Systemic Psychophysiology
Published online by Cambridge University Press: 27 January 2017
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Chapter
- Information
- Handbook of Psychophysiology , pp. 39 - 398Publisher: Cambridge University PressPrint publication year: 2016
References
References
Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8: 360–369.Google Scholar
Amunts, K., Schleicher, A., & Zilles, K. (2007). Cytoarchitecture of the cerebral cortex: more than localization. NeuroImage, 37: 1061–1065.CrossRefGoogle ScholarPubMed
Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. NeuroImage, 13: 903–919.Google Scholar
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104: 322–335.Google Scholar
Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94: 327–337.Google Scholar
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38: 95–113.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (2000). Voxel-based morphometry: the methods. NeuroImage, 11: 805–821.CrossRefGoogle ScholarPubMed
Atlas, L. Y., Lindquist, M. A., Bolger, N., & Wager, T. D. (2014). Brain mediators of the effects of noxious heat on pain. Pain, 155: 1632–1648.Google Scholar
Atlas, L. Y., Whittington, R. A., Lindquist, M. A., Wielgosz, J., Sonty, N., & Wager, T. D. (2012). Dissociable influences of opiates and expectations on pain. Journal of Neuroscience, 32: 8053–8064.CrossRefGoogle ScholarPubMed
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). LME4: Linear mixed-effects models using Eigen and S4. R package version 1.Google Scholar
Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage, 20: 1052–1063.Google Scholar
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34: 144–155.Google Scholar
Bendriem, B. & Townsend, D. W. (1998). The Theory and Practice of 3D PET. Boston and Dordrecht: Kluwer.Google Scholar
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57: 289–300.Google Scholar
Bernstein, M. A., King, K. F., & Zhou, Z. J. (2004). Handbook of MRI Pulse Sequences. Burlington, MA: Elsevier Academic Press.Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19: 2767–2796.Google Scholar
Birn, R. M., Saad, Z. S., & Bandettini, P. A. (2001). Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. NeuroImage, 14: 817–826.Google Scholar
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34: 537–541.CrossRefGoogle ScholarPubMed
Bohning, D. E., Pecheny, A. P., Epstein, C. M., Speer, A. M., Vincent, D. J., Dannels, W., & George, M. S. (1997). Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport, 8: 2535–2538.Google Scholar
Bohning, D. E., Shastri, A., McConnell, K. A., Nahas, Z., Lorberbaum, J. P., Roberts, D. R., Teneback, C., Vincent, D. J., & George, M. S. (1999). A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biological Psychiatry, 45: 385–394.CrossRefGoogle ScholarPubMed
Bornhovd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., & Buchel, C. (2002). Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain, 125: 1326–1336.Google Scholar
Boubela, R. N., Kalcher, K., Huf, W., Seidel, E. M., Derntl, B., Pezawas, L., … & Moser, E. (2015). fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Scientific Reports, 5: 10499.Google Scholar
Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16: 4207–4221.Google Scholar
Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3: 243–249.CrossRefGoogle ScholarPubMed
Brooks, J. C., Beckmann, C. F., Miller, K. L., Wise, R. G., Porro, C. A., Tracey, I., & Jenkinson, M. (2008). Physiological noise modelling for spinal functional magnetic resonance imaging studies. NeuroImage, 39: 680–692.Google Scholar
Brown, A. K., Fujita, M., Fujimura, Y., Liow, J. S., Stabin, M., Ryu, Y. H., … & Innis, R. B. (2007). Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. Journal of Nuclear Medicine, 48: 2072–2079.Google Scholar
Buchel, C., Bornhovd, K., Quante, M., Glauche, V., Bromm, B., & Weiller, C. (2002), Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. Journal of Neuroscience, 22: 970–976.Google Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124: 1–38.Google Scholar
Buracas, G. T. & Boynton, G. M. (2002). Efficient design of event-related fMRI experiments using M-sequences. NeuroImage, 16: 801–813.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4: 215–222.Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafo, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14: 365–376.Google Scholar
Buxton, R. B. & Frank, L. R. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. Journal of Cerebral Blood Flow & Metabolism, 17: 64–72.CrossRefGoogle Scholar
Buxton, R. B., Frank, L. R., Wong, E. C., Siewert, B., Warach, S., & Edelman, R. R. (1998). A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magnetic Resonance in Medicine, 40: 383–396.Google Scholar
Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23: S220–S233.Google Scholar
Cacioppo, J. T., & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 16–28.Google Scholar
Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84: 262–274.Google Scholar
Chaimow, D., Yacoub, E., Ugurbil, K., & Shmuel, A. (2011). Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns. NeuroImage, 56: 627–642.Google Scholar
Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32: 359–374.Google Scholar
Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18: 192–205.Google Scholar
Coltheart, M. (2006). What has functional neuroimaging told us about the mind (so far)? Cortex, 42: 323–331.Google Scholar
Constable, R. T. & Spencer, D. D. (1999). Composite image formation in z-shimmed functional MR imaging. Magnetic Resonance in Medicine, 42: 110–117.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. New York: John Wiley.Google Scholar
Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., & Lindquist, M. A. (2012). Dynamic connectivity regression: determining state-related changes in brain connectivity. NeuroImage, 61: 907–920.Google Scholar
de Quervain, D. J., Fischbacher, U., Treyer, V., Schellhammer, M., Schnyder, U., Buck, A., & Fehr, E. (2004). The neural basis of altruistic punishment. Science, 305: 1254–1258.Google Scholar
Deckers, R. H., van Gelderen, P., Ries, M., Barret, O., Duyn, J. H., Ikonomidou, V. N., … & de Zwart, J. A. (2006). An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data. NeuroImage, 33: 1072–1081.Google Scholar
Denis Le Bihan, M. D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13: 534–546.Google Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24: 1742–1752.Google Scholar
Desmond, J. E. & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118: 115–128.Google Scholar
Detre, J. A., Zhang, W. G., Roberts, D. A., Silva, A. C., Williams, D. S., Grandis, D. J., … & Leigh, J. S. (1994). Tissue-specific perfusion imaging using arterial spin-labeling. NMR in Biomedicine, 7: 75–82.Google Scholar
Devlin, J. T. & Poldrack, R. A. (2007). In praise of tedious anatomy. NeuroImage, 37: 1033–1041.CrossRefGoogle ScholarPubMed
Disbrow, E. A., Slutsky, D. A., Roberts, T. P., & Krubitzer, L. A. (2000). Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. Proceedings of the National Academy of Sciences of the USA, 97: 9718–9723.Google Scholar
Doucet, G., Naveau, M., Petit, L., Zago, L., Crivello, F., Jobard, G., … & Joliot, M. (2012). Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought during rest. NeuroImage, 59: 3194–3200.Google Scholar
Duong, T. Q., Yacoub, E., Adriany, G., Hu, X., Ugurbil, K., Vaughan, J. T., … & Kim, S. G. (2002). High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magnetic Resonance in Medicine, 48: 589–593.Google Scholar
Duvernoy, H. M. (2012). The Human Brain Stem and Cerebellum: Surface, Structure, Vascularization, and Three-Dimensional Sectional Anatomy, with MRI. Dordrecht: Springer Science & Business Media.Google Scholar
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25: 1325–1335.Google Scholar
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302: 290–292.Google Scholar
Elster, A. D. (1994). Questions and Answers in Magnetic Resonance Imaging. St. Louis, MO: Mosby.Google Scholar
Ethofer, T., Van De Ville, D., Scherer, K., & Vuilleumier, P. (2009). Decoding of emotional information in voice-sensitive cortices. Current Biology, 19: 1028–1033.Google Scholar
Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S., Gunther, M., … & Yacoub, E. (2010). Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One, 5: e15710.Google Scholar
Finsterbusch, J., Busch, M. G., & Larson, P. E. Z. (2013). Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations. Magnetic Resonance in Medicine, 70: 1491–1499.Google Scholar
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9: 195–207.Google Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the USA, 102: 9673–9678.Google Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56: 171–184.Google Scholar
Frey, K. A. (1999). Positron emission tomography. In Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., & Uhler, M. D. (eds.), Basic Neurochemistry, 6th edn. (pp. 1109–1131). Philadelphia: Lippincott, Williams, & Wilkins.Google Scholar
Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326: 399–403.Google Scholar
Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1: 13–36.Google Scholar
Friston, K. J. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61: 1300–1310.Google Scholar
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6: 218–229.Google Scholar
Friston, K. J., Frith, C. D., Turner, R., & Frackowiak, R. S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2: 157–165.Google Scholar
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19: 1273–1302.Google Scholar
Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage, 12: 466–477.CrossRefGoogle ScholarPubMed
Gianaros, P. J. & Wager, T. D. (2015). Brain–body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24: 313–321.Google Scholar
