Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-25T19:30:46.045Z Has data issue: false hasContentIssue false

Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adlan, A. M., Lip, G. Y., Paton, J. F., Kitas, G. D., & Fisher, J. P. (2014). Autonomic function and rheumatoid arthritis: a systematic review. Seminars in Arthritis and Rheumatism, 44: 283304.Google Scholar
Anane, L. H., Edwards, K. M., Burns, V. E., Zanten, J. J., Drayson, M. T., & Bosch, J. A. (2010). Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain, Behavior, and Immunity, 24: 608614.CrossRefGoogle ScholarPubMed
Andersson, U. & Tracey, K. J. (2012). Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 209: 10571068.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J., & Shipley, M. T. (1996). Role of the locus coeruleus in emotional activation, Progress in Brain Research, 107: 379402.CrossRefGoogle ScholarPubMed
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host–bacterial mutualism in the human intestine. Science, 307: 19151920.CrossRefGoogle ScholarPubMed
Banks, W. A. & Farrell, C. L. (2003). Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. American Journal of Physiology: Endocrinology and Metabolism, 285: E10E15.Google ScholarPubMed
Bautista, D. M., Wilson, S. R., & Hoon, M. A. (2014). Why we scratch an itch: the molecules, cells and circuits of itch. Nature Neuroscience, 17: 175182.CrossRefGoogle ScholarPubMed
Bernard, C. (1878). Leçons sur les phénomènes de la vie communes aux animaux et aux végétaux. Paris: B. Baillière et Fils. Trans. Hoff, H. E., Guillemin, R., and Guillemin, L. as Lectures on the Phenomena of Life Common to Animals and Plants. Springfield, IL: Charles C. Thomas, 1974.Google Scholar
Berntson, G. G. (2006). Reasoning about brains. In Cacioppo, J. T., Visser, P. S., & Pickett, C. L. (eds.), Social Neuroscience: People Thinking about People (pp. 111). Cambridge, MA: MIT Press.Google Scholar
Berntson, G. G., Boysen, S. T., & Cacioppo, J. T. (1993a). Neurobehavioral organization and the cardinal principle of evaluative bivalence. Annals of the New York Academy of Sciences, 702: 75102.Google Scholar
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Berntson, G. G., & Tassinary, L. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.CrossRefGoogle Scholar
Berntson, G. G. & Cacioppo, J. T. (2013). The functional neuroarchitecture of evaluative processes. In Elliot, A. J. (ed.), Handbook of Approach and Avoidance Motivation (pp. 307–21). New York: Psychology Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994a). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1994b). Autonomic cardiac control: I. Estimation and validation from pharmacological blockades. Psychophysiology 31: 572585.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. J. (1994c). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.Google Scholar
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (1998). Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behavioural Brain Research, 94: 225248.Google Scholar
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.Google Scholar
Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G., & Jeanrenaud, B. (1981). Cephalic phase, reflex insulin secretion. Neuroanatomical and Physiological Characterization. Diabetologia, 20: 393401.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 77: 6877.CrossRefGoogle ScholarPubMed
Bohus, B., Benus, R. F., Fokkema, D. S., Koolhaas, J. M., Nyakas, G. A., van Oortmerssen, G. A., … & Steffens, A. B. (1988). Neuroendocrine states and behavioral and physiological stress responses. In Wiegant, M. & de Wied, D. (eds.), Progress in Brain Research, vol. 72 (pp. 5770). Amsterdam: Elsevier.Google Scholar
Bosch, J. A. (2014). The use of saliva markers in psychobiology: mechanisms and methods. Monographs in Oral Science, 24: 99108.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003a). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, and Immunity, 17: 251259.Google Scholar
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., & Marucha, P. T. (2005). Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosomatic Medicine, 67: 366375.Google Scholar
Bosch, J. A., de Geus, E. J., Carroll, D., Goedhart, A. D., Anane, L. A., van Zanten, J. J., … & Edwards, K. M. (2009). A general enhancement of autonomic and cortisol responses during social evaluative threat. Psychosomatic Medicine, 71: 877885.Google Scholar
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.Google Scholar
Bosch, J. A., de Geus, E. J., Ligtenberg, T. J., Nazmi, K., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2000). Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosomatic Medicine, 62: 4049.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003b). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.CrossRefGoogle ScholarPubMed
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.Google Scholar
Boychuk, C. R., Gyarmati, P., Xu, H., & Smith, B. N. (2015). Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. Journal of Neurophysiology, 114: 9991007.Google Scholar
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.Google Scholar
Bradley, P. B. & Elkes, J. (1953). The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat. Journal of Physiology, 120: 1415.Google Scholar
Brody, S., Keller, U., Degen, L., Cox, D. J., & Schächinger, H. (2004). Selective processing of food words during insulin-induced hypoglycemia in healthy humans. Psychopharmacology, 173: 217220.Google Scholar
Brydon, L. (2011). Adiposity, leptin and stress reactivity in humans. Biological Psychology, 86: 114120.Google Scholar
Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360: 22272235.CrossRefGoogle ScholarPubMed
Butler, J. E. (2007). Drive to the human respiratory muscles. Respiratory Physiology & Neurobiology, 159: 115126.Google Scholar
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.Google Scholar
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.Google Scholar
Cacioppo, J. T., Berntson, G. G., & Klein, D. J. (1992). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions.” Review of Personality and Social Psychology, 14: 6398.Google Scholar
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multi-level integrative analyses of human behavior: the complementing nature of social and biological approaches. Psychological Bulletin, 126: 829843.Google Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., Berntson, G. G., & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Sandman, C. A. (1978). Physiological differentiation of sensory and cognitive tasks as a function of warning, processing demands, and reported unpleasantness. Biological Psychology, 6: 181192.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.Google Scholar
Cacioppo, J. T., Tassinary, L. G., Stonebraker, T. B., & Petty, R. E. (1987). Self-report and cardiovascular measures of arousal: fractionation during residual arousal. Biological Psychology, 25: 135151.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1914). The interrelations of emotions as suggested by recent physiological researches. American Journal of Psychology, 25: 256282.Google Scholar
Cannon, W. B. (1928). The mechanism of emotional disturbance of bodily functions. New England Journal of Medicine, 198: 877884.CrossRefGoogle Scholar
Cannon, W. B. (1929a). Bodily Changes in Pain, Hunger, Fear, and Rage. Boston, MA: Charles T. Brandford Company.Google Scholar
Cannon, W. B. (1929b). Organization for physiological homeostasis. Physiological Reviews, 9: 399431.Google Scholar
Cannon, W. B. (1939). The Wisdom of the Body, 2nd edn. London: Kegan Paul, Trench, Trubner & Co.Google Scholar
Cannon, W. B. (1942). Voodoo death. American Anthropologist, 44: 169181.Google Scholar
Carroll, D. (2011). A brief commentary on cardiovascular reactivity at a crossroads. Biological Psychology, 86: 149151.Google Scholar
Carruthers, M. & Taggart, P. (1973). Vagotonicity of violence: biochemical and cardiac responses to violent films and television programmes. British Medical Journal, 3: 384389.Google Scholar
Chida, Y, & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55: 10261032.Google Scholar
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Kamp Dush, C., & Bailey, M. T. (2015). Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 45: 118127.Google Scholar
Cofer, C. N. & Appley, M. H. (1964). Motivation: Theory and Research. New York: John Wiley.Google Scholar
Cohen, S. & Herbert, T. B. (1996). Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annual Review of Psychology, 47: 113142.Google Scholar
Contrada, R. J. (2011). Stress, adaptation, and health. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 19). New York: Springer.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.Google Scholar
Craig, A. D. (2014). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.Google Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.Google Scholar
Cryan, J. F. & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13: 701712.Google Scholar
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26: 8386.Google Scholar
Damasio, A. R. (2010). Self Comes to Mind: Contructing the Conscious Brain. New York: Heinemann.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.Google Scholar
Davis, M., Falls, W. A., Campeau, S., & Kim, M. (1993). Fear-potentiated startle: a neural and pharmacological analysis. Behavioural Brain Research, 58: 175198.Google Scholar
de Lecea, L., Carter, M. E., & Adamantidis, A. (2012). Shining light on wakefulness and arousal. Biological Psychiatry, 71: 10461052.Google Scholar
de Wit, L., Luppino, F., van Straten, A., Penninx, B., Zitman, F., & Cuijpers, P. (2010). Depression and obesity: a meta-analysis of community-based studies. Psychiatry Research, 178: 230235.Google Scholar
Dhabhar, F. S. (2014). Effects of stress on immune function: the good, the bad, and the beautiful. Immunology Research, 58: 193210.Google Scholar
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.CrossRefGoogle ScholarPubMed
Dienstbier, R. A. (1989). Arousal and physiological toughness: implications for mental and physical health. Psychological Review, 96: 84100.Google Scholar
DiGirolamo, D. J., Clemens, T. L., & Kousteni, S. (2012). The skeleton as an endocrine organ. Nature Reviews Rheumatology, 8: 674683.Google Scholar
Dinan, T. G. & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37: 13691378.Google Scholar
Dror, O. E. (2014). The Cannon–Bard thalamic theory of emotions: a brief genealogy and reappraisal. Emotion Review, 6: 1320.Google Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Dworkin, B. R. (1993). Learning and Physiological Regulation. University of Chicago Press.Google Scholar
Dworkin, B. R. & Dworkin, S. (1999). Heterotopic and homotopic classical conditioning of the baroreflex. Integrative Physiology and Behavioral Scinece, 34: 158176.CrossRefGoogle ScholarPubMed
Dworkin, B. R., Elbert, T., Rau, H., Birbaumer, N., Pauli, P., Droste, C., & Brunia, C. H. (1994). Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perceptions. Proceedings of the National Academy of Sciences of the USA, 91: 63296333.Google Scholar
Edwards, K. M., Bosch, J. A., Engeland, C. G., Cacioppo, J. T., & Marucha, P. T. (2010). Elevated macrophage migration inhibitory factor (MIF) is associated with depressive symptoms, blunted cortisol reactivity to acute stress, and lowered morning cortisol. Brain, Behavior, and Immunity, 24: 12021208.Google Scholar
Edwards, L., McIntyre, D., Carroll, D., Ring, C., & Martin, U. (2002). The human nociceptive flexion reflex threshold is higher during systole than diastole. Psychophysiology, 39: 678681.CrossRefGoogle ScholarPubMed
Engel, G. L. (1977). Emotional stress and sudden death. Psychology Today, 11: 114118.Google Scholar
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., … & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18: 965977.Google Scholar
Farr, O. M., Tsoukas, M. A., & Mantzoros, C. S. (2015). Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism, 64: 114130.Google Scholar
Feldman, S. M. & Waller, H. J. (1962). Dissociation of electrocortical activation and behavioral arousal. Nature, 196: 13201322.Google Scholar
Ferguson, A. V. (2014). Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function. In De Luca, L. A., Menani, J. V., & Johnson, A. K. (eds.), Neurobiology of Body Fluid Homeostasis: Transduction and Integration (pp. 2336). Boca Raton, FL: CRC Press.Google Scholar
Field, B. C., Chaudhri, O. B., & Bloom, S. R. (2010). Bowels control brain: gut hormones and obesity. Nature Reviews Endocrinology, 6: 444453.Google Scholar
