphology, and neurochemistry of endocardial and epicardial nerve-terminal arborizations in the human heart. Circulation, 92: 23432351.CrossRefGoogle ScholarPubMed
McFarland, R. A. (1975). Heart rate perception and heart rate control. Psychophysiology, 12(4): 402405.CrossRefGoogle ScholarPubMed
Mehling, W. E., Gopisetty, V., Daubenmier, J., Price, C. J., Hecht, F. M., & Stewart, A. (2009). Body awareness: construct and self-report measures. PLoS One, 4: e5614.CrossRefGoogle ScholarPubMed
Melloni, M., Sedeno, L., Couto, B., Reynoso, M., Gelormini, C., Favaloro, R., … & Ibanez, A. (2013). Preliminary evidence about the effects of meditation on interoceptive sensitivity and social cognition. Behavioral and Brain Functions, 9: 47.CrossRefGoogle ScholarPubMed
Montoya, P., Schandry, R., & Muller, A. (1993). Heartbeat evoked-potentials (HEP) – topography and influence of cardiac awareness and focus of attention. Electroencephalography & Clinical Neurophysiology, 88: 163172.CrossRefGoogle ScholarPubMed
Morris, A. L., Cleary, A. M., & Still, M. L. (2008). The role of autonomic arousal in feelings of familiarity. Consciousness and Cognition, 17: 13781385.CrossRefGoogle Scholar
Murase, S., Inui, K., & Nosaka, S. (1994). Baroreceptor inhibition of the locus-coeruleus noradrenergic neurons. Neuroscience, 61: 635643.CrossRefGoogle ScholarPubMed
Näring, G. W. B. & van der Staak, C. P. F. (1995). Perception of heart rate and blood pressure: the role of alexithymia and anxiety. Pychotherapy and Psychosomatics, 63: 193200.CrossRefGoogle ScholarPubMed
Nicotra, A., Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2006). Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain, 129: 718728.CrossRefGoogle ScholarPubMed
North, N. T. & O’Carroll, R. E. (2001). Decision making in patients with spinal cord damage: afferent feedback and the somatic marker hypothesis. Neuropsychologia, 39: 521524.CrossRefGoogle ScholarPubMed
Okon-Singer, H., Mehnert, J., Hoyer, J., Hellrung, L., Schaare, H. L., Dukart, J., & Villringer, A. (2014). Neural control of vascular reactions: impact of emotion and attention. Journal of Neuroscience, 34: 42514259.CrossRefGoogle ScholarPubMed
Park, H. D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature Neuroscience, 17: 612618.CrossRefGoogle ScholarPubMed
Parkin, L., Morgan, R., Rosselli, A., Howard, M., Sheppard, A., Evans, D., … & Dunn, B. (2014). Exploring the relationship between mindfulness and cardiac perception. Mindfulness, 5(3), 298313.CrossRefGoogle Scholar
Paulus, M. P. & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60: 383387.CrossRefGoogle ScholarPubMed
Paulus, M. P. & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure and Function, 214: 451463.CrossRefGoogle ScholarPubMed
Pistoia, F., Carolei, A., Sacco, S., Conson, M., Pistarini, C., Cazzulani, B., … & Sarà, M. (2015). Contribution of interoceptive information to emotional processing: evidence from individuals with spinal cord injury. Journal of Neurotrauma, 32: 19811986.CrossRefGoogle ScholarPubMed
Pollatos, O., Fustos, J., & Critchley, H. D. (2012). On the generalised embodiment of pain: how interoceptive sensitivity modulates cutaneous pain perception. Pain, 153: 16801686.CrossRefGoogle ScholarPubMed
Pollatos, O., Gramann, K., & Schandry, R. (2007a). Neural systems connecting interoceptive awareness and feelings. Human Brain Mapping, 28: 918.CrossRefGoogle ScholarPubMed
Pollatos, O., Herbert, B. M., Kaufmann, C., Auer, D. P., & Schandry, R. (2007b). Interoceptive awareness, anxiety and cardiovascular reactivity to isometric exercise. International Journal of Psychophysiology, 65: 167173.CrossRefGoogle ScholarPubMed