Glahn, D. C., Paus, T., & Thompson, P. M. (2007a). Imaging genomics: mapping the influence of genetics on brain structure and function. Human Brain Mapping, 28: 461–463.Google Scholar
Glahn, D. C., Thompson, P. M., & Blangero, J. (2007b). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28: 488–501.Google Scholar
Glover, G. H. & Law, C. S. (2001). Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magnetic Resonance in Medicine, 46:515–522.Google Scholar
Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44: 162–167.Google Scholar
Goldman, R. I., Stern, J. M., Engel, J. Jr., & Cohen, M. S. (2000). Acquiring simultaneous EEG and functional MRI. Clinical Neurophysiology, 111: 1974–1980.Google Scholar
Gonzalez-Castillo, J., Saad, Z. S., Handwerker, D. A., Inati, S. J., Brenowitz, N., & Bandettini, P. A. (2012). Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proceedings of the National Academy of Sciences of the USA, 109: 5487–5492.Google Scholar
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14: 21–36.Google Scholar
Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57: 303–311.Google Scholar
Haacke, E. M. (1999). Magnetic Resonance Imaging: Physical Principles and Sequence Design. New York: John Wiley.Google Scholar
Haines, D. E. (2000). Neuroanatomy: An Atlas of Structures, Sections, and Systems. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324: 646–648.Google Scholar
Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., … & Ramadge, P. J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72: 404–416.Google Scholar
Haynes, J. D. (2015). A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron, 87: 257–270.Google Scholar
Haynes, J. D., Deichmann, R., & Rees, G. (2005). Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature, 438: 496–499.Google Scholar
Heeger, D. J. & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Reviews Neuroscience, 3: 142–151.Google Scholar
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287: 1269–1272.Google Scholar
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the USA, 106: 2035–2040.Google Scholar
Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science, 340: 639–642.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates.Google Scholar
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76: 1210–1224.Google Scholar
Johansen-Berg, H. & Behrens, T. E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current Opinion in Neurology, 19: 379–385.Google Scholar
Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., … & Matthews, P. M. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the USA, 101: 13335–13340.Google Scholar
Josephs, O. & Henson, R. N. (1999). Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354: 1215–1228.Google Scholar
Kamitani, Y. & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8: 679–685.Google Scholar
Kao, M. H., Mandal, A., Lazar, N., & Stufken, J. (2009). Multi-objective optimal experimental designs for event-related fMRI studies. NeuroImage, 44: 849–856.Google Scholar
Kastner, S. & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23: 315–341.Google Scholar
Kleinschmidt, A., Buchel, C., Zeki, S., & Frackowiak, R. S. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265: 2427–2433.Google Scholar
Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., … & Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Annals of Neurology, 55: 306–319.Google Scholar
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage, 42: 998–1031.Google Scholar
Kong, Y., Jenkinson, M., Andersson, J., Tracey, I., & Brooks, J. C. (2012). Assessment of physiological noise modelling methods for functional imaging of the spinal cord. NeuroImage, 60: 1538–1549.Google Scholar
Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A., & Vul, E. (2010). Everything you never wanted to know about circular analysis, but were afraid to ask. Journal of Cerebral Blood Flow & Metabolism, 30: 1551–1557.Google Scholar
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12: 535–540.Google Scholar
Kvitsiani, D., Ranade, S., Hangya, B., Taniguchi, H., Huang, J. Z., & Kepecs, A. (2013). Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature, 498: 363–366.Google Scholar
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., … & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the USA, 89: 5675–5679.Google Scholar
Laufs, H., Daunizeau, J., Carmichael, D. W., & Kleinschmidt, A. (2008). Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. NeuroImage, 40: 515–528.Google Scholar
Leitao, J., Thielscher, A., Tunnerhoff, J., & Noppeney, U. (2015). Concurrent TMS-fMRI reveals interactions between dorsal and ventral attentional systems. Journal of Neuroscience, 35: 11445–11457.Google Scholar
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012a). The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences, 35: 121–143.Google Scholar