Fisher, L. (1990). Stress and cardiovascular physiology in animals. In Brown, M., Koob, G., & Rivier, C. (eds.), Stress: Neurobiology and Neuroendocrinology (pp. 463474). New York: Marcel Dekker.Google Scholar
Folkow, B. (2000). Perspectives on the integrative functions of the “sympatho-adrenomedullary system.” Autonomic Neuroscience, 83: 101115.Google Scholar
Frankenhaeuser, M. (1982). Challenge–control interaction as reflected in sympathetic-adrenal and pituitary-adrenal activity: comparison between the sexes. Scandinavian Journal of Psychology, Supp. 1: 158164.Google Scholar
Friedman, B. H. & Kreibig, S. D. (2010). The biopsychology of emotion: current theoretical, empirical, and methodological perspectives. Biological Psychology, 84: 381382.Google Scholar
Galley, J. D. & Bailey, M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390396.Google Scholar
Gerin, W. (2011). Acute stress responses in the psychophysiological laboratory. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 501514). New York: Springer.Google Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.Google Scholar
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.Google Scholar
Goldstein, D. S. & Kopin, I. J. (2007). Evolution of concepts of stress. Stress, 10: 109120.Google Scholar
Gray, J. A. & McNaughton, N. (1996). The neuropsychology of anxiety: reprise. Nebraska Symposium on Motivation, 43: 61134.Google Scholar
Gray, T. S. & Bingaman, E. W. (1996). The amygdala: corticotropin-releasing factor, steroids, and stress. Critical Reviews in Neurobiology, 10: 155168.Google Scholar
Gregg, M. E., Matyas, T. A., & James, J. E. (2002). A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology, 39: 6472.Google Scholar
Guyton, A. C. (1991). Blood-pressure control: special role of the kidneys and body fluids. Science, 252: 18131816.Google Scholar
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49: 206215.Google Scholar
Hagenaars, M. A., Oitzl, M., & Roelofs, K. (2014). Updating freeze: aligning animal and human research. Neuroscience & Biobehavioral Reviews, 47: 165176.Google Scholar
Hanlin, L., Price, J., Zhang, G., Assaf, N., Mitchell, J., & Rohleder, N. (2015). Fasting modulates interleukin-6 and cortisol reactivity to the Trier Social Stress Test. Psychoneuroendocrinology, 61: 69.Google Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66: 407414.Google Scholar
Harrison, N. A., Cooper, E., Voon, V., Miles, K., & Critchley, H. D. (2013). Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain, Behavior, and Immunity, 31: 189196.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.Google Scholar
Heany, S. J., van Honk, J., Stein, D. J., & Brooks, S. J. (2016). A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain. Metabolic Brain Disease, 31: 157167.CrossRefGoogle ScholarPubMed
Henry, J. P. (1986). Neuroendocrine patterns of emotional response. In Plutchick, R. & Kellerman, H. (eds.), Emotion: Theory, Research and Experiences (pp. 3760). San Diego, CA: Academic Press.Google Scholar
Hofer, P., Lanzenberger, R., & Kasper, S. (2013). Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology. European Neuropsychopharmacology, 23: 7988.Google Scholar
Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine, 71: 171186.Google Scholar
Inagaki, T. K., Muscatell, K. A., Irwin, M. R., Cole, S. W., & Eisenberger, N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage, 59: 32223226.Google Scholar
Iriki, M. & Simon, E. (2012). Differential control of efferent sympathetic activity revisited. Journal of Physiological Science, 62: 275298.CrossRefGoogle ScholarPubMed
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.Google Scholar
James, W. (1884). What is an emotion? Mind, 9: 188205.Google Scholar
Joels, M. & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10: 459466.Google Scholar
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience, 8: S438S451.Google Scholar
Karsenty, G. & Ferron, M. (2012). The contribution of bone to whole-organism physiology. Nature, 481: 314320.Google Scholar
Kataoka, N., Hioki, H., Kaneko, T., & Nakamura, K. (2014). Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabolism, 20: 346358.CrossRefGoogle ScholarPubMed
Kawai, M. & Rosen, C. J. (2010). Minireview: a skeleton in serotonin’s closet? Endocrinology, 151: 41034108.Google Scholar
Kirschbaum, C., Gonzalez Bono, E., Rohleder, N., Gessner, C., Pirke, K. M., Salvador, A., & Hellhammer, D. H. (1997). Effects of fasting and glucose load on free cortisol responses to stress and nicotine. Journal of Clinical Endocrinology and Metabolism, 82: 11011105.Google Scholar
Knox, D., Sarter, M., & Berntson, G. G. (2004). Visceral afferent bias on cortical processing: role of adrenergic afferents to the basal forebrain cholinergic system. Behavioral Neuroscience, 118: 14551459.Google Scholar
Kohler, O., Benros, M. E., Nordentoft, M., Farkouh, M. E., Iyengar, R. L., Mors, O., & Krogh, J. (2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 71: 13811391.Google Scholar
Koizumi, K. & Kollai, M. (1981). Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions, Journal of the Autonomic Nervous System, 3: 483501.Google Scholar
Koizumi, K. & Kollai, M. (1992). Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present, Journal of the Autonomic Nervous System, 41: 1930.Google Scholar
Kopin, I. J. (1995). Definitions of stress and sympathetic neuronal responses. Annals of the New York Academy of Sciences, 771: 1930.Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.Google Scholar
Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubinstein, E. A. & Parloff, M. B. (eds.), Research in Psychotherapy (pp. 160208). Washington: APA.Google Scholar
Lacey, J. I. (1967). Somatic response patterning and stress: some revisions of activation theory. In Appley, M. H. & Trumbull, R. (eds.), Psychological Stress: Issues in Research (pp. 444). New York: Appleton-Century-Crofts.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of Emotions in Man (pp. 161196). New York: International University Press.Google Scholar
Lacourt, T. E., Houtveen, J. H., Veldhuijzen van Zanten, J. J., Bosch, J. A., Drayson, M. T., & Van Doornen, L. J. (2015). Negative affectivity predicts decreased pain tolerance during low-grade inflammation in healthy women. Brain, Behavior, and Immunity, 44: 3236.Google Scholar
Ladwig, K. H., Marten-Mittag, B., Lowel, H., Doring, A., & Koenig, W. (2003). Influence of depressive mood on the association of CRP and obesity in 3205 middle aged healthy men. Brain, Behavior, and Immunity, 17: 268275.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biological Psychiatry, 44: 12481263.Google Scholar
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.Google Scholar
Licht, C. M., Vreeburg, S. A., van Reedt Dortland, A. K., Giltay, E. J., Hoogendijk, W. J., DeRijk, R. H., … & Penninx, B. W. (2010). Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. Journal of Clinical Endocrinology and Metabolism, 95: 24582466.Google Scholar
Light, K. C. & Obrist, P. A. (1980). Cardiovascular response to stress: effects of opportunity to avoid, shock experience, and performance feedback. Psychophysiology, 17: 243252.Google Scholar
Loewy, A. D. (1990). Autonomic control of the eye. In Loewy, A. D. & Spyer, K. M. (eds.), Central Regulation of Autonomic Function (pp. 268285). Oxford University Press.Google Scholar
Lucini, D., Norbiato, G., Clerici, M., & Pagani, M. (2002). Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension, 39: 184188.Google Scholar
Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67: 220229.Google Scholar
Magoun, H. W. (1963). The Waking Brain. Springfield, IL: Charles C. Thomas.Google Scholar
Malliani, A. (2005). Heart rate variability: from bench to bedside. European Journal of Internal Medicine, 16: 1220.Google Scholar
Mason, J. W. (1975a). A historical view of the stress field: part 1. Journal of Human Stress, 1: 612.Google Scholar
Mason, J. W. (1975b). A historical view of the stress field: part 2. Journal of Human Stress, 1: 2236.CrossRefGoogle Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 34: 1549015496.Google Scholar
McCabe, P. M. & Schneiderman, P. (1985). Psychophysiologic reactions to stress. In Schneiderman, N. & Tapp, J. T. (eds.), Behavioral Medicine: The Biopsychosocial Approach (pp. 99131). London: Lawrence Erlbaum Associates.Google Scholar
McCusker, R. H. & Kelley, K. W. (2013). Immune–neural connections: how the immune system’s response to infectious agents influences behavior. Journal of Experimental Biology, 216: 8498.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338: 171179.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews, 87: 873904.Google Scholar
McEwen, B. S. & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186: 190222.Google Scholar
McEwen, B. S. & Wingfield, J. C. (2010). What is in a name? Integrating homeostasis, allostasis and stress. Hormones and Behavior, 57: 105111.Google Scholar
McInnis, C. M., Thoma, M. V., Gianferante, D., Hanlin, L., Chen, X., Breines, J. G., … & Rohleder, N. (2014). Measures of adiposity predict interleukin-6 responses to repeated psychosocial stress. Brain, Behavior, and Immunity, 42: 3340.Google Scholar
Miller, G. E., Freedland, K. E., Carney, R. M., Stetler, C. A., & Banks, W. A. (2003). Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain, Behavior, and Immunity, 17: 276285.Google Scholar
Moieni, M., Irwin, M. R., Jevtic, I., Breen, E. C., & Eisenberger, N. I. (2015). Inflammation impairs social cognitive processing: a randomized controlled trial of endotoxin. Brain, Behavior, and Immunity, 48: 132138.Google Scholar
Nagy, T., van Lien, R., Willemsen, G., Proctor, G., Efting, M., Fulop, M., … & Bosch, J. A. (2015). A fluid response: alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate. Biological Psychology, 109: 111119.Google Scholar
Nater, U. M., Ditzen, B., Strahler, J., & Ehlert, U. (2013). Effects of orthostasis on endocrine responses to psychosocial stress. International Journal of Psychophysiology, 90: 341346.Google Scholar
Neumann, I. D. & Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry, 79: 213221.Google Scholar
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.Google Scholar
Norman, G. J., Cacioppo, J. T., Morris, J. S., Malarkey, W. B., Berntson, G. G., & DeVries, A. C. (2011a). Oxytocin increases autonomic cardiac control: moderation by loneliness. Biological Psychology, 86(3): 174180.Google Scholar
Norman, G. J., DeVries, A. C., Cacioppo, J. T., & Berntson, G. G. (2011b). Multilevel analyses of stress. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 619634). New York: Springer.Google Scholar
Norman, G. J., Hawkley, L. C., Cole, S. W., Berntson, G. G., & Cacioppo, J. T. (2012). Social neuroscience: the social brain, oxytocin, and health. Social Neuroscience, 7: 1829.Google Scholar
Obrist, P. A. (1981). Cardiovascular Psychophysiology: A Perspective. New York: Plenum Press.Google Scholar
Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E., & Weiss, R. (2006). Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology, 43: 4656.Google Scholar
Pacak, K. & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22: 502548.Google Scholar
Packard, M. G. & Goodman, J. (2012). Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 6: 14.Google Scholar
Paine, N. J., Bosch, J. A., & Van Zanten, J. J. (2012). Inflammation and vascular responses to acute mental stress: implications for the triggering of myocardial infarction. Current Pharmaceutical Design, 18: 14941501.Google Scholar
Paine, N. J., Ring, C., Bosch, J. A., Drayson, M. T., Aldred, S., & Veldhuijzen van Zanten, J. J. (2014). Vaccine-induced inflammation attenuates the vascular responses to mental stress. International Journal of Psychophysiology, 93: 340348.Google Scholar
Pape, H. C., Jungling, K., Seidenbecher, T., Lesting, J., & Reinscheid, R. K. (2010). Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology, 58: 2934.Google Scholar
Parvizi, J. & Damasio, A. (2001). Consciousness and the brainstem. Cognition, 79: 135160.Google Scholar
Pedersen, B. K. & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8: 457465.Google Scholar
Pfaff, D. W., Kieffer, B. L., & Swanson, L. W. (2008). Mechanisms for the regulation of state changes in the central nervous system: an introduction. Annals of the New York Academy of Sciences, 1129: 17.Google Scholar
Qureshi, I. A. & Mehler, M. F. (2013). Towards a “systems”-level understanding of the nervous system and its disorders. Trends in Neurosciences, 36: 674684.Google Scholar