Pollatos, O., Kirsch, W., & Schandry, R. (2005a). Brain structures involved in interoceptive awareness and cardioafferent signal processing: a dipole source localization study. Human Brain Mapping, 26: 5464.CrossRefGoogle ScholarPubMed
Pollatos, O., Kirsch, W., & Schandry, R. (2005b). On the relationship between interoceptive awareness, emotional experience, and brain processes. Cognitive Brain Research, 25: 948962.CrossRefGoogle ScholarPubMed
Pollatos, O. & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41: 476482.CrossRefGoogle ScholarPubMed
Pollatos, O. & Schandry, S. (2008). Emotional processing and emotional memory are modulated by interoceptive awareness. Cognition & Emotion, 22: 272287.CrossRefGoogle Scholar
Pollatos, O., Schandry, R., Auer, D. P., & Kaufmann, C. (2007c). Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Research, 1141: 178187.CrossRefGoogle ScholarPubMed
Pollatos, O., Traut-Mattausch, E., & Schandry, R. (2009). Differential effects of anxiety and depression on interoceptive accuracy. Depression and Anxiety, 26: 167173.CrossRefGoogle ScholarPubMed
Pollatos, O., Traut-Mattausch, E., Schroeder, H., & Schandry, R. (2007). Interoceptive awareness mediates the relationship between anxiety and the intensity of unpleasant feelings. Journal of Anxiety Disorders, 21: 931943.CrossRefGoogle ScholarPubMed
Porges, S. (1993). Body Perception Questionnaire. Laboratory of Development Assessment, University of Maryland.Google Scholar
Ring, C. & Brener, J. (1992). The temporal locations of heartbeat sensations. Psychophysiology, 29: 535545.CrossRefGoogle ScholarPubMed
Ring, C., Brener, J., Knapp, K., & Mailloux, J. (2015). Effects of heartbeat feedback on beliefs about heart rate and heartbeat counting: a cautionary tale about interoceptive awareness. Biological Psychology, 104: 193198.CrossRefGoogle ScholarPubMed
Schachter, S. & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69: 379399.CrossRefGoogle ScholarPubMed
Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18: 483488.CrossRefGoogle ScholarPubMed
Schandry, R., Bestler, M., & Montoya, P. (1993). On the relation between cardiodynamics and heartbeat perception. Psychophysiology, 30: 467474.CrossRefGoogle ScholarPubMed
Schneider, T. R., Lyons, J. B., & Williams, M. (2005). Emotional intelligence and autonomic self-perception: emotional abilities are related to visceral acuity. Personality and Individual Differences, 39: 853861.CrossRefGoogle Scholar
Schonfeld, P., Ackermann, K., & Schwabe, L. (2014). Remembering under stress: different roles of autonomic arousal and glucocorticoids in memory retrieval. Psychoneuroendocrinology, 39: 249256.CrossRefGoogle ScholarPubMed
Schulz, A., de Sá, D. S. F., Dierolf, A. M., Lutz, A., van Dyck, Z., Vogele, C., & Schächinger, H. (2015). Short-term food deprivation increases amplitudes of heartbeat-evoked potentials. Psychophysiology, 52: 695703.CrossRefGoogle ScholarPubMed
Schulz, A., Lass-Hennemann, J., Sutterlin, S., Schächinger, H., & Vogele, C. (2013a). Cold pressor stress induces opposite effects on cardioceptive accuracy dependent on assessment paradigm. Biological Psychology, 93: 167174.CrossRefGoogle ScholarPubMed
Schulz, A., Strelzyk, F., de Sá, D. S. F., Naumann, E., Vogele, C., & Schächinger, H. (2013b). Cortisol rapidly affects amplitudes of heartbeat-evoked brain potentials: implications for the contribution of stress to an altered perception of physical sensations.Psychoneuroendocrinology, 38: 26862693.CrossRefGoogle Scholar
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17: 565573.CrossRefGoogle ScholarPubMed
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2: 395.Google ScholarPubMed