Lindquist, M. A., Caffo, B., & Crainiceanu, C. (2013). Ironing out the statistical wrinkles in “ten ironic rules.” NeuroImage, 81: 499–502.Google Scholar
Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012b). Estimating and testing variance components in a multi-level GLM. NeuroImage, 59: 490–501.Google Scholar
Lindquist, M. A., Waugh, C., & Wager, T. D. (2007). Modeling state-related fMRI activity using change-point theory. NeuroImage, 35: 1125–1141.Google Scholar
Lindquist, M. A., Zhang, C. H., Glover, G., & Shepp, L. (2008). Rapid three-dimensional functional magnetic resonance imaging of the initial negative BOLD response. Journal of Magnetic Resonance, 191: 100–111.Google Scholar
Liu, T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: design of experiments. NeuroImage, 21: 401–413.Google Scholar
Loggia, M. L., Chonde, D. B., Akeju, O., Arabasz, G., Catana, C., Edwards, R. R., … & Hooker, J. M. (2015). Evidence for brain glial activation in chronic pain patients. Brain, 138: 604–615.Google Scholar
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453: 869–878.Google Scholar
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412: 150–157.Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the USA, 97: 4398–4403.Google Scholar
Mai, J. K., Paxinos, G., & Voss, T. (2007). Atlas of the Human Brain, 3rd edn. New York: Academic Press.Google Scholar
Menon, R. S. (2002). Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magnetic Resonance in Medicine, 47: 1–9.CrossRefGoogle ScholarPubMed
Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E., & Buckner, R. L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11: 735–759.Google Scholar
Morawetz, C., Holz, P., Lange, C., Baudewig, J., Weniger, G., Irle, E., & Dechent, P. (2008). Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magnetic Resonance Imaging, 26: 45–53.Google Scholar
Mumford, J. A. & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39: 261–268.Google Scholar
Nichols, T. & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12: 419–446.Google Scholar
Nichols, T. E. & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15: 1–25.Google Scholar
Noll, D. C., Fessler, J. A., & Sutton, B. P. (2005). Conjugate phase MRI reconstruction with spatially variant sample density correction. IEEE Transactions on Medical Imaging, 24: 325–336.Google Scholar
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10: 424–430.Google Scholar
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain: a meta-analysis of imaging studies on the self. NeuroImage, 31: 440–457.Google Scholar
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the USA, 87: 9868–9872.Google Scholar
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the USA, 89: 5951–5955.Google Scholar
Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439: 865–870.Google Scholar
Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2: 417–424.CrossRefGoogle ScholarPubMed
Petrini, K., Pollick, F. E., Dahl, S., McAleer, P., McKay, L. S., Rocchesso, D., … & Puce, A. (2011). Action expertise reduces brain activity for audiovisual matching actions: an fMRI study with expert drummers. NeuroImage, 56: 1480–1492.Google Scholar
Phillips, C., Rugg, M. D., & Friston, K. J. (2002). Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. NeuroImage, 16: 678–695.Google Scholar
Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72: 692–697.CrossRefGoogle ScholarPubMed
Price, C. J., Veltman, D. J., Ashburner, J., Josephs, O., & Friston, K. J. (1999). The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. NeuroImage, 10: 36–44.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the USA, 98: 676–682.Google Scholar
Rasbash, J. (2002). A User’s Guide to MLwiN. Centre for Multilevel Modelling, University of London.Google Scholar
Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis, 2nd edn. Newbury Park, CA: Sage.Google Scholar
Reiman, E. M., Fusselman, M. J., Fox, P. T., & Raichle, M. E. (1989). Neuroanatomical correlates of anticipatory anxiety. Science, 243: 1071–1074 [erratum published in Science, 256 (1992): 1696].Google Scholar
Rosen, B. R., Buckner, R. L., & Dale, A. M. (1998). Event-related functional MRI: past, present, and future. Proceedings of the National Academy of Sciences of the USA, 95: 773–780.Google Scholar
Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., … & Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16: 1479–1488.Google Scholar
Saad, Z. S., Reynolds, R. C., Argall, B., Japee, S., & Cox, R. W. (2004). SUMA: an interface for surface-based intra- and inter-subject analysis with AFNI. IEEE International Symposium on Biomedical Imaging: Nano to Macro, 1512: 1510–1513.Google Scholar
Sandler, M. P. (2003). Diagnostic Nuclear Medicine. Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 13–21.Google Scholar
Schacter, D. L., Buckner, R. L., Koutstaal, W., Dale, A. M., & Rosen, B. R. (1997). Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. NeuroImage, 6: 259–269.Google Scholar