Raison, C. L. & Miller, A. H. (2013). Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. Modern Trends in Pharmacopsychiatry, 28: 3348.Google Scholar
Ramsay, D. S. & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychological Review, 121: 225247.Google Scholar
Reagan, L. P. (2007). Insulin signaling effects on memory and mood. Current Opinion in Pharmacology, 7: 633637.Google Scholar
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … & Trivedi, M. H. (2013). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18: 11191124.Google Scholar
Riddell, N. E., Burns, V. E., Wallace, G. R., Edwards, K. M., Drayson, M., Redwine, L. S., … & Bosch, J. A. (2015). Progenitor cells are mobilized by acute psychological stress but not beta-adrenergic receptor agonist infusion. Brain, Behavior, and Immunity, 49: 4953.Google Scholar
Ring, C., Burns, V. E., & Carroll, D. (2002). Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology, 39: 585590.Google Scholar
Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention: implications for drug abuse. Annals of the New York Academy of Sciences, 846: 222237.Google Scholar
Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. Circulation Research, 14: 400411.CrossRefGoogle Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.Google Scholar
Romanovsky, A. A. (2004). Do fever and anapyrexia exist? Analysis of set point-based definitions. American Journal of Physiology: Regulatory and Integrative Comparative Physiology, 287: R992R995.Google Scholar
Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W., & Steinhoff, M. (2006). Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiological Reviews, 86: 13091379.Google Scholar
Rosen, C. J. (2009). Bone: serotonin, leptin and the central control of bone remodeling. Nature Reviews Rheumatology, 5: 657658.Google Scholar
Sacco, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., … & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension (Greenwich), 15: 600605.CrossRefGoogle ScholarPubMed
Santisteban, M. M., Ahmari, N., Carvajal, J. M., Zingler, M. B., Qi, Y., Kim, S., … & Zubcevic, J. (2015). Involvement of bone marrow cells and neuroinflammation in hypertension. Circulation Research, 117: 178191.Google Scholar
Saper, C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annual Review of Neuroscience, 25: 433469.Google Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21: 5589.Google ScholarPubMed
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.Google Scholar
Sarter, M., Bruno, J. P., & Berntson, G. G. (2003). Reticular activating system. In Nadel, L. (ed.), Encyclopedia of Cognitive Science, vol. 3 (pp. 963967). London: Nature Publishing Group.Google Scholar
Satpute, A. B., Wager, T. D., Cohen-Adad, J., Bianciardi, M., Choi, J. K., Buhle, J. T., … & Feldman Barrett, L. (2013). Identification of discrete functional subregions of the human periaqueductal gray. Proceedings of the National Academy of Sciences of the USA, 110: 1710117106.Google Scholar
Schaible, H. G. (2014). Nociceptive neurons detect cytokines in arthritis. Arthritis Research & Therapy, 16: 470.Google Scholar
Schellekens, H., Finger, B. C., Dinan, T. G., & Cryan, J. F. (2012). Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacology & Therapeutics, 135: 316326.Google Scholar
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual Review of Clinical Psychology, 1: 607628.Google Scholar
Schneiderman, N. & McCabe, P. M. (1989). Psychophysiologic strategies in laboratory research. In Schneiderman, N., Weiss, S. M., & Kaufman, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 349364). New York: Plenum Press.Google Scholar
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65: 450460.Google Scholar
Schroeder, J. P. & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17: 14821488.Google Scholar
Schulkin, J. (ed.) (2004). Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge University Press.Google Scholar
Schulkin, J. (2011). Social allostasis: anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2: 111.Google Scholar
Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: an update and integration. Neuroscience & Biobehavioral Reviews, 36: 17401749.Google Scholar
Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1: 13831392.Google Scholar
Selye, H. (1956). The Stress of Life. New York: McGraw-Hill.Google Scholar
Selye, H. (1973). Homeostasis and heterostasis. Perspectives in Biology and Medicine, 16: 441445.Google Scholar
Selye, H. (1975). Confusion and controversy in the stress field. Journal of Human Stress, 1: 3744.Google Scholar
Selye, H. (1976). Stress in Health and Disease. Boston, MA: Butterworths.Google Scholar
Shelton, R. C. & Miller, A. H. (2011). Inflammation in depression: is adiposity a cause? Dialogues in Clinical Neuroscience, 13: 4153.Google Scholar
Shih, C. D., Chan, S. H., & Chan, J. Y. (1995). Participation of hypothalamic paraventricular nucleus in locus ceruleus-induced baroreflex suppression in rats. American Journal of Physiology, 269: H4652.Google Scholar
Slominski, A. T., Zmijewski, M. A., Skobowiat, C., Zbytek, B., Slominski, R. M., & Steketee, J. D. (2012). Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Advances in Anatomy, Embryology, and Cell Biology, 212: v, vii, 1115.Google Scholar
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. New York: Macmillan.Google Scholar
Spencer, S. J., Emmerzaal, T. L., Kozicz, T., & Andrews, Z. B. (2015). Ghrelin’s role in the hypothalamic–pituitary–adrenal axis stress response: implications for mood disorders. Biological Psychiatry, 78: 1927.Google Scholar
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48: 258264.Google Scholar
Steinberg, B. E., Tracey, K. J., & Slutsky, A. S. (2014). Bacteria and the neural code. New England Journal of Medicine, 371: 21312133.Google Scholar
Sterling, P. (2004). Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In Schulkin, J. (ed.), Allostasis, Homeostasis, and the Costs of Physiological Adaptation (pp. 1764). Cambridge University Press.Google Scholar
Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 515.Google Scholar
Sterling, P. & Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (eds.), Handbook of Life Stress, Cognition and Health (pp. 629649). New York: John Wiley.Google Scholar
Stern, R. M. & Sison, C. E. E. (1990). Response patterning. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 193216). Cambridge University Press.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: a meta-analysis. European Neuropsychopharmacology, 25: 15321543.CrossRefGoogle ScholarPubMed
Sved, A. F., Cano, G., & Card, J. P. (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clinical and Experimental Pharmacology & Physiology, 28: 115119.Google Scholar
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107: 411429.Google Scholar
Thayer, J. F. & Fischer, J. E. (2009). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. Journal of Internal Medicine, 265: 439447.Google Scholar
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119: 488531.CrossRefGoogle ScholarPubMed
Ulrich-Lai, Y. M. & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10: 397409.Google Scholar
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.Google Scholar
Van Roon, A. M., Mulder, L. J. M., Veldman, J. B. P., & Mulder, G. (1995). Beat-to-beat blood-pressure measurements applied in studies on mental workload. Homeostasis in Health and Disease, 36: 316324.Google Scholar
Vingerhoets, A. J. (1985). The role of the parasympathetic division of the autonomic nervous system in stress and the emotions. International Journal of Psychosomatics, 32: 2834.Google Scholar
Vingerhoets, A. J., Ratliff-Crain, J., Jabaaij, L., Menges, L. J., & Baum, A. (1996). Self-reported stressors, symptom complaints and psychobiological functioning: I. Cardiovascular stress reactivity. Journal of Psychosomatic Research, 40: 177190.Google Scholar
Vrijkotte, T. G., van den Born, B. J., Hoekstra, C. M., Gademan, M. G., van Eijsden, M., de Rooij, S. R., & Twickler, M. (2015). Cardiac autonomic nervous system activation and metabolic profile in young children: the ABCD study. PLoS One, 10: e0138302.Google Scholar
Watson, D. & Pennebaker, J. W. (1989). Health complaints, stress, and distress: exploring the central role of negative affectivity. Psychological Review, 96: 234254.Google Scholar
Weiner, H. (1992). Perturbing the Organism: The Biology of Stressful Experience. University of Chicago Press.Google Scholar
Wenger, M. A. (1941). The measurement of individual differences in autonomic balance. Psychosomatic Medicine, 3: 427434.Google Scholar
Werner, J. (1988). Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. Pharmacology & Therapeutics, 37: 123.Google Scholar
Wheaton, B. & Montazer, S. (2009). Stressors, stress, and distress. In Scheid, T. L. & Brown, T. N. (eds.), A Handbook for the Study of Mental Health: Social Contexts, Theories, and Systems, 2nd edn. (pp. 171199). Cambridge University Press.Google Scholar
Winsky-Sommerer, R., Boutrel, B., & de Lecea, L. (2005). Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Molecular Neurobiology, 32: 285294.Google Scholar
Wirtz, P. H., Ehlert, U., Emini, L., & Suter, T. (2008). Higher body mass index (BMI) is associated with reduced glucocorticoid inhibition of inflammatory cytokine production following acute psychosocial stress in men. Psychoneuroendocrinology, 33: 11021110.Google Scholar
Zigman, J. M., Bouret, S. G., & Andrews, Z. B. (2016). Obesity impairs the action of the neuroendocrine Ghrelin system. Trends in Endocrinology and Metabolism, 27: 5463.Google Scholar

References

Ainley, V., Maister, L., Brokfeld, J., Farmer, H., & Tsakiris, M. (2013). More of myself: manipulating interoceptive awareness by heightened attention to bodily and narrative aspects of the self. Consciousness and Cognition, 22: 12311238.Google Scholar
Ainley, V., Tajadura-Jimenez, A., Fotopoulou, A., & Tsakiris, M. (2012). Looking into myself: changes in interoceptive sensitivity during mirror self-observation. Psychophysiology, 49: 16721676.Google Scholar
Antony, M. M., Brown, T. A., Craske, M. G., Barlow, D. H., Mitchell, W. B., & Meadows, E. A. (1995). Accuracy of heartbeat perception in panic disorder, social phobia and non-anxious subjects. Journal of Anxiety Disorders, 9: 355371.Google Scholar
Armstrong, A. M. & Dienes, Z. (2013). Subliminal understanding of negation: unconscious control by subliminal processing of word pairs. Consciousness and Cognition, 22: 10221040.Google Scholar
Avery, J. A., Drevets, W. C., Moseman, S. E., Bodurka, J., Barcalow, J. C., & Simmons, W. K. (2014). Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biological Psychiatry, 76: 258266.Google Scholar
Barrett, L. F., Gross, J., Christensen, T. C., & Benvenuto, M. (2001). Knowing what you’re feeling and knowing what to do about it: mapping the relation between emotion differentiation and emotion regulation. Cognition & Emotion, 15: 713724.Google Scholar
Barrett, L. F. & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16: 419429.Google Scholar
Barsky, A. J., Cleary, P. D., Sarnie, M. K., & Ruskin, J. N. (1994). Panic disorder, palpitations, and the awareness of cardiac activity. Journal of Nervous and Mental Disease, 182: 6371.Google Scholar
Beacher, F. D. C. C., Gray, M. A., Mathias, C. J., & Critchley, H. D. (2009). Vulnerability to simple faints is predicted by regional differences in brain anatomy. NeuroImage, 47: 937945.Google Scholar
Bechara, A. & Damasio, A. R. (2005). The somatic marker hypothesis: a neural theory of economic decision. Games and Economic Behavior, 52: 336372.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50: 715.Google Scholar
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.Google Scholar
Birch, L. L., Fisher, J. O., & Davison, K. K. (2003). Learning to overeat: maternal use of restrictive feeding practices promotes girls’ eating in the absence of hunger. American Journal of Clinical Nutrition, 78: 215220.Google Scholar
Bornemann, B., Herbert, B. M., Mehling, W. E., & Singer, T. (2015). Differential changes in self-reported aspects of interoceptive awareness through 3 months of contemplative training. Frontiers in Psychology, 5: 1504.Google Scholar
Brannigan, M., Stevenson, R. J., & Francis, H. (2015). Thirst interoception and its relationship to a Western-style diet. Physiology & Behavior, 139: 423429.Google Scholar
Brener, J. & Kluvitse, C. (1988). Heartbeat detection: judgments of the simultaneity of external stimuli and heartbeats. Psychophysiology, 25: 554561.Google Scholar
Brener, J., Knapp, K., & Ring, C. (1995). The effects of manipulating beliefs about heart-rate on the accuracy of heartbeat counting in the Schandry task. Psychophysiology, 32: S22.Google Scholar