Shao, S. Y., Shen, K. Q., Wilder-Smith, E. P. V., & Li, X. P. (2011). Effect of pain perception on the heartbeat evoked potential. Clinical Neurophysiology, 122: 18381845.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1948). The Integrative Action of the Nervous System. Cambridge University Press.Google Scholar
Singer, T. & Lamm, C. (2009). The social neuroscience of empathy. Year in Cognitive Neuroscience 2009, 1156: 8196.Google ScholarPubMed
Snodgrass, J. G. & Corwin, J. (1988). Pragmatics of measuring recognition memory: applications to dementia and amnesia. Journal of Experimental Psychology. General, 117: 3450.CrossRefGoogle ScholarPubMed
Sokol-Hessner, P., Hartley, C. A., Hamilton, J. R., & Phelps, E. A. (2015). Interoceptive ability predicts aversion to losses. Cognition & Emotion, 29: 695701.CrossRefGoogle ScholarPubMed
Stephan, E., Pardo, J. V., Faris, P. L., Hartman, B. K., Kim, S. W., Ivanov, E. H., … & Goodale, R. L. (2003). Functional neuroimaging of gastric distention. Journal of Gastrointestinal Surgery, 7: 740749.CrossRefGoogle ScholarPubMed
Suzuki, K., Garfinkel, S. N., Critchley, H. D., & Seth, A. K. (2013). Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia, 51: 29092917.CrossRefGoogle ScholarPubMed
Tajadura-Jimenez, A., Longo, M. R., Coleman, R., & Tsakiris, M. (2012). The person in the mirror: using the enfacement illusion to investigate the experiential structure of self-identification. Consciousness and Cognition, 21: 17251738.CrossRefGoogle ScholarPubMed
Terasawa, Y., Moriguchi, Y., Tochizawa, S., & Umeda, S. (2014). Interoceptive sensitivity predicts sensitivity to the emotions of others. Cognition & Emotion, 28: 14351448.CrossRefGoogle Scholar
Terasawa, Y., Shibata, M., Moriguchi, Y., & Umeda, S. (2013). Anterior insular cortex mediates bodily sensibility and social anxiety. Social Cognitive and Affective Neuroscience, 8: 259266.CrossRefGoogle ScholarPubMed
Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Movement Disorders, 30: 11901197.CrossRefGoogle ScholarPubMed
Tsakiris, M., Tajadura-Jimenez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: interoceptive sensitivity predicts malleability of body representations. Proceedings of the Royal Society B: Biological Sciences, 278: 24702476.CrossRefGoogle ScholarPubMed
Umeda, S., Harrison, N. A., Gray, M. A., Mathias, C. J., & Critchley, H. D. (2015). Structural brain abnormalities in postural tachycardia syndrome: a VBM-DARTEL study. Frontiers in Neuroscience, 9: 34.CrossRefGoogle ScholarPubMed
Vaitl, D. (1996). Interoception. Biological Psychology, 42: 127.CrossRefGoogle ScholarPubMed
van ’t Wout, M., Faught, S., & Menino, D. (2013). Does interoceptive awareness affect the ability to regulate unfair treatment by others? Frontiers in Psychology, 4.Google ScholarPubMed
Werner, N. S., Jung, K., Duschek, S., & Schandry, R. (2009). Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology, 46: 11231129.CrossRefGoogle ScholarPubMed
Werner, N. S., Peres, I., Duschek, S., & Schandry, R. (2010). Implicit memory for emotional words is modulated by cardiac perception. Biological Psychology, 85: 370376.CrossRefGoogle ScholarPubMed
Whitehead, W. E., Drescher, V. M., Heiman, P., & Blackwell, B. (1977). Relation of heart-rate control to heartbeat perception. Biofeedback and Self-Regulation, 2: 371392.CrossRefGoogle ScholarPubMed
Wiebking, C., de Greck, M., Duncan, N. W., Tempelmann, C., Bajbouj, M., & Northoff, G. (2015). Interoception in insula subregions as a possible state marker for depression: an exploratory fMRI study investigating healthy, depressed and remitted participants. Frontiers in Behavioral Neuroscience, 9: 82.CrossRefGoogle ScholarPubMed
Wiens, S., Mezzacappa, E. S., & Katkin, E. S. (2000). Heartbeat detection and the experience of emotions. Cognition and Emotion, 14: 417427.CrossRefGoogle Scholar