Scheibe, C., Ullsperger, M., Sommer, W., & Heekeren, H. R. (2010). Effects of parametrical and trial-to-trial variation in prior probability processing revealed by simultaneous electroencephalogram/functional magnetic resonance imaging. Journal of Neuroscience, 30: 16709–16717.Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27: 2349–2356.Google Scholar
Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., & Wald, L. L. (2012). Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magnetic Resonance in Medicine, 67: 1210–1224.Google Scholar
Shulman, R. G. & Rothman, D. L. (1998). Interpreting functional imaging studies in terms of neurotransmitter cycling. Proceedings of the National Academy of Sciences of the USA, 95: 11993–11998.Google Scholar
Shulman, R. G., Rothman, D. L., Behar, K. L., & Hyder, F. (2004). Energetic basis of brain activity: implications for neuroimaging. Trends in Neurosciences, 27: 489–495.CrossRefGoogle ScholarPubMed
Sibson, N. R., Dhankhar, A., Mason, G. F., Behar, K. L., Rothman, D. L., & Shulman, R. G. (1997). In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proceedings of the National Academy of Sciences of the USA, 94: 2699–2704.Google Scholar
Sinha, R., Lacadie, C., Skudlarski, P., & Wexler, B. E. (2004). Neural circuits underlying emotional distress in humans. Annals of the New York Academy of Sciences, 1032: 254–257.Google Scholar
Skudlarski, P., Constable, R. T., & Gore, J. C. (1999). ROC analysis of statistical methods used in functional MRI: individual subjects. NeuroImage, 9: 311–329.CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Beckmann, C., Miller, K., & Woolrich, M. (2007). Meaningful design and contrast estimability in FMRI. NeuroImage, 34: 127–136.Google Scholar
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., … & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23: S208–S219.Google Scholar
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17: 652–660.Google Scholar
Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46: 1004–1017.Google Scholar
Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica (Amsterdam), 106: 147–246.Google Scholar
Summerfield, C., Greene, M., Wager, T., Egner, T., Hirsch, J., & Mangels, J. (2006). Neocortical connectivity during episodic memory formation. PLoS Biol, 4: e128.Google Scholar
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11: 1004–1006.Google Scholar
Sylvester, C. Y., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41: 357–370.Google Scholar
Tagliazucchi, E. & Laufs, H. (2014). Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron, 82: 695–708.Google Scholar
Talairach, J. & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart and New York: Thieme.Google Scholar
Taylor, J. E. & Worsley, K. J. (2006). Inference for magnitudes and delays of responses in the FIAC data using BRAINSTAT/FMRISTAT. Human Brain Mapping, 27: 434–441.Google Scholar
Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., & Toga, A. W. (1996). Three-dimensional statistical analysis of sulcal variability in the human brain. Journal of Neuroscience, 16: 4261–4274.Google Scholar
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., … & Drevets, W. (2014). The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8: 153–182.Google Scholar
Tye, K. M., Prakash, R., Kim, S.-Y., Fenno, L. E., Grosenick, L., Zarabi, H., … & Deisseroth, K. (2011). Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 471: 358–362.Google Scholar
van Ast, V., Spicer, J., Smith, E., Schmer-Galunder, S., Liberzon, I., Abelson, J., & Wager, T. (2014). Brain mechanisms of social threat effects on working memory. Cerebral Cortex (September): bhu206.Google Scholar
Van Essen, D. C. & Dierker, D. L. (2007). Surface-based and probabilistic atlases of primate cerebral cortex. Neuron, 56: 209–225.Google Scholar
Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., & Anderson, C. H. (2001). An integrated software suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association, 8: 443–459.Google Scholar
Vazquez, A. L., Cohen, E. R., Gulani, V., Hernandez-Garcia, L., Zheng, Y., Lee, G. R., … & Noll, D. C. (2006). Vascular dynamics and BOLD fMRI: CBF level effects and analysis considerations. NeuroImage, 32: 1642–1655.Google Scholar
Vazquez, A. L. & Noll, D. C. (1998). Nonlinear aspects of the BOLD response in functional MRI. NeuroImage, 7: 108–118.Google Scholar
Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., … & Raichle, M. E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447: 83–86.CrossRefGoogle ScholarPubMed
Vogt, B. A., Nimchinsky, E. A., Vogt, L. J., & Hof, P. R. (1995). Human cingulate cortex: surface features, flat maps, and cytoarchitecture. Journal of Comparative Neurology, 359: 490–506.Google Scholar
Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4: 274–290.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368: 1388–1397.Google Scholar