Brener, J., Liu, X. Q., & Ring, C. (1993). A method of constant stimuli for examining heartbeat detection: comparison with the Brener-Kluvitse and Whitehead methods. Psychophysiology, 30: 657665.Google Scholar
Brener, J. & Ring, C. (eds.) (1995). Perception and Heart Beat Detection. Frankfurt: Peter Lang.Google Scholar
Brydon, L., Harrison, N. A., Walker, C., Steptoe, A., & Critchley, H. D. (2008). Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biological Psychiatry, 63: 10221029.Google Scholar
Buchanan, T. W., Etzel, J. A., Adolphs, R., & Tranel, D. (2006). The influence of autonomic arousal and semantic relatedness on memory for emotional words. International Journal of Psychophysiology, 61: 2633.Google Scholar
Cameron, O. G. (2001). Visceral Sensory Neuroscience: Interoception. Oxford University Press.Google Scholar
Canales-Johnson, A., Silva, C., Huepe, D., Rivera-Rei, A., Noreika, V., Garcia, M. D., … & Bekinschtein, T. A. (2015). Auditory feedback differentially modulates behavioral and neural markers of objective and subjective performance when tapping to your heartbeat. Cerebral Cortex, 25: 44904503.Google Scholar
Cannon, W. B. (1931). Again the James–Lange and the thalamic theories of emotion. Psychological Review, 38: 281295.Google Scholar
Ceunen, E., Van Diest, I., & Vlaeyen, J. W. S. (2013). Accuracy and awareness of perception: related, yet distinct (commentary on Herbert et al., 2012). Biological Psychology, 92: 426427.Google Scholar
Couto, B., Adolfi, F., Sedeno, L., Salles, A., Canales-Johnson, A., Alvarez-Abut, P., … & Ibanez, A. (2015). Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus. Frontiers in Psychology, 6: 503.Google Scholar
Couto, B., Salles, A., Sedeno, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … & Ibanez, A. (2014). The man who feels two hearts: the different pathways of interoception. Social Cognitive and Affective Neuroscience, 9: 12531260.Google Scholar
Cowie, D., Makin, T. R., & Bremner, A. J. (2013). Children’s responses to the rubber-hand illusion reveal dissociable pathways in body representation. Psychological Science, 24: 762769.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.Google Scholar
Craig, A. D. (2015). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.Google Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.Google Scholar
Critchley, H. D., Lewis, P. A., Orth, M., Josephs, O., Deichmann, R., Trimble, M. R., … & Dolan, R. J. (2007). Vagus nerve stimulation for treatment-resistant depression: behavioral and neural effects on encoding negative material. Psychosomatic Medicine, 69: 1722.Google Scholar
Critchley, H. D., Mathias, C. T., & Dolan, R. J. (2001). Neuroanatomical basis for first- and second-order representations of bodily states. Nature Neuroscience, 4: 207212.Google Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7: 189195.Google Scholar
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351: 14131420.Google Scholar
Damasio, A. R. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. New York: Harcourt Brace.Google Scholar
Damasio, A. R. (2010). Self Comes to Mind: Constructing the Conscious Brain. London: Vintage Books.Google Scholar
Damasio, A. R., Tranel, D., & Damasio, H. C. (1991). Somatic markers and the guidance of behavior: theory and preliminary testing. In Levin, H. S., Eisenberg, H. M., & Benton, A. L. (eds.), Frontal Lobe Function and Dysfunction (pp. 217229). Oxford University Press.Google Scholar
Daubenmier, J., Sze, J., Kerr, C. E., Kemeny, M. E., & Mehling, W. (2013). Follow your breath: respiratory interoceptive accuracy in experienced meditators. Psychophysiology, 50: 777789.Google Scholar
Dembovsky, K. & Seller, H. (eds.) (1995). Arterial Baroreceptor Reflexes. Frankfurt: Peter Lang.Google Scholar
Depascalis, V., Alberti, M. L., & Pandolfo, R. (1984). Anxiety, perception, and control of heart-rate. Perceptual and Motor Skills, 59: 203211.Google Scholar
Dienes, Z. & Berry, D. (1997). Implicit learning: below the subjective threshold. Psychonomic Bulletin & Review, 4: 323.Google Scholar
Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11: 8689.Google Scholar
Dunn, B. D., Dalgleish, T., Ogilvie, A. D., & Lawrence, A. D. (2007). Heartbeat perception in depression. Behaviour Research and Therapy, 45: 19211930.Google Scholar
Dunn, B. D., Evans, D., Makarova, D., White, J., & Clark, L. (2012). Gut feelings and the reaction to perceived inequity: the interplay between bodily responses, regulation, and perception shapes the rejection of unfair offers on the ultimatum game. Cognitive, Affective, & Behavioral Neuroscience, 12: 419429.Google Scholar
Dunn, B. D., Galton, H. C., Morgan, R., Evans, D., Oliver, C., Meyer, M., … & Dalgleish, T. (2010a). Listening to your heart: how interoception shapes emotion experience and intuitive decision making. Psychological Science, 21: 18351844.Google Scholar
Dunn, B. D., Stefanovitch, I., Evans, D., Oliver, C., Hawkins, A., & Dalgleish, T. (2010b). Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions. Behaviour Research and Therapy, 48: 11331138.Google Scholar
Eccles, J. A., Garfinkel, S. N., Harrison, N. A., Ward, J., Taylor, R. E., Bewley, A. P., & Critchley, H. D. (2015). Sensations of skin infestation linked to abnormal frontolimbic brain reactivity and differences in self-representation. Neuropsychologia, 77: 9096.Google Scholar
Ehlers, A. & Breuer, P. (1992). Increased cardiac awareness in panic disorder. Journal of Abnormal Psychology, 101: 371382.Google Scholar
Ehlers, A., Margraf, J., Roth, W. T., Taylor, C. B., & Birbaumer, N. (1988). Anxiety induced by false heart rate feedback in patients with panic disorder. Behaviour Research and Therapy, 26: 111.Google Scholar
Eickhoff, S. B., Lotze, M., Wietek, B., Amunts, K., Enck, P., & Zilles, K. (2006). Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. NeuroImage, 31: 10041014.Google Scholar
Elam, M., Svensson, T. H., & Thoren, P. (1985). Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic-nerves. Brain Research, 358: 7784.Google Scholar
Elam, M., Yao, T., Svensson, T. H., & Thoren, P. (1984). Regulation of locus coeruleus neurons and splanchnic, sympathetic-nerves by cardiovascular afferents. Brain Research, 290: 281287.Google Scholar
Fairclough, S. H. & Goodwin, L. (2007). The effect of psychological stress and relaxation on interoceptive accuracy: implications for symptom perception. Journal of Psychosomatic Research, 62: 289295.Google Scholar
Farb, N., Daubenmier, J., Price, C. J., Gard, T., Kerr, C., Dunn, B. D., … & Mehling, W. E. (2015). Interoception, contemplative practice, and health. Frontiers in Psychology, 6: 763.Google Scholar
Fassino, S., Piero, A., Gramaglia, C., & Abbate-Daga, G. (2004). Clinical, psychopathological and personality correlates of interoceptive awareness in anorexia nervosa, bulimia nervosa and obesity. Psychopathology, 37: 168174.Google Scholar
Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79: 259265.Google Scholar
Furman, D. J., Waugh, C. E., Bhattacharjee, K., Thompson, R. J., & Gotlib, I. H. (2013). Interoceptive awareness, positive affect, and decision making in major depressive disorder. Journal of Affective Disorders, 151: 780785.Google Scholar
Fustos, J., Gramann, K., Herbert, B. M., & Pollatos, O. (2013). On the embodiment of emotion regulation: interoceptive awareness facilitates reappraisal. Social Cognitive and Affective Neuroscience, 8: 911917.Google Scholar
Ganos, C., Garrido, A., Navalpotro-Gomez, I., Ricciardi, L., Martino, D., Edwards, M. J., … & Bhatia, K. P. (2015). Premonitory urge to tic in Tourette’s is associated with interoceptive awareness. Movement Disorders, 30: 11981202.Google Scholar
Garfinkel, S. N., Barrett, A. B., Minati, L., Dolan, R. J., Seth, A. K., & Critchley, H. D. (2013). What the heart forgets: cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiology, 50: 505512.Google Scholar
Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. Journal of Neuroscience, 34: 65736582.Google Scholar
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104: 6574.Google Scholar
Garfinkel, S. N., Tilly, C., O’Keeffe, S., Harrison, N. A., Seth, A. K., & Critchley, H. D. (2016a). Discrepancies between interoceptive dimensions in autism: implications for emotion and anxiety. Biological Psychology, 114: 117126.Google Scholar
Garfinkel, S. N., Zorab, E., Navaratnam, N., Engels, M., Mallorqui-Bague, N., Minati, L., … & Critchley, H. D. (2016b). Anger in brain and body: the neural and physiological perturbation of decision-making by emotion. Social Cognitive and Affective Neuroscience, 11: 150158.Google Scholar
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biological Psychiatry, 63: 577586.Google Scholar
Gray, M. A., Beacher, F. D., Minati, L., Nagai, Y., Kemp, A. H., Harrison, N. A., & Critchley, H. D. (2012). Emotional appraisal is influenced by cardiac afferent information. Emotion, 12: 180191.Google Scholar
Gray, M. A., Taggart, P., Sutton, P. M., Groves, D., Holdright, D. R., Bradbury, D., … & Critchley, H. D. (2007). A cortical potential reflecting cardiac function. Proceedings of the National Academy of Sciences of the USA, 104: 68186823.Google Scholar
Gross, J. J. & John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85: 348362.Google Scholar
Grynberg, D. & Pollatos, O. (2015). Perceiving one’s body shapes empathy. Physiology & Behavior, 140: 5460.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harrison, N. A., Singer, T., Rotshtein, P., Dolan, R. J., & Critchley, H. D. (2006). Pupillary contagion: central mechanisms engaged in sadness processing. Social Cognitive and Affective Neuroscience, 1: 517.Google Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.Google Scholar
Heaver, B. & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory, 19: 398405.Google Scholar
Herbert, B. M., Blechert, J., Hautzinger, M., Matthias, E., & Herbert, C. (2013). Intuitive eating is associated with interoceptive sensitivity: effects on body mass index. Appetite, 70: 2230.Google Scholar
Herbert, B. M., Muth, E. R., Pollatos, O., & Herbert, C. (2012). Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One, 7: e36646.Google Scholar
Herbert, B. M. & Pollatos, O. (2014). Attenuated interoceptive sensitivity in overweight and obese individuals. Eating Behaviors, 15: 445448.Google Scholar
Herrick, C. J. (1947). The proprioceptive nervous system. Journal of Nervous and Mental Disease, 106: 355358.Google Scholar
Hobday, D. I., Aziz, Q., Thacker, N., Hollander, I., Jackson, A., & Thompson, D. G. (2001). A study of the cortical processing of ano-rectal sensation using functional MRI. Brain, 124: 361368.Google Scholar
Hyett, M. P., Breakspear, M. J., Friston, K. J., Guo, C. C., & Parker, G. B. (2015). Disrupted effective connectivity of cortical systems supporting attention and interoception in melancholia. JAMA Psychiatry, 72: 350358.Google Scholar
Immanuel, S. A., Pamula, Y., Kohler, M., Martin, J., Kennedy, D., Nalivaiko, E., … & Baumert, M. (2014). Heartbeat evoked potentials during sleep and daytime behavior in children with sleep-disordered breathing. American Journal of Respiratory and Critical Care Medicine, 190: 11491157.Google Scholar
James, W. (1884). What is an Emotion? Mind, 9: 188205.Google Scholar
Jones, G. E., Leonberger, T. F., Rouse, C. H., Caldwell, J. A., & Jones, K. R. (1986). Preliminary data exploring the presence of an evoked-potential associated with cardiac visceral activity. Psychophysiology, 23: 445.Google Scholar
Katkin, E. S., Cestaro, V. L., & Weitkunat, R. (1991). Individual differences in cortical evoked potentials as a function of heartbeat detection ability. International Journal of Neuroscience, 61: 269276.Google Scholar
Katkin, E. S., Wiens, S., & Ohman, A. (2001). Nonconscious fear conditioning, visceral perception, and the development of gut feelings. Psychological Science, 12: 366370.Google Scholar
Khalsa, S. S., Rudrauf, D., Damasio, A. R., Davidson, R. J., Lutz, A., & Tranel, D. (2008). Interoceptive awareness in experienced meditators. Psychophysiology, 45: 671677.Google Scholar
Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009). The pathways of interoceptive awareness. Nature Neuroscience, 12: 14941496.Google Scholar
Kirk, U., Downar, J., & Montague, P. R. (2011). Interoception drives increased rational decision-making in meditators playing the ultimatum game. Frontiers in Neuroscience, 5: 49.Google Scholar