Wiens, S. & Palmer, S. N. (2001). Quadratic trend analysis and heartbeat detection. Biological Psychology, 58: 159175.CrossRefGoogle ScholarPubMed
Wildman, H. E. & Jones, G. E. (1982). Consistency of heartbeat discrimination scores on the Whitehead procedure in knowledge-of-results: trained and untrained subjects. Psychophysiology, 19: 592.Google Scholar
Wilkins, B. W., Hesse, C., Sviggum, H. P., Nicholson, W. T., Moyer, T. P., Joyner, M. J., & Eisenach, J. H. (2007). Alternative to ganglionic blockade with anticholinergic and alpha-2 receptor agents. Clinical Autonomic Research, 17: 7784.CrossRefGoogle ScholarPubMed
Yates, A. J., Jones, K. E., Marie, G. V., & Hogben, J. H. (1985). Detection of the heartbeat and events in the cardiac cycle. Psychophysiology, 22: 561567.CrossRefGoogle ScholarPubMed
Yuan, H., Yan, H. M., Xu, X. G., Han, F., & Yan, Q. (2007). Effect of heartbeat perception on heartbeat evoked potential waves. Neuroscience Bulletin, 23: 357362.CrossRefGoogle ScholarPubMed

References

Adelman, S., Taylor, C. R., & Heglund, N. C. (1975). Sweating on paws and palms: what is its function? American Journal of Physiology, 229: 14001402.CrossRefGoogle ScholarPubMed
Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R.J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213: 220222.CrossRefGoogle ScholarPubMed
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28: R1R39.CrossRefGoogle ScholarPubMed
Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.CrossRefGoogle Scholar
Amodio, D. M., Harmon-Jones, E., & Devine, P. G. (2003). Individual differences in the activation and control of affective race bias as assessed by startle eyeblink response and self-report. Journal of Personality and Social Psychology, 84: 738753.CrossRefGoogle ScholarPubMed
Andersson, K.-E. & Wagner, G. (1995). Physiology of penile erection. Physiological Reviews, 75: 191236.CrossRefGoogle ScholarPubMed
Angyal, A. (1941). Disgust and related aversions. Journal of Abnormal and Social Psychology, 36: 393412.CrossRefGoogle Scholar
Arnold, M. B. (1960). Emotion and Personality. New York: Columbia University Press.Google Scholar
Averill, J. R. (1969). Autonomic response patterns during sadness and mirth. Psychophysiology, 5: 399414.CrossRefGoogle Scholar
Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15: 433442.CrossRefGoogle ScholarPubMed
Bain, A. R., Deren, T. M., & Jay, O. (2011). Describing individual variation in local sweating during exercise in a temperate environment. European Journal of Applied Physiology, 111: 15991607.CrossRefGoogle Scholar
Baldaro, B., Battacchi, M. W., Codispoti, M., Tuozzi, G., Trombini, G., Bolazni, R., & Palomba, D. (1996). Modifications of electrogastrographic activity during the viewing of brief film sequences. Perceptual and Motor Skills, 82: 12431250.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1: 2858.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2009). The future of psychology: connecting mind to brain. Perspectives on Psychological Science, 4: 326339.CrossRefGoogle Scholar
Barrett, L. F. & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16: 419429.CrossRefGoogle Scholar
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91: 276292.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275: 12931294.CrossRefGoogle ScholarPubMed
Benedek, M. & Kaernbach, C. (2011). Physiological correlates and emotional specificity of human piloerection. Biological Psychology, 86: 320329.CrossRefGoogle ScholarPubMed
Benedek, M., Wilfling, B., Lukas-Wolfbauer, R., Katzur, B. H., & Kaernbach, C. (2010). Objective and continuous measurement of piloerection. Psychophysiology, 47: 989993.Google ScholarPubMed