Wager, T. D., Jonides, J., & Reading, S. (2004a). Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage, 22: 1679–1693.Google Scholar
Wager, T. D., Jonides, J., Smith, E. E., & Nichols, T. E. (2005b). Toward a taxonomy of attention shifting: individual differences in fMRI during multiple shift types. Cognitive, Affective, & Behavioral Neuroscience, 5: 127–143.Google Scholar
Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2: 150–158.Google Scholar
Wager, T. D. & Nichols, T. E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. NeuroImage, 18: 293–309.Google Scholar
Wager, T. D., Reading, S., & Jonides, J. (2004b). Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage, 22: 1679–1693.Google Scholar
Wager, T. D., Vazquez, A, Hernandez, L, & Noll, D. C. (2005a). Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage, 25: 206–218.Google Scholar
Wager, T. D., Waugh, C. E., Lindquist, M., Noll, D. C., Fredrickson, B. L., & Taylor, S. F. (2009). Brain mediators of cardiovascular responses to social threat. Part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. NeuroImage, 47: 821–835.Google Scholar
Waugh, C. E., Hamilton, J. P., & Gotlib, I. H. (2010). The neural temporal dynamics of the intensity of emotional experience. NeuroImage, 49: 1699–1707.CrossRefGoogle ScholarPubMed
Wiech, K., Jbabdi, S., Lin, C. S., Andersson, J., & Tracey, I. (2014). Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain, 155: 2047–2055.Google Scholar
Wilson, J. L. & Jezzard, P. (2003). Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magnetic Resonance in Medicine, 50: 1089–1094.Google Scholar
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92: 381–397.Google Scholar
Wise, R. G., Rogers, R., Painter, D., Bantick, S., Ploghaus, A., Williams, P., … & Tracey, I. (2002). Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. NeuroImage, 16: 999–1014.Google Scholar
Woo, C. W., Koban, L., Kross, E., Lindquist, M. A., Banich, M. T., Ruzic, L., … & Wager, T. D. (2014a). Separate neural representations for physical pain and social rejection. Nature Communications, 5: 5380.Google Scholar
Woo, C. W., Krishnan, A., & Wager, T. D. (2014b). Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage, 91: 412–419.Google Scholar
Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21: 1732–1747.Google Scholar
Worsley, K. J. & Friston, K. J. (1995). Analysis of fMRI time-series revisited – again. NeuroImage, 2: 173–181.Google Scholar
Worsley, K. J., Taylor, J. E., Tomaiuolo, F., & Lerch, J. (2004). Unified univariate and multivariate random field theory. NeuroImage, 23: S189–S195.Google Scholar
Yacubian, J., Sommer, T., Schroeder, K., Glascher, J., Kalisch, R., Leuenberger, B., … & Buchel, C. (2007). Gene–gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences of the USA, 104: 8125–8130.Google Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8: 665–670.Google Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106: 1125–1165.Google Scholar
Zarahn, E. & Slifstein, M. (2001). A reference effect approach for power analysis in fMRI. NeuroImage, 14: 768–779.CrossRefGoogle ScholarPubMed
References
Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 4: 544–554.Google Scholar
Berger, H. (1929). Ueber das Elektrenkephalogramm des Menschen. Archives für Psychiatrie Nervenkrankheiten, 87: 527–570.Google Scholar
Brazdil, M., Roman, R., Falkenstein, M., Daniel, P., Jurak, P., & Rektor, I. (2002). Error processing: evidence from intracerebral ERP recordings. Experimental Brain Research, 146: 460–466.Google Scholar
Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents: EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13: 407–420.Google Scholar
Cheour, M., Leppanen, P. H., & Kraus, N. (2000). Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clinical Neurophysiology, 111: 4–16.Google Scholar
Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: MIT Press.Google Scholar
Csepe, V. (1995). On the origin and development of the mismatch negativity. Ear and Hearing, 16: 91–104.Google Scholar
Dehaene-Lambertz, G. & Baillet, S. (1998). A phonological representation in the infant brain. Neuroreport, 9: 1885–1888.Google Scholar
Delorme, A. & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134: 9–21.Google Scholar
Eimer, M. & Kiss, M. (2008). Involuntary attentional capture is determined by task set: evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 208: 1423–1433.Google Scholar
Fischer, C., Luaute, J., Adeleine, P., & Morlet, D. (2004). Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology, 63: 669–673.Google Scholar
Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/Ne). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 231–292). Oxford University Press.Google Scholar
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011a). Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology, 48: 1711–1725.Google Scholar