Kleckner, I. R., Wormwood, J. B., Simmons, W. K., Barrett, L. F., & Quigley, K. S. (2015). Methodological recommendations for a heartbeat detection-based measure of interoceptive sensitivity. Psychophysiology, 52: 14321440.Google Scholar
Knapp, K., Ring, C., & Brener, J. (1997). Sensitivity to mechanical stimuli and the role of general sensory and perceptual processes in heartbeat detection. Psychophysiology, 34: 467473.Google Scholar
Knapp-Kline, K. & Kline, J. P. (2005). Heart rate, heart rate variability, and heartbeat detection with the method of constant stimuli: slow and steady wins the race. Biological Psychology, 69: 387396.Google Scholar
Knoll, J. F. & Hodapp, V. (1992). A comparison between 2 methods for assessing heartbeat perception. Psychophysiology, 29: 218222.Google Scholar
Koch, A. & Pollatos, O. (2014a). Cardiac sensitivity in children: sex differences and its relationship to parameters of emotional processing. Psychophysiology, 51: 932941.Google Scholar
Koch, A. & Pollatos, O. (2014b). Interoceptive sensitivty, body weight and eating behavior in children: a prospective study. Frontiers in Psychology, 5: 1003.Google Scholar
Kouakam, C., Lacroix, D., Klug, D., Baux, P., Marquie, C., & Kacet, S. (2002). Prevalence and prognostic significance of psychiatric disorders in patients evaluated for recurrent unexplained syncope. American Journal of Cardiology, 89: 530535.Google Scholar
Lane, R. D. (2008). Neural substrates of implicit and explicit emotional processes: a unifying framework for psychosomatic medicine. Psychosomatic Medicine, 70: 214231.Google Scholar
Lange, C. G. (ed.) (1885/1912). The Mechanisms of the Emotions. Boston, MA: Houghton Mifflin.Google Scholar
Lenggenhager, B., Azevedo, R. T., Mancini, A., & Aglioti, S. M. (2013). Listening to your heart and feeling yourself: effects of exposure to interoceptive signals during the ultimatum game. Experimental Brain Research, 230: 233241.Google Scholar
Leopold, C. & Schandry, R. (2001). The heartbeat-evoked brain potential in patients suffering from diabetic neuropathy and in healthy control persons. Clinical Neurophysiology, 112: 674682.Google Scholar
Liu, J., Wei, W., Kuang, H., Zhao, F., & Tsien, J. Z. (2013). Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories. PLoS One, 8: e63590.Google Scholar
Marcel, A. J. (1983). Conscious and unconscious perception: experiments on visual masking and word recognition. Cognitive Psychology, 15: 197237.Google Scholar
Marron, K., Wharton, J., Sheppard, M. N., Fagan, D., Royston, D., Kuhn, D. M., … & Polak, J. M. (1995). Distribution, morphology, and neurochemistry of endocardial and epicardial nerve-terminal arborizations in the human heart. Circulation, 92: 23432351.Google Scholar
McFarland, R. A. (1975). Heart rate perception and heart rate control. Psychophysiology, 12(4): 402405.Google Scholar
Mehling, W. E., Gopisetty, V., Daubenmier, J., Price, C. J., Hecht, F. M., & Stewart, A. (2009). Body awareness: construct and self-report measures. PLoS One, 4: e5614.Google Scholar
Melloni, M., Sedeno, L., Couto, B., Reynoso, M., Gelormini, C., Favaloro, R., … & Ibanez, A. (2013). Preliminary evidence about the effects of meditation on interoceptive sensitivity and social cognition. Behavioral and Brain Functions, 9: 47.Google Scholar
Montoya, P., Schandry, R., & Muller, A. (1993). Heartbeat evoked-potentials (HEP) – topography and influence of cardiac awareness and focus of attention. Electroencephalography & Clinical Neurophysiology, 88: 163172.Google Scholar
Morris, A. L., Cleary, A. M., & Still, M. L. (2008). The role of autonomic arousal in feelings of familiarity. Consciousness and Cognition, 17: 13781385.Google Scholar
Murase, S., Inui, K., & Nosaka, S. (1994). Baroreceptor inhibition of the locus-coeruleus noradrenergic neurons. Neuroscience, 61: 635643.Google Scholar
Näring, G. W. B. & van der Staak, C. P. F. (1995). Perception of heart rate and blood pressure: the role of alexithymia and anxiety. Pychotherapy and Psychosomatics, 63: 193200.Google Scholar
Nicotra, A., Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2006). Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain, 129: 718728.Google Scholar
North, N. T. & O’Carroll, R. E. (2001). Decision making in patients with spinal cord damage: afferent feedback and the somatic marker hypothesis. Neuropsychologia, 39: 521524.Google Scholar
Okon-Singer, H., Mehnert, J., Hoyer, J., Hellrung, L., Schaare, H. L., Dukart, J., & Villringer, A. (2014). Neural control of vascular reactions: impact of emotion and attention. Journal of Neuroscience, 34: 42514259.Google Scholar
Park, H. D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature Neuroscience, 17: 612618.Google Scholar
Parkin, L., Morgan, R., Rosselli, A., Howard, M., Sheppard, A., Evans, D., … & Dunn, B. (2014). Exploring the relationship between mindfulness and cardiac perception. Mindfulness, 5(3), 298313.Google Scholar
Paulus, M. P. & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60: 383387.Google Scholar
Paulus, M. P. & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure and Function, 214: 451463.Google Scholar
Pistoia, F., Carolei, A., Sacco, S., Conson, M., Pistarini, C., Cazzulani, B., … & Sarà, M. (2015). Contribution of interoceptive information to emotional processing: evidence from individuals with spinal cord injury. Journal of Neurotrauma, 32: 19811986.Google Scholar
Pollatos, O., Fustos, J., & Critchley, H. D. (2012). On the generalised embodiment of pain: how interoceptive sensitivity modulates cutaneous pain perception. Pain, 153: 16801686.Google Scholar
Pollatos, O., Gramann, K., & Schandry, R. (2007a). Neural systems connecting interoceptive awareness and feelings. Human Brain Mapping, 28: 918.Google Scholar
Pollatos, O., Herbert, B. M., Kaufmann, C., Auer, D. P., & Schandry, R. (2007b). Interoceptive awareness, anxiety and cardiovascular reactivity to isometric exercise. International Journal of Psychophysiology, 65: 167173.Google Scholar
Pollatos, O., Kirsch, W., & Schandry, R. (2005a). Brain structures involved in interoceptive awareness and cardioafferent signal processing: a dipole source localization study. Human Brain Mapping, 26: 5464.Google Scholar
Pollatos, O., Kirsch, W., & Schandry, R. (2005b). On the relationship between interoceptive awareness, emotional experience, and brain processes. Cognitive Brain Research, 25: 948962.Google Scholar
Pollatos, O. & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41: 476482.Google Scholar
Pollatos, O. & Schandry, S. (2008). Emotional processing and emotional memory are modulated by interoceptive awareness. Cognition & Emotion, 22: 272287.Google Scholar
Pollatos, O., Schandry, R., Auer, D. P., & Kaufmann, C. (2007c). Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Research, 1141: 178187.Google Scholar
Pollatos, O., Traut-Mattausch, E., & Schandry, R. (2009). Differential effects of anxiety and depression on interoceptive accuracy. Depression and Anxiety, 26: 167173.Google Scholar
Pollatos, O., Traut-Mattausch, E., Schroeder, H., & Schandry, R. (2007). Interoceptive awareness mediates the relationship between anxiety and the intensity of unpleasant feelings. Journal of Anxiety Disorders, 21: 931943.Google Scholar
Porges, S. (1993). Body Perception Questionnaire. Laboratory of Development Assessment, University of Maryland.Google Scholar
Ring, C. & Brener, J. (1992). The temporal locations of heartbeat sensations. Psychophysiology, 29: 535545.Google Scholar
Ring, C., Brener, J., Knapp, K., & Mailloux, J. (2015). Effects of heartbeat feedback on beliefs about heart rate and heartbeat counting: a cautionary tale about interoceptive awareness. Biological Psychology, 104: 193198.Google Scholar
Schachter, S. & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69: 379399.Google Scholar
Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18: 483488.Google Scholar
Schandry, R., Bestler, M., & Montoya, P. (1993). On the relation between cardiodynamics and heartbeat perception. Psychophysiology, 30: 467474.Google Scholar
Schneider, T. R., Lyons, J. B., & Williams, M. (2005). Emotional intelligence and autonomic self-perception: emotional abilities are related to visceral acuity. Personality and Individual Differences, 39: 853861.Google Scholar
Schonfeld, P., Ackermann, K., & Schwabe, L. (2014). Remembering under stress: different roles of autonomic arousal and glucocorticoids in memory retrieval. Psychoneuroendocrinology, 39: 249256.Google Scholar
Schulz, A., de Sá, D. S. F., Dierolf, A. M., Lutz, A., van Dyck, Z., Vogele, C., & Schächinger, H. (2015). Short-term food deprivation increases amplitudes of heartbeat-evoked potentials. Psychophysiology, 52: 695703.Google Scholar
Schulz, A., Lass-Hennemann, J., Sutterlin, S., Schächinger, H., & Vogele, C. (2013a). Cold pressor stress induces opposite effects on cardioceptive accuracy dependent on assessment paradigm. Biological Psychology, 93: 167174.Google Scholar
Schulz, A., Strelzyk, F., de Sá, D. S. F., Naumann, E., Vogele, C., & Schächinger, H. (2013b). Cortisol rapidly affects amplitudes of heartbeat-evoked brain potentials: implications for the contribution of stress to an altered perception of physical sensations.Psychoneuroendocrinology, 38: 26862693.Google Scholar
Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in Cognitive Sciences, 17: 565573.Google Scholar
Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2: 395.Google Scholar
Shao, S. Y., Shen, K. Q., Wilder-Smith, E. P. V., & Li, X. P. (2011). Effect of pain perception on the heartbeat evoked potential. Clinical Neurophysiology, 122: 18381845.Google Scholar
Sherrington, C. S. (1948). The Integrative Action of the Nervous System. Cambridge University Press.Google Scholar
Singer, T. & Lamm, C. (2009). The social neuroscience of empathy. Year in Cognitive Neuroscience 2009, 1156: 8196.Google Scholar
Snodgrass, J. G. & Corwin, J. (1988). Pragmatics of measuring recognition memory: applications to dementia and amnesia. Journal of Experimental Psychology. General, 117: 3450.Google Scholar
Sokol-Hessner, P., Hartley, C. A., Hamilton, J. R., & Phelps, E. A. (2015). Interoceptive ability predicts aversion to losses. Cognition & Emotion, 29: 695701.Google Scholar
Stephan, E., Pardo, J. V., Faris, P. L., Hartman, B. K., Kim, S. W., Ivanov, E. H., … & Goodale, R. L. (2003). Functional neuroimaging of gastric distention. Journal of Gastrointestinal Surgery, 7: 740749.Google Scholar
Suzuki, K., Garfinkel, S. N., Critchley, H. D., & Seth, A. K. (2013). Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia, 51: 29092917.Google Scholar
Tajadura-Jimenez, A., Longo, M. R., Coleman, R., & Tsakiris, M. (2012). The person in the mirror: using the enfacement illusion to investigate the experiential structure of self-identification. Consciousness and Cognition, 21: 17251738.Google Scholar
Terasawa, Y., Moriguchi, Y., Tochizawa, S., & Umeda, S. (2014). Interoceptive sensitivity predicts sensitivity to the emotions of others. Cognition & Emotion, 28: 14351448.Google Scholar
Terasawa, Y., Shibata, M., Moriguchi, Y., & Umeda, S. (2013). Anterior insular cortex mediates bodily sensibility and social anxiety. Social Cognitive and Affective Neuroscience, 8: 259266.Google Scholar
Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Movement Disorders, 30: 11901197.Google Scholar
Tsakiris, M., Tajadura-Jimenez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: interoceptive sensitivity predicts malleability of body representations. Proceedings of the Royal Society B: Biological Sciences, 278: 24702476.Google Scholar
Umeda, S., Harrison, N. A., Gray, M. A., Mathias, C. J., & Critchley, H. D. (2015). Structural brain abnormalities in postural tachycardia syndrome: a VBM-DARTEL study. Frontiers in Neuroscience, 9: 34.Google Scholar
Vaitl, D. (1996). Interoception. Biological Psychology, 42: 127.Google Scholar
van ’t Wout, M., Faught, S., & Menino, D. (2013). Does interoceptive awareness affect the ability to regulate unfair treatment by others? Frontiers in Psychology, 4.Google Scholar
Werner, N. S., Jung, K., Duschek, S., & Schandry, R. (2009). Enhanced cardiac perception is associated with benefits in decision-making. Psychophysiology, 46: 11231129.Google Scholar
Werner, N. S., Peres, I., Duschek, S., & Schandry, R. (2010). Implicit memory for emotional words is modulated by cardiac perception. Biological Psychology, 85: 370376.Google Scholar
Whitehead, W. E., Drescher, V. M., Heiman, P., & Blackwell, B. (1977). Relation of heart-rate control to heartbeat perception. Biofeedback and Self-Regulation, 2: 371392.Google Scholar