Bergdahl, M. & Bergdahl, J. (2000). Low unstimulated salivary flow and subjective oral dryness: association with medication, anxiety, depression, and stress. Journal of Dental Research, 79: 16521658.CrossRefGoogle Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van Der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993a). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30: 183196.CrossRefGoogle ScholarPubMed
Berntson, G. G., Norman, G. J., Bechara, A., Bruss, J., Tranel, D., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological Science, 22: 8086.CrossRefGoogle ScholarPubMed
Bindra, D. (1972). Weeping: a problem of many facets. Bulletin of the British Psychological Society, 25: 281284.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., Lickel, B., & Kowai-Bell, N. (2001). Perceiver threat in social interactions with stigmatized others. Journal of Personality and Social Psychology, 80: 253267.CrossRefGoogle ScholarPubMed
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social facilitation as challenge and threatJournal of Personality and Social Psychology, 77: 6877.CrossRefGoogle ScholarPubMed
Blascovich, J. & Tomaka, J. (1996). The biopsychosocial model of arousal regulation. In Zanna, M. (ed.), Advances in Experimental Social Psychology, vol. 28 (pp. 151). New York: Academic Press.Google Scholar
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report. Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42: 115.CrossRefGoogle ScholarPubMed
Bosch, N. M., Riese, H., Reijneveld, S. A., Bakker, M. P., Verhulst, F. C., Ormel, J., & Oldehinkel, A. J. (2012). Timing matters: long term effects of adversities from prenatal period up to adolescence on adolescents’ cortisol stress response. The TRAILS study. Psychoneuroendocrinology, 37: 14391447.CrossRefGoogle ScholarPubMed
Boucher, J. D. & Ekman, P. (1975). Facial areas and emotional information. Journal of Communication, 25: 2129.CrossRefGoogle ScholarPubMed
Boucsein, W., Fowles, D., Grimnes, S., Ben-Shakhar, G., Roth, W., Dawson, M., & Filion, D. (2012). Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures: publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google ScholarPubMed
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation: defensive and appetitive reactions in picture processing. Emotion, 1: 276298.CrossRefGoogle ScholarPubMed
Bradley, M. M. & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37: 204215.CrossRefGoogle ScholarPubMed
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.CrossRefGoogle ScholarPubMed
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42: 108115.CrossRefGoogle ScholarPubMed
Brown, C. C. (1970). The parotid puzzle: a review of the literature on human salivation and its applications to psychophysiology. Psychophysiology, 7: 6685.CrossRefGoogle ScholarPubMed
Butler, E. A., Wilhelm, F. H., & Gross, J. J. (2006). Respiratory sinus arrhythmia, emotion, and emotion regulation during social interaction. Psychophysiology, 43: 612622.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The Psychophysiology of Emotion. New York: Guilford Press.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Campos, J. J., Mumme, D. L., Kermoian, R., & Campos, R. G. (1994). A functionalist perspective on the nature of emotion. Monographs of the Society for Research in Child Development, 59: 284303.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1932). The Wisdom of the Body. New York: W. W. Norton.CrossRefGoogle Scholar
Carver, C. S. & Harmon-Jones, E. (2009). Anger is an approach-related affect: evidence and implications. Psychological Bulletin, 135: 183204.CrossRefGoogle ScholarPubMed