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011b). Mass univariate analysis of event-related brain potentials/fields II: simulation studies. Psychophysiology, 48: 1726–1737.Google Scholar
Hopf, J.-M., Luck, S. J., Boelmans, K., Schoenfeld, M. A., Boehler, N., Rieger, J., & Heinze, H.-J. (2006). The neural site of attention matches the spatial scale of perception. Journal of Neuroscience, 26: 3532–3540.CrossRefGoogle ScholarPubMed
Kappenman, E. S., Farrens, J. L., Luck, S. J., & Hajcak Proudfit, G. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5: 1368.Google Scholar
Kappenman, E. S., Kaiser, S. T., Robinson, B. M., Morris, S. E., Hahn, B., Beck, V. M., Leonard, C. J., Gold, J. M., & Luck, S. J. (2012). Response activation impairments in schizophrenia: evidence from the lateralized readiness potential. Psychophysiology, 49: 73–84.Google Scholar
Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47: 888–904.Google Scholar
Kappenman, E. S. & Luck, S. J. (2012). ERP components: the ups and downs of brainwave recordings. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 3–30). Oxford University Press.Google Scholar
Kappenman, E. S., Luck, S. J., Kring, A. M., Lesh, T. A., Mangun, G. R., Niendam, T., Ragland, J. D., Ranganath, C., Solomon, M., Swaab, T.Y., & Carter, C. S. (2016). Electrophysiological evidence for impaired control of motor output in schizophrenia. Cerebral Cortex, 1891–1899.Google Scholar
Kappenman, E. S., MacNamara, A., & Hajcak Proudfit, G. (2015). Electrocortical evidence for rapid allocation of attention to threat in the dot-probe task. Social Cognitive and Affective Neuroscience, 10: 577–583.Google Scholar
Kayser, J., Tenke, C. E., Bhattacharya, N., Stuart, B. K., Hudson, J., & Bruder, G. E. (2000). Direct comparison of geodesic sensor net (128-channel) and conventional (30-channel) ERPs in tonal and phonetic oddball tasks. Psychophysiology, 37: S17.Google Scholar
Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: a comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45: 250–274.Google Scholar
Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20: 245–251.Google Scholar
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197: 792–795.Google Scholar
Lopez-Calderon, J. & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8: 213.Google Scholar
Lorenzo-Lopez, L., Amenedo, E., & Cadaveira, F. (2008). Feature processing during visual search in normal aging: electrophysiological evidence. Neurobiology of Aging, 29: 1101–1110.Google Scholar
Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 329–360). Oxford University Press.Google Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd edn. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophrenia Research, 85: 174–195.Google Scholar
Luck, S. J. & Kappenman, E. S. (eds.) (2012). The Oxford Handbook of Event-Related Potential Components. Oxford University Press.Google Scholar
Luck, S. J., Kappenman, E. S., Fuller, R. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2009). Impaired response selection in schizophrenia: evidence from the P3 wave and the lateralized readiness potential. Psychophysiology, 46: 776–786.Google Scholar
Luck, S. J., Mathalon, D. H., O’Donnell, B. F., Spencer, K. M., Javitt, D. C., Ulhaaus, P. F., & Hämäläinen, M. S. (2011). A roadmap for the development and validation of ERP biomarkers in schizophrenia research. Biological Psychiatry, 70: 28–34.Google Scholar
Makeig, S. & Onton, J. (2012). ERP features and EEG dynamics: an ICA perspective. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 51–86). Oxford University Press.Google Scholar
Maris, E. & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164: 177–190.Google Scholar
Näätänen, R. & Kreegipuu, K. (2012). The mismatch negativity (MMN). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 143–157). Oxford University Press.Google Scholar
Nunez, P. L. & Srinivasan, R. (2006). Electric Fields of the Brain, 2nd edn. Oxford University Press.Google Scholar
Ochoa, C. J. & Polich, J. (2000). P300 and blink instructions. Clinical Neurophysiology, 111: 93–98.Google Scholar
Peirce, J. W. (2007). PsychoPy: psychophysics software in Python. Journal of Neuroscience Methods, 162: 8–13.Google Scholar
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10: 437–442.Google Scholar
Perez, V. B. & Vogel, E. K. (2012). What ERPs can tell us about working memory. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 361–372). Oxford University Press.Google Scholar
Picton, T. W. (2011). Human Auditory Evoked Potentials. San Diego, CA: Plural Publishing.Google Scholar
Polich, J. (2012). Neuropsychology of P300. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 159–188). Oxford University Press.Google Scholar
Regan, D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. New York: Elsevier.Google Scholar
Roach, B. J. & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34: 907–926.Google Scholar
Sawaki, R. & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72: 1455–1470.Google Scholar
Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38: 343–358.Google Scholar
Tanner, D., Morgan-Short, K., & Luck, S. J. (in press). How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology.Google Scholar
Trainor, L., McFadden, M., Hodgson, L., Darragh, L., Barlow, J., Matsos, L., & Sonnadara, R. (2003). Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 51: 5–15.Google Scholar
Woldorff, M. G. (1993). Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 30: 98–119.Google Scholar
Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28: 30–42.Google Scholar
Yeung, N. (2004). Relating cognitive and affective theories of the error-related negativity. In Ullsperger, M. & Falkenstein, M. (eds.), Errors, Conflicts, and the Brain: Current Opinions on Performance Monitoring (pp. 63–70). Leipzig: MPI of Cognitive Neuroscience.Google Scholar
References
Berger, H. (1929). Ueder das Elektroencephalogramm des Menschen. Archives für Psychiatry Nervenkrankheiten, 87: 527–570.Google Scholar
Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A. Tagliazucchi, E., Borisov, S., … & Laufs, H. (2012). EEG microstates of wakefulness and NREM sleep. NeuroImage, 62: 2129–2139.Google Scholar
Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatio-temporal analysis of multichannel EEG: CARTOOL. Computational Intelligence and Neuroscience, 1: 813–870.Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Empirical evidence for low reproducibility indicates low pre-study odds. Nature Reviews Neuroscience, 14: 877.Google Scholar
Cacioppo, J. T. & Cacioppo, S. (2013). Minimal replicability, generalizability, and scientific advances in psychological science. European Journal of Personality, 27: 121–122.Google Scholar
Cacioppo, J. T. & Dorfman, D. D. (1987). Waveform moment analysis in psychophysiological research. Psychological Bulletin, 102: 421–438.Google Scholar
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2000). Handbook of Psychophysiology, 2nd edn. Cambridge University Press.Google Scholar
Cacioppo, S., Balogh, S., & Cacioppo, J. T. (2015). Implicit attention to negative social, in contrast to nonsocial, words in the Stroop task differs between individuals high and low in loneliness: evidence from event-related brain microstates. Cortex, 70: 213–233.Google Scholar
Cacioppo, S., Banagee, M., Balogh, S., Cardenas-Iniguez, C., Qualter, P., & Cacioppo, J. T. (2016). Loneliness and implicit attention to social threat: a high performance electrical neuroimaging study. Cognitive Neuroscience, 7: 138–159.Google Scholar
Cacioppo, S., Bianchi-Demicheli, F., Bischof, P., Deziegler, E., Michel, C. M., & Landis, T. (2013a). Hemispheric specialization varies with EEG brain resting states and phase of menstrual cycle. PLoS One, 8: e63196.Google Scholar
Cacioppo, S. & Cacioppo, J. T. (2015). Dynamic spatiotemporal brain analyses using high-performance electrical neuroimaging: Part II. A step-by-step tutorial. Journal of Neuroscience Methods, 256: 184–197.Google Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, L. W., & Cacioppo, J. T. (2013b). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3: 2027.Google Scholar
Cacioppo, S., Weiss, R. M., Runesha, H. B., & Cacioppo, J. T. (2014). Dynamic spatiotemporal brain analyses using high-performance electrical neuroimaging: theoretical framework and validation. Journal of Neuroscience Methods, 238: 11–34.Google Scholar
Collura, T. F. (1993). History and evolution of electroencephalographic instruments and techniques. Journal of Clinical Neurophysiology, 10: 476–504.Google Scholar
Decety, J. & Cacioppo, S. (2012). The speed of morality: a high-density electrical neuroimaging study. Journal of Neurophysiology, 108: 3068–3072.Google Scholar
Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS One, 7: e30135.Google Scholar
Francis, G. (2014). The frequency of excess success for articles in Psychological Science. Psychonomic Bulletin & Review, 21, 1180–1187.Google Scholar
Gartner, M., Brodbeck, V., Helmut, L., & Schneider, G. (2015). A stochastic model for EEG microstate sequence analysis. NeuroImage, 104: 199–208.Google Scholar
Gloor, P. (1969). Hans Berger on the electroencephalogram of man. EEG Clinical Neurophysiology, Suppl. 28: 1–36.Google Scholar
Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: current status and future directions. Neuroscience & Biobehavioral Reviews, 49: 105–113.Google Scholar
Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., … & John, E. R. (2002). Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage, 1: 41–48.Google Scholar
Lehmann, D. (1987). Principles of spatial analysis. In Gevins, A. & Remond, A. (eds.), Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 1: Methods of Analysis of Brain Electrical and Magnetic Signals (pp. 309–354). Amsterdam: Elsevier.Google Scholar
Lehmann, D. & Skrandies, W