Wiebking, C., de Greck, M., Duncan, N. W., Tempelmann, C., Bajbouj, M., & Northoff, G. (2015). Interoception in insula subregions as a possible state marker for depression: an exploratory fMRI study investigating healthy, depressed and remitted participants. Frontiers in Behavioral Neuroscience, 9: 82.Google Scholar
Wiens, S., Mezzacappa, E. S., & Katkin, E. S. (2000). Heartbeat detection and the experience of emotions. Cognition and Emotion, 14: 417427.Google Scholar
Wiens, S. & Palmer, S. N. (2001). Quadratic trend analysis and heartbeat detection. Biological Psychology, 58: 159175.Google Scholar
Wildman, H. E. & Jones, G. E. (1982). Consistency of heartbeat discrimination scores on the Whitehead procedure in knowledge-of-results: trained and untrained subjects. Psychophysiology, 19: 592.Google Scholar
Wilkins, B. W., Hesse, C., Sviggum, H. P., Nicholson, W. T., Moyer, T. P., Joyner, M. J., & Eisenach, J. H. (2007). Alternative to ganglionic blockade with anticholinergic and alpha-2 receptor agents. Clinical Autonomic Research, 17: 7784.Google Scholar
Yates, A. J., Jones, K. E., Marie, G. V., & Hogben, J. H. (1985). Detection of the heartbeat and events in the cardiac cycle. Psychophysiology, 22: 561567.Google Scholar
Yuan, H., Yan, H. M., Xu, X. G., Han, F., & Yan, Q. (2007). Effect of heartbeat perception on heartbeat evoked potential waves. Neuroscience Bulletin, 23: 357362.Google Scholar

References

Adelman, S., Taylor, C. R., & Heglund, N. C. (1975). Sweating on paws and palms: what is its function? American Journal of Physiology, 229: 14001402.Google Scholar
Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R.J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213: 220222.Google Scholar
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28: R1R39.Google Scholar
Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.Google Scholar
Amodio, D. M., Harmon-Jones, E., & Devine, P. G. (2003). Individual differences in the activation and control of affective race bias as assessed by startle eyeblink response and self-report. Journal of Personality and Social Psychology, 84: 738753.Google Scholar
Andersson, K.-E. & Wagner, G. (1995). Physiology of penile erection. Physiological Reviews, 75: 191236.Google Scholar
Angyal, A. (1941). Disgust and related aversions. Journal of Abnormal and Social Psychology, 36: 393412.Google Scholar
Arnold, M. B. (1960). Emotion and Personality. New York: Columbia University Press.Google Scholar
Averill, J. R. (1969). Autonomic response patterns during sadness and mirth. Psychophysiology, 5: 399414.Google Scholar
Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15: 433442.Google Scholar
Bain, A. R., Deren, T. M., & Jay, O. (2011). Describing individual variation in local sweating during exercise in a temperate environment. European Journal of Applied Physiology, 111: 15991607.Google Scholar
Baldaro, B., Battacchi, M. W., Codispoti, M., Tuozzi, G., Trombini, G., Bolazni, R., & Palomba, D. (1996). Modifications of electrogastrographic activity during the viewing of brief film sequences. Perceptual and Motor Skills, 82: 12431250.Google Scholar
Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1: 2858.Google Scholar
Barrett, L. F. (2009). The future of psychology: connecting mind to brain. Perspectives on Psychological Science, 4: 326339.Google Scholar
Barrett, L. F. & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16: 419429.Google Scholar
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91: 276292.Google Scholar
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275: 12931294.Google Scholar
Benedek, M. & Kaernbach, C. (2011). Physiological correlates and emotional specificity of human piloerection. Biological Psychology, 86: 320329.Google Scholar
Benedek, M., Wilfling, B., Lukas-Wolfbauer, R., Katzur, B. H., & Kaernbach, C. (2010). Objective and continuous measurement of piloerection. Psychophysiology, 47: 989993.Google Scholar
Bergdahl, M. & Bergdahl, J. (2000). Low unstimulated salivary flow and subjective oral dryness: association with medication, anxiety, depression, and stress. Journal of Dental Research, 79: 16521658.Google Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & van Der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993a). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30: 183196.Google Scholar
Berntson, G. G., Norman, G. J., Bechara, A., Bruss, J., Tranel, D., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological Science, 22: 8086.Google Scholar
Bindra, D. (1972). Weeping: a problem of many facets. Bulletin of the British Psychological Society, 25: 281284.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., Lickel, B., & Kowai-Bell, N. (2001). Perceiver threat in social interactions with stigmatized others. Journal of Personality and Social Psychology, 80: 253267.Google Scholar
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social facilitation as challenge and threatJournal of Personality and Social Psychology, 77: 6877.Google Scholar
Blascovich, J. & Tomaka, J. (1996). The biopsychosocial model of arousal regulation. In Zanna, M. (ed.), Advances in Experimental Social Psychology, vol. 28 (pp. 151). New York: Academic Press.Google Scholar
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report. Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42: 115.Google Scholar
Bosch, N. M., Riese, H., Reijneveld, S. A., Bakker, M. P., Verhulst, F. C., Ormel, J., & Oldehinkel, A. J. (2012). Timing matters: long term effects of adversities from prenatal period up to adolescence on adolescents’ cortisol stress response. The TRAILS study. Psychoneuroendocrinology, 37: 14391447.Google Scholar
Boucher, J. D. & Ekman, P. (1975). Facial areas and emotional information. Journal of Communication, 25: 2129.Google Scholar
Boucsein, W., Fowles, D., Grimnes, S., Ben-Shakhar, G., Roth, W., Dawson, M., & Filion, D. (2012). Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures: publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google Scholar
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation: defensive and appetitive reactions in picture processing. Emotion, 1: 276298.Google Scholar
Bradley, M. M. & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology, 37: 204215.Google Scholar
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.Google Scholar
Brenner, S. L., Beauchaine, T. P., & Sylvers, P. D. (2005). A comparison of psychophysiological and self-report measures of BAS and BIS activation. Psychophysiology, 42: 108115.Google Scholar
Brown, C. C. (1970). The parotid puzzle: a review of the literature on human salivation and its applications to psychophysiology. Psychophysiology, 7: 6685.Google Scholar
Butler, E. A., Wilhelm, F. H., & Gross, J. J. (2006). Respiratory sinus arrhythmia, emotion, and emotion regulation during social interaction. Psychophysiology, 43: 612622.Google Scholar
Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The Psychophysiology of Emotion. New York: Guilford Press.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.Google Scholar
Campos, J. J., Mumme, D. L., Kermoian, R., & Campos, R. G. (1994). A functionalist perspective on the nature of emotion. Monographs of the Society for Research in Child Development, 59: 284303.Google Scholar
Cannon, W. B. (1932). The Wisdom of the Body. New York: W. W. Norton.Google Scholar
Carver, C. S. & Harmon-Jones, E. (2009). Anger is an approach-related affect: evidence and implications. Psychological Bulletin, 135: 183204.Google Scholar
Castelfranchi, C. & Poggi, I. (1990). Blushing as a discourse: was Darwin wrong? In Crozier, W. R. (ed.), Shyness and Embarrassment: Perspectives from Social Psychology (pp. 230251). Cambridge University Press.Google Scholar
Chauhan, B., Mathias, C. J., & Critchley, H. D. (2008). Autonomic contributions to empathy: evidence from patients with primary autonomic failure. Autonomic Neuroscience, 140: 96100.Google Scholar
Coan, J. A. & Allen, J. J. B. (eds.) (2007). Handbook of Emotion Elicitation and Assessment. Oxford University Press.Google Scholar
Coan, J. A. & Gottman, J. M. (2007). The specific affect coding system (SPAFF). In Coan, J. A. & Allen, J. J. B. (eds.), Handbook of Emotion Elicitation and Assessment (pp. 267285). Oxford University Press.Google Scholar
Cohn, J. F. & De la Torre, F. (2015). Automated face analysis for affective computing. In Calvo, R. A., D’Mello, S. K., Gratch, J., & Kappas, A. (eds.), The Oxford Handbook of Affective Computing (pp. 131150). Oxford University Press.Google Scholar
Couto, B., Salles, A., Sedeño, L., Peradejordi, M., Barttfeld, P., Canales-Johnson, A., … & Ibanez, A. (2013). The man who feels two hearts: the different pathways of interoception. Social Cognitive and Affective Neuroscience, 9: 12531260.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10: 5970.Google Scholar
Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin, 34: 91107.Google Scholar
D’Andrade, R. & Egan, M. (1974). The colors of emotion. American Ethnologist, 1: 4963.Google Scholar
Dan-Glauser, E. S. & Gross, J. J. (2013). Emotion regulation and emotion coherence: evidence for strategy-specific effects. Emotion, 13: 832842.Google Scholar
Darwin, C. (1936). The Origin of Species by Means of Natural Selection: Or the Preservation of Favored Races in the Struggle for Life and The Descent of Man and Selection in Relation to Sex. New York: Modern Library.Google Scholar
Davidson, R. J. & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3: 1121.Google Scholar
Delp, M. J. & Sackeim, H. A. (1987). Effects of mood on lacrimal flow: sex differences and asymmetry. Psychophysiology, 24: 550556.Google Scholar
Diamond, L. M., Hicks, A. M., & Otter-Henderson, K. D. (2011). Individual differences in vagal regulation moderate associations between daily affect and daily couple interactions. Personality and Social Psychology Bulletin, 37: 731744.Google Scholar
Dimberg, U. (1982). Facial reactions to facial expressions. Psychophysiology, 19: 643647.Google Scholar
Drummond, P. D. & Lance, J. W. (1987). Facial flushing and sweating mediated by the sympathetic nervous system. Brain, 110: 793803.Google Scholar
Duchowski, A. (2007). Eye Tracking Methodology: Theory and Practice: London: Springer Verlag.Google Scholar
Eckart, J. A., Sturm, V. E., Miller, B. L., & Levenson, R. W. (2012). Diminished disgust reactivity in behavioral variant frontotemporal dementia. Neuropsychologia, 50: 786790.Google Scholar
Edelmann, R. J. (1987). The Psychology of Embarrassment. Oxford: John Wiley.Google Scholar
Eisenberg, N., Fabes, R. A., Murphy, B., Maszk, P., Smith, M., & Karbon, M. (1995). The role of emotionality and regulation in children’s social functioning: a longitudinal study. Child Development, 66: 13601384.Google Scholar
Eisenberg, N., Schaller, M., Fabes, R. A., Bustamante, D., Mathy, R. M., Shell, R., & Rhodes, K. (1988). Differentiation of personal distress and sympathy in children and adults. Developmental Psychology, 24: 766775.Google Scholar
Ekman, P. (1984). Expression and the nature of emotion. In Scherer, K. R. & Ekman, P. (eds.), Approaches to Emotion (pp. 319343). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48: 384392.Google Scholar
Ekman, P. (1994). Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychological Bulletin, 115: 268287.Google Scholar
Ekman, P. & Friesen, W. V. (1978). Facial Action Coding System. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972a). Emotion in the Human Face. New York: Pergamon Press.Google Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. (1972b). What are the similarities and differences in facial behavior across cultures? In Ekman, P., Friesen, W. V., & Ellsworth, P. (eds.), Emotion in the Human Face (pp. 128146). New York: Pergamon Press.Google Scholar
Ekman, P., Levenson, R. W., & Friesen, W. V. (1983). Autonomic nervous system activity distinguishes among emotions. Science, 221: 12081210.Google Scholar
Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan cultural elements in facial displays of emotion. Science, 164: 8688.Google Scholar
Elliot, A. J. & Covington, M. V. (2001). Approach and avoidance motivationEducational Psychology Review, 13: 7392.Google Scholar
Eppinger, H. & Hess, L. (1915). VAGOTONIA: a clinical study. Journal of Nervous and Mental Disease, 42: 112119.Google Scholar
Ernst, J., Northoff, G., Böker, H., Seifritz, E., & Grimm, S. (2013). Interoceptive awareness enhances neural activity during empathy. Human Brain Mapping, 34: 16151624.Google Scholar
Fowles, D. C., Christie, M. J., Edelberg, R., Grings, W. W., Lykken, D. T., & Venables, P. H. (1981). Committee report. Publication recommendations for electrodermal measurements. Psychophysiology, 18: 232239.Google Scholar
Fredrickson, B. L. (2000). Cultivating positive emotions to optimize health and well-being. Prevention & Treatment, 3: article 0001a.Google Scholar
Fredrickson, B. L. & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition & Emotion, 12: 191220.Google Scholar
Freund, K. (1991). Reflections on the development of the phallometric method of assessing erotic preferences. Annals of Sex Research, 4: 221228.Google Scholar
Freund, K., Sedlacek, F., & Knob, K. (1965). A simple transducer for mechanical plethysmography of the male genital. Journal of the Experimental Analysis of Behavior, 8: 169170.Google Scholar
Friedman, H. L., Brown, N. J. L., Tugade, M. M., Shiota, M. N., & Kirby, L. D. (2014). The State of Contemporary Positive Emotions Research. Washington, DC: American Psychological Association.Google Scholar
Friesen, W. V. (1972). Cultural differences in facial expressions in a social situation: an experimental test of the concept of display rules. Dissertation, University of California, San Francisco.Google Scholar
Fukushima, H., Terasawa, Y., & Umeda, S. (2011). Association between interoception and empathy: evidence from heartbeat-evoked brain potential. International Journal of Psychophysiology, 79: 259265.Google Scholar
Gendron, M., Roberson, D., van der Vyver, J. M., & Barrett, L.F. (2014). Perceptions of emotion from facial expressions are not culturally universal: evidence from a remote culture. Emotion, 14: 251262.Google Scholar
Gomez, P. & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. International Journal of Psychophysiology, 53: 91103.Google Scholar
Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74: 224237.Google Scholar
Gross, J. J., Fredrickson, B. L., & Levenson, R. W. (1994). The psychophysiology of crying. Psychophysiology, 31: 460468.Google Scholar
Gross, J. J. & Levenson, R. W. (1993). Emotional suppression: physiology, self-report, and expressive behavior. Journal of Personality and Social Psychology, 64: 970986.Google Scholar
Gross, J.J., & Levenson, R. W. (1995). Emotion elicitation using films. Cognition & Emotion, 9: 87108.Google Scholar
Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology, 28: 201216.Google Scholar
Gruber, J., Johnson, S. L., Oveis, C., & Keltner, D. (2008). Risk for mania and positive emotional responding: too much of a good thing? Emotion, 8: 2333.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.Google Scholar
Harrison, N. A., Singer, T., Rotshtein, P., Dolan, R. J., & Critchley, H. D. (2006). Pupillary contagion: central mechanisms engaged in sadness processing. Social Cognitive and Affective Neuroscience, 1: 517.Google Scholar
Harrison, N. A., Wilson, C. E., & Critchley, H. D. (2007). Processing of observed pupil size modulates perception of sadness and predicts empathy. Emotion, 7: 724729.Google Scholar
Haug, T. T., Svebak, S., Hausken, T., Wilhelmsen, I., Berstad, A., & Ursin, H. (1994). Low vagal activity as mediating mechanism for the relationship between personality factors and gastric symptoms in functional dyspepsia. Psychosomatic Medicine, 56: 181186.Google Scholar
Herbert, B. M., Muth, E. R., Pollatos, O., & Herbert, C. (2012). Interoception across modalities: on the relationship between cardiac awareness and the sensitivity for gastric functions. PLoS One, 7: e36646.Google Scholar
Herlihy, B. (2013). The Human Body in Health and Illness. St. Louis, MO: Elsevier.Google Scholar
Herrald, M. M. & Tomaka, J. (2002). Patterns of emotion-specific appraisal, coping, and cardiovascular reactivity during an ongoing emotional episode. Journal of Personality and Social Psychology, 83: 434450.Google Scholar
Hess, E. H. & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143: 11901192.Google Scholar
Hopp, H., Shallcross, A. J., Ford, B. Q., Troy, A. S., Wilhelm, F. H., & Mauss, I. B. (2013). High cardiac vagal control protects against future depressive symptoms under conditions of high social support. Biological Psychology, 93: 143149.Google Scholar
Houle, M. S. & Billman, G. E. (1999). Low-frequency component of the heart rate variability spectrum: a poor marker of sympathetic activity. American Journal of Physiology, 276: H215H223.Google Scholar
Izard, C. E. (1971). The Face of Emotion. New York: Appleton-Century-Crofts.Google Scholar
James, W. (1884). What is an emotion? Mind, 9: 188205.Google Scholar
Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S., & Turpin, G. (1981). Committee report. Publication guidelines for heart rate studies in man. Psychophysiology, 18: 226231.Google Scholar
Johnson, K. J., Waugh, C. E., & Fredrickson, B. L. (2010). Smile to see the forest: facially expressed positive emotions broaden cognition. Cognition & Emotion, 24: 299321.Google Scholar
Juslin, P. N. & Laukka, P. (2004). Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. Journal of New Music Research, 33: 217238.Google Scholar
Kahneman, D. & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154: 15831585.Google Scholar
Katkin, E. S. (1985). Blood, sweat, and tears: individual differences in autonomic self-perception. Psychophysiology, 22: 125137.Google Scholar
Keltner, D. & Anderson, C. (2000). Saving face for Darwin: the functions and uses of embarrassment. Current Directions in Psychological Science, 9: 187192.Google Scholar
Keltner, D. & Buswell, B. N. (1997). Embarrassment: its distinct form and appeasement functions. Psychological Bulletin, 122: 250270.Google Scholar
Keltner, D. & Haidt, J. (2003). Approaching awe, a moral, spiritual, and aesthetic emotion. Cognition & Emotion, 17: 297314.Google Scholar
Keltner, D. & Kring, A. M. (1998). Emotion, social function, and psychopathology. Review of General Psychology, 2: 320342.Google Scholar
Khalfa, S., Roy, M., Rainville, P., Dalla Bella, S., & Peretz, I. (2008). Role of tempo entrainment in psychophysiological differentiation of happy and sad music? International Journal of Psychophysiology, 68: 1726.Google Scholar
Khalsa, S., Rudrauf, D., Sandesara, C., Olshansky, B., & Tranel, D. (2009). Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. International Journal of Psychophysiology, 72: 3445.Google Scholar
Klorman, R., Weissberg, R. P., & Wiesenfeld, A. R. (1977). Individual differences in fear and autonomic reactions to affective stimulation. Psychophysiology, 14: 4551.Google Scholar
Kogan, A., Oveis, C., Carr, E. W., Gruber, J., Mauss, I. B., Shallcross, A., … & Cheng, C. (2014). Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality. Journal of Personality and Social Psychology, 107: 10511063.Google Scholar
Kok, B. E. & Fredrickson, B. L. (2010). Upward spirals of the heart: autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85: 432436.Google Scholar
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.Google Scholar
Kreibig, S. D., Schaefer, G., & Brosch, T. (2010). Psychophysiological response patterning in emotion: implications for affective computing. In Scherer, K. R., Baenziger, T., & Roesch, E. (eds.), Blueprint for Affective Computing: A Sourcebook (pp. 105130). Oxford University Press.Google Scholar
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44: 787806.Google Scholar
Kring, A. M. & Gordon, A. H. (1998). Sex differences in emotion: expression, experience, and physiology. Journal of Personality and Social Psychology, 74: 686703.Google Scholar
Kring, A. M. & Sloan, D. M. (2007). The Facial Expression Coding System (FACES): development, validation, and utility. Psychological Assessment, 19: 210224.Google Scholar
Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51: 336352.Google Scholar
Krzywicki, A. T., Berntson, G. G., & O’Kane, B. L. (2014). A non-contact technique for measuring eccrine sweat gland activity using passive thermal imaging. International Journal of Psychophysiology, 94: 2534.Google Scholar
Kuban, M., Barbaree, H. E., & Blanchard, R. (1999). A comparison of volume and circumference phallometry: response magnitude and method agreement. Archives of Sexual Behavior, 28: 345359.Google Scholar
Kunzmann, U. & Grühn, D. (2005). Age differences in emotional reactivity: the sample case of sadness. Psychology and Aging, 20: 4759.Google Scholar
Kunzmann, U., Kupperbusch, C. S., & Levenson, R. W. (2005). Behavioral inhibition and amplification during emotional arousal: a comparison of two age groups. Psychology and Aging, 20: 144158.Google Scholar
Laan, A. J., Van Assen, M. A., & Vingerhoets, A. J. (2012). Individual differences in adult crying: the role of attachment styles. Social Behavior and Personality, 40: 453471.Google Scholar
Lakoff, G. & Kövecses, Z. (1987). The cognitive model of anger inherent in American English. In Holland, D. & Quinn, N. (eds.), Cultural Models in Language & Thought (pp. 195221). Cambridge University Press.Google Scholar
Landis, C. (1930). Psychology and the psychogalvanic reflex. Psychological Review, 37: 381398.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97: 377395.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1999). International Affective Picture System (IAPS): Technical Manual and Affective Ratings. Gainesville, FL: Center for Research in Psychophysiology, University of Florida.Google Scholar
Lang, P. J., Greenwald, M. K., & Bradley, M. M. (1988). The International Affective Picture System (IAPS) Standardization Procedure and Initial Group Results for Affective Judgments. Gainesville, FL: Center for the Study of Emotion and Attention, University of Florida.Google Scholar
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology, 30: 261273.Google Scholar
Lazarus, R. S., Kanner, A. D., & Folkman, S. (1980). Emotions: a cognitive-phenomenological analysis. In Plutchik, R. & Kellerman, H. (eds.), Theories of Emotion (pp. 189217). New York: Academic Press.Google Scholar
Lazarus, R. S., Opton, E., Tomita, M., & Kodama, M. (1966). A cross-cultural study of stress-reaction patterns in Japan. Journal of Personality and Social Psychology, 4: 622633.Google Scholar
Leary, M. R., Britt, T. W., Cutlip, W. D., & Templeton, J. L. (1992). Social blushing. Psychological Bulletin, 112: 446460.Google Scholar
Levenson, R. W. (1983). Personality research and psychophysiology: general considerations. Journal of Research in Personality, 17: 121.Google Scholar
Levenson, R. W. (1988). Emotion and the autonomic nervous system: a prospectus for research on autonomic specificity. In Wanger, H. L. (ed.), Social Psychophysiology and Emotion: Theory and Clinical Applications (pp. 1742). Oxford: John Wiley.Google Scholar
Levenson, R. W. (1992). Autonomic nervous system differences among emotions. Psychological Science, 3: 2327.Google Scholar
Levenson, R. W. (1994). Human emotion: a functional view. In Ekman, P. & Davidson, R. J. (eds.), The Nature of Emotion: Fundamental Questions (pp. 123126). Oxford University Press.Google Scholar
Levenson, R. W. (1999). The intrapersonal functions of emotion. Cognition & Emotion, 13: 481504.Google Scholar
Levenson, R. W. (2003). Blood, sweat, and fears: the autonomic architecture of emotion. Annals of the New York Academy of Sciences, 1000: 348366.Google Scholar
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.Google Scholar
Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27: 363384.Google Scholar
Levenson, R. W. & Ruef, A. M. (1992). Empathy: a physiological substrate. Journal of Personality and Social Psychology, 63: 234246.Google Scholar
Levenson, R. W., Soto, J., & Pole, N. (2007). Emotion, biology, and culture. In Kitayama, S. & Cohen, D. (eds.), Handbook of Cultural Psychology (pp. 780796). New York: Guilford Press.Google Scholar
Libby, W. L., Lacey, B. C., & Lacey, J. I. (1973). Pupillary and cardiac activity during visual attention. Psychophysiology, 10: 270294.Google Scholar
Lozano, D. L., Norman, G., Knox, D., Wood, B. L., Miller, B. D., Emery, C. F., & Berntson, G. G. (2007). Where to B in dZ/dt. Psychophysiology, 44: 113119.Google Scholar
Machado-Moreira, C. A. & Taylor, N. A. (2012). Psychological sweating from glabrous and nonglabrous skin surfaces under thermoneutral conditions. Psychophysiology, 49: 369374.Google Scholar
Mandler, G., Mandler, J. M., & Uviller, E. T. (1958). Autonomic feedback: the perception of autonomic activity. Journal of Abnormal and Social Psychology, 56: 367373.Google Scholar
Maruskin, L. A., Thrash, T. M., & Elliot, A. J. (2012). The chills as a psychological construct: content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences. Journal of Personality and Social Psychology, 103: 135157.Google Scholar
Masters, W. H. (1959). The sexual response cycle of the human female: vaginal lubrication. Annals of the New York Academy of Sciences, 83: 301317.Google Scholar
Matsumoto, D. & Willingham, B. (2006). The thrill of victory and the agony of defeat: spontaneous expressions of medal winners of the 2004 Athens Olympic Games. Journal of Personality and Social Psychology, 91: 568581.Google Scholar
Mauss, I. B., Cook, C. L., & Gross, J. J. (2007). Automatic emotion regulation during anger provocation. Journal of Experimental Social Psychology, 43: 698711.Google Scholar
Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion, 5: 175190.Google Scholar
Mauss, I. B. & Robinson, M. D. (2009). Measures of emotion: a review. Cognition & Emotion, 23: 209237.Google Scholar
McCaul, K. D., Holmes, D. S., & Solomon, S. (1982). Voluntary expressive changes and emotion. Journal of Personality and Social Psychology, 42: 145152.Google Scholar
McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71: 111.Google Scholar
Meissner, K., Muth, E. R., & Herbert, B. M. (2011). Bradygastric activity of the stomach predicts disgust sensitivity and perceived disgust intensity. Biological Psychology, 86: 916.Google Scholar
Mendes, W. B., Major, B., McCoy, S., & Blascovich, J. (2008). How attributional ambiguity shapes physiological and emotional responses to social rejection and acceptance. Journal of Personality and Social Psychology, 94: 278291.Google Scholar
Mesquita, B., Barrett, L. F., & Smith, E. R. (2010). The context principle. In Mesquita, B., Barrett, L. F., & Smith, E. R. (eds.), The Mind in Context (pp. 124). New York: Guilford Press.Google Scholar
Miceli, M. & Castelfranchi, C. (2003). Crying: discussing its basic reasons and uses. New Ideas in Psychology, 21: 247273.Google Scholar
Morris, N. B., Cramer, M. N., Hodder, S. G., Havenith, G., & Jay, O. (2013). A comparison between the technical absorbent and ventilated capsule methods for measuring local sweat rate. Journal of Applied Physiology, 114: 816823.Google Scholar
Muhtadie, L., Koslov, K., Akinola, M., & Mendes, W. B. (2014). Vagal flexibility: a physiological predictor of social sensitivity. Journal of Personality and Social Psychology, 109: 106120.Google Scholar
Navazesh, M. & Christensen, C. (1982). A comparison of whole mouth resting and stimulated salivary measurement procedures. Journal of Dental Research, 61: 11581162.Google Scholar
Navazesh, M. & Kumar, S. (2008). Measuring salivary flow: challenges and opportunities. Journal of the American Dental Association, 139: 35S40S.Google Scholar
Newlin, D. B. & Levenson, R. W. (1979). Pre-ejection period: measuring beta-adrenergic influences upon the heart. Psychophysiology, 16: 546553.Google Scholar
Obrist, P. A., Webb, R. A., Sutterer, J. R., & Howard, J. L. (1970). The cardiac-somatic relationship: some reformulations. Psychophysiology, 6: 569587.Google Scholar
Osgood, C. E. (1964). Sematic differential technique in the comparative study of cultures. American Anthropologist, 66: 171200.Google Scholar
Osgood, C. E. G., Suci, G. J., & Tannenbaum, P. H. (1957). The Measurement of Meaning. Urbana: University of Illinois Press.Google Scholar
Oveis, C., Cohen, A. B., Gruber, J., Shiota, M. N., Haidt, J., & Keltner, D. (2009). Resting respiratory sinus arrhythmia is associated with tonic positive emotionality. Emotion, 9: 265270.Google Scholar
Palomba, D., Angrilli, A., & Mini, A. (1997). Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli. International Journal of Psychophysiology, 27: 5567.Google Scholar
Panksepp, J. (1995). The emotional sources of “chills” induced by music. Music Perception, 13: 171207.Google Scholar
Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human and Animal Emotions. Oxford University Press.Google Scholar
Panksepp, J. (2000). Emotions as natural kinds within the mammalian brain. In Lewis, M. & Haviland-Jones, J. M. (eds.), Handbook of Emotions (pp. 137156). New York: Guilford Press.Google Scholar
Partala, T., Jokiniemi, M., & Surakka, V. (2000). Pupillary responses to emotionally provocative stimuli. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications (pp. 123129). New York: ACM.Google Scholar
Pauls, C. A. & Stemmler, G. (2003). Repressive and defensive coping during fear and anger. Emotion, 3: 284302.Google Scholar
Pennebaker, J. W. (1982). The Psychology of Physical Symptoms. New York: Springer-Verlag.Google Scholar
Platt, J. R. (1964). Strong inference. Science, 146: 347353.Google Scholar
Porges, S. W. (2001). The polyvagal theory: phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42: 123146.Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74: 116143.Google Scholar
Preston, S. D. & De Waal, F. B. M. (2002). Empathy: its ultimate and proximate bases. Behavioral and Brain Sciences, 25: 172.Google Scholar
Prkachin, K. M., Mills, D. E., Zwaal, C., & Husted, J. (2001). Comparison of hemodynamic responses to social and nonsocial stress: evaluation of an anger interview. Psychophysiology, 38: 879885.Google Scholar
Proctor, G. B. & Carpenter, G. H. (2007). Regulation of salivary gland function by autonomic nerves. Autonomic Neuroscience, 133: 318.Google Scholar
Quigley, K. S. (2004). Parasympathetic nervous system. In Craighead, W. E. & Nemeroff, C. B. (eds.), Concise Corsini Encyclopedia of Psychology and Behavioral Science, 3rd edn. New York: John Wiley.Google Scholar
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50: 477487.Google Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.Google Scholar
Rohrmann, S. & Hopp, H. (2008). Cardiovascular indicators of disgust. International Journal of Psychophysiology, 68: 201208.Google Scholar
Roseman, I. J., Wiest, C., & Swartz, T. S. (1994). Phenomenology, behaviors, and goals differentiate discrete emotions. Journal of Personality and Social Psychology, 67: 206221.Google Scholar
Rottenberg, J., Wilhelm, F. H., Gross, J. J., & Gotlib, I. H. (2002). Respiratory sinus arrhythmia as a predictor of outcome in major depressive disorder. Journal of Affective Disorders, 71: 265272.Google Scholar
Rozin, P. & Fallon, A. E. (1987). A perspective on disgust. Psychological Review, 94: 2341.Google Scholar
Ruef, A. M. & Levenson, R. W. (2007). Continuous measurement of emotion: the affect rating dial. In Coan, J. A. & Allen, J. J. B. (eds.), Handbook of Emotion Elicitation and Assessment (pp. 286297). Oxford University Press.Google Scholar
Russell, J. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39: 11611178.Google Scholar
Russell, J. A. (1994). Is there universal recognition of emotion from facial expressions? A review of the cross-cultural studies. Psychology Bulletin, 115: 102141.Google Scholar
Russell, J. A. & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. Journal of Personality and Social Psychology, 76: 805819.Google Scholar
Salonia, A., Giraldi, A., Chivers, M. L., Georgiadis, J. R., Levin, R., Maravilla, K. R., & McCarthy, M. M. (2010). Physiology of women’s sexual function: basic knowledge and new findings. Journal of Sexual Medicine, 7: 26372660.Google Scholar
Sarnik, S., Hofirek, I., & Sochor, O. (2007). Laser doppler fluxmetry. Biomedical Papers, 151: 143146.Google Scholar
Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the USA, 107: 24082412.Google Scholar
Schachter, S. & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69: 379399.Google Scholar
Schandry, R. (1981). Heart beat perception and emotional experience. Psychophysiology, 18: 483488.Google Scholar
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44: 695729.Google Scholar
Scherer, K. R., Banse, R., Wallbott, H. G., & Goldbeck, T. (1991). Vocal cues in emotion encoding and decoding. Motivation & Emotion, 15: 123148.Google Scholar
Scherer, K. R. & Wallbott, H. G. (1994). Evidence for universality and cultural variation of differential emotion response patterning. Journal of Personality and Social Psychology, 66: 310328.Google Scholar
Schnall, S., Haidt, J., Clore, G. L., & Jordan, A. H. (2008). Disgust as embodied moral judgment. Personality and Social Psychology Bulletin, 34: 10961109.Google Scholar
Schneider, T. R., Lyons, J. B., & Williams, M. (2005). Emotional intelligence and autonomic self-perception: emotional abilities are related to visceral acuity. Personality and Individual Differences, 39: 853861.Google Scholar
Schwartz, G. E., Weinberger, D. A., & Singer, J.A. (1981). Cardiovascular differentiation of happiness, sadness, anger, and fear following imagery and exercise. Psychosomatic Medicine, 43: 343364.Google Scholar
Seider, B. H., Shiota, M. N., Whalen, P., & Levenson, R. W. (2011). Greater sadness reactivity in late life. Social Cognitive and Affective Neuroscience, 6: 186194.Google Scholar
Shearn, D., Bergman, E., Hill, K., Abel, A., & Hinds, L. (1990). Facial coloration and temperature responses in blushing. Psychophysiology, 27: 687693.Google Scholar
Shenhav, A. & Mendes, W. B. (2014). Aiming for the stomach and hitting the heart: dissociable triggers and sources for disgust reactions. Emotion, 14: 301310.Google Scholar
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google Scholar
Shiota, M. N., Neufeld, S. L., Danvers, A. F., Osborne, E. A., Sng, O., & Yee, C. I. (2014). Positive emotion differentiation: a functional approach. Social and Personality Psychology Compass, 8: 104117.Google Scholar
Shiota, M. N., Neufeld, S. L., Yeung, W. H., Moser, S. E., & Perea, E. F. (2011). Feeling good: autonomic nervous system responding in five positive emotions. Emotion, 11: 13681378.Google Scholar
Simmons, W. K., Avery, J. A., Barcalow, J. C., Bodurka, J., Drevets, W. C., & Bellgowan, P. (2013). Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping, 34: 29442958.Google Scholar
Sinha, R., Lovallo, W. R., & Parsons, O. A. (1992). Cardiovascular differentiation of emotions. Psychosomatic Medicine, 54: 422435.Google Scholar
Sintchak, G. & Geer, J. H. (1975). A vaginal plethysmograph system. Psychophysiology, 12: 113115.Google Scholar
Smith, A., Cadoret, G., & St-Amour, D. (1997). Scopolamine increases prehensile force during object manipulation by reducing palmar sweating and decreasing skin friction. Experimental Brain Research, 114: 578583.Google Scholar
Soto, J. A., Levenson, R. W., & Ebling, R. (2005). Cultures of moderation and expression: emotional experience, behavior, and physiology in Chinese Americans and Mexican Americans. Emotion, 5: 154165.Google Scholar
Soto, J. A., Roberts, N. A., Pole, N., Levenson, R. W., Burleson, M. H., King, A. R., & Breland-Noble, A. (2012). Elevated baseline anxiety among African Americans in laboratory research settings. Journal of Psychophysiology, 26: 105115.Google Scholar
Soussignan, R. (2002). Duchenne smile, emotional experience, and autonomic reactivity: a test of the facial feedback hypothesis. Emotion, 2: 5274.Google Scholar
Stellar, J. E., Cohen, A., Oveis, C., & Keltner, D. (2015). Affective and physiological responses to the suffering of others: compassion and vagal activity. Journal of Personality and Social Psychology, 108: 572585.Google Scholar
Stemmler, G. (1989). The autonomic differentiation of emotions revisited: convergent and discriminant validation. Psychophysiology, 26: 617632.Google Scholar
Stemmler, G., Heldmann, M., Pauls, C. A., & Scherer, T. (2001). Constraints for emotion specificity in fear and anger: the context counts. Psychophysiology, 38: 275291.Google Scholar
Stern, R. M., Koch, K. L., Stewart, W. R., & Vasey, M. W. (1987). Electrogastrography: current issues in validation and methodology. Psychophysiology, 24: 5564.Google Scholar
Sternbach, R. A. (1962). Assessing differential autonomic patterns in emotions. Journal of Psychosomatic Research, 6: 8791.Google Scholar
Sze, J. A., Gyurak, A., Yuan, J. W., & Levenson, R. W. (2010). Coherence between emotional experience and physiology: does body awareness training have an impact? Emotion, 10: 803814.Google Scholar
Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 65: 248260.Google Scholar
Tomkins, S. S. (1962). Affect, Imagery, Consciousness, vol. 1: The Positive Affects. New York: Springer.Google Scholar
Tomkins, S. S. (1984). Affect theory. In Scherer, T. & Ekman, P. (eds.), Approaches to Emotion (pp. 353395). Cambridge University Press.Google Scholar
Tooby, J. & Cosmides, L. (1990). The past explains the present: emotional adaptations and the structure of ancestral environmentsEthology and Sociobiology, 11: 375424.Google Scholar
Tracy, J. L. & Matsumoto, D. (2008). The spontaneous expression of pride and shame: evidence for biologically innate nonverbal displays. Proceedings of the National Academy of Sciences of the USA, 105: 1165511660.Google Scholar
Tsai, J. L., Chentsova-Dutton, Y., Freire-Bebeau,