Castelfranchi, C. & Poggi, I. (1990). Blushing as a discourse: was Darwin wrong? In Crozier, W. R. (ed.), Shyness and Embarrassment: Perspectives from Social Psychology (pp. 230251). Cambridge University Press.CrossRefGoogle Scholar
Chauhan, B., Mathias, C. J., & Critchley, H. D. (2008). Autonomic contributions to empathy: evidence from patients with primary autonomic failure. Autonomic Neuroscience, 140: 96100.CrossRefGoogle ScholarPubMed
Coan, J. A. & Allen, J. J. B. (eds.) (2007). Handbook of Emotion Elicitation and Assessment. Oxford University Press.Google Scholar
Coan, J. A. & Gottman, J. M. (2007). The specific affect coding system (SPAFF). In Coan, J. A. & Allen, J. J. B. (eds.), Handbook of Emotion Elicitation and Assessment (pp. 267285). Oxford University Press.Google Scholar
Cohn, J. F. & De la Torre, F. (2015). Automated face analysis for affective computing. In Calvo, R. A., D’Mello, S. K., Gratch, J., & Kappas, A. (eds.), The Oxford Handbook of Affective Computing (pp. 131150). Oxford University Press.Google Scholar
Couto, B., Salles, A., Sedeño, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … & Ibanez, A. (2013). The man who feels two hearts: the different pathways of interoception. Social Cognitive and Affective Neuroscience, 9: 12531260.CrossRefGoogle ScholarPubMed
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.CrossRefGoogle Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10: 5970.CrossRefGoogle ScholarPubMed
Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin, 34: 91107.CrossRefGoogle Scholar
D’Andrade, R. & Egan, M. (1974). The colors of emotion. American Ethnologist, 1: 4963.CrossRefGoogle Scholar
Dan-Glauser, E. S. & Gross, J. J. (2013). Emotion regulation and emotion coherence: evidence for strategy-specific effects. Emotion, 13: 832842.CrossRefGoogle ScholarPubMed
Darwin, C. (1936). The Origin of Species by Means of Natural Selection: Or the Preservation of Favored Races in the Struggle for Life and The Descent of Man and Selection in Relation to Sex. New York: Modern Library.Google Scholar
Davidson, R. J. & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3: 1121.CrossRefGoogle ScholarPubMed
Delp, M. J. & Sackeim, H. A. (1987). Effects of mood on lacrimal flow: sex differences and asymmetry. Psychophysiology, 24: 550556.CrossRefGoogle ScholarPubMed
Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. D. (2011). Individual differences in vagal regulation moderate associations between daily affect and daily couple interactions. Personality and Social Psychology Bulletin, 37: 731744.CrossRefGoogle ScholarPubMed
Dimberg, U. (1982). Facial reactions to facial expressions. Psychophysiology, 19: 643647.CrossRefGoogle ScholarPubMed
Drummond, P. D. & Lance, J. W. (1987). Facial flushing and sweating mediated by the sympathetic nervous system. Brain, 110: 793803.CrossRefGoogle ScholarPubMed
Duchowski, A. (2007). Eye Tracking Methodology: Theory and Practice: London: Springer Verlag.Google Scholar
Eckart, J. A., Sturm, V. E., Miller, B. L., & Levenson, R. W. (2012). Diminished disgust reactivity in behavioral variant frontotemporal dementia. Neuropsychologia, 50: 786790.CrossRefGoogle ScholarPubMed
Edelmann, R. J. (1987). The Psychology of Embarrassment. Oxford: John Wiley.Google Scholar
Eisenberg, N., Fabes, R. A., Murphy, B., Maszk, P., Smith, M., & Karbon, M. (1995). The role of emotionality and regulation in children’s social functioning: a longitudinal study. Child Development, 66: 13601384.CrossRefGoogle ScholarPubMed
Eisenberg, N., Schaller, M., Fabes, R. A., Bustamante, D., Mathy, R. M., Shell, R., & Rhodes, K. (1988). Differentiation of personal distress and sympathy in children and adults. Developmental Psychology, 24: 766775.CrossRefGoogle Scholar
Ekman, P. (1984). Expression and the nature of emotion. In Scherer, K. R. & Ekman, P. (eds.), Approaches to Emotion (pp. 319343). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48: 384392.CrossRefGoogle ScholarPubMed
Ekman, P. (1994). Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychological Bulletin, 115: 268287.CrossRefGoogle ScholarPubMed
Ekman, P. & Friesen, W. V. (1978). Facial Action Coding System. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972a). Emotion in the Human Face. New York: Pergamon Press.Google Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972b). What are the similarities and differences in facial behavior across cultures? In Ekman, P., Friesen, W. V., & Ellsworth, P. (eds.), Emotion in the Human Face (pp. 128146). New York: Pergamon Press.Google Scholar
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221: 12081210.CrossRefGoogle ScholarPubMed
Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan cultural elements in facial displays of emotion. Science, 164: 8688.CrossRefGoogle ScholarPubMed
Elliot, A. J. & Covington, M. V. (2001). Approach and avoidance motivationEducational Psychology Review, 13: 7392.CrossRefGoogle Scholar
Eppinger, H. & Hess, L. (1915). VAGOTONIA: a clinical study. Journal of Nervous and Mental Disease, 42: 112119.CrossRefGoogle Scholar
Ernst, J., Northoff, G., Böker, H., Seifritz, E., & Grimm, S. (2013). Interoceptive awareness enhances neural activity during empathy. Human Brain Mapping, 34: 16151624.CrossRefGoogle ScholarPubMed
Fowles, D. C., Christie, M. J., Edelberg, R., Grings, W. W., Lykken, D. T., & Venables, P. H. (1981). Committee report. Publication recommendations for electrodermal measurements. Psychophysiology, 18: 232239.CrossRefGoogle ScholarPubMed
Fredrickson, B. L. (2000). Cultivating positive emotions to optimize health and well-being. Prevention & Treatment, 3: article 0001a.CrossRefGoogle Scholar
Fredrickson, B. L. & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition & Emotion, 12: 191220.CrossRefGoogle ScholarPubMed
Freund, K. (1991). Reflections on the development of the phallometric method of assessing erotic preferences. Annals of Sex Research, 4: 221228.CrossRefGoogle Scholar
Freund, K., Sedlacek, F., & Knob, K. (1965). A simple transducer for mechanical plethysmography of the male genital. Journal of the Experimental Analysis of Behavior, 8: 169170.CrossRefGoogle ScholarPubMed
Friedman, H. L., Brown, N. J. L., Tugade, M. M., Shiota, M. N., & Kirby, L. D. (2014). The State of Contemporary Positive Emotions Research. Washington, DC: American Psychological Association.Google Scholar
Friesen, W. V. (1972). Cultural differences in facial expressions in a social situation: an experimental test of the concept of display rules. Dissertation, University of California, San Francisco.Google Scholar
Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79: 259265.CrossRefGoogle ScholarPubMed
Gendron, M., Roberson, D., van der Vyver, J. M., & Barrett, L.F. (2014). Perceptions of emotion from facial expressions are not culturally universal: evidence from a remote culture. Emotion, 14: 251262.CrossRefGoogle Scholar
Gomez, P. & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53: 91103.CrossRefGoogle ScholarPubMed
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74: 224237.CrossRefGoogle ScholarPubMed
Gross, J. J., Fredrickson, B. L., & Levenson, R. W. (1994). The psychophysiology of crying. Psychophysiology, 31: 460468.CrossRefGoogle ScholarPubMed
Gross, J. J. & Levenson, R. W. (1993). Emotional suppression: physiology, self-report, and expressive behavior. Journal of Personality and Social Psychology, 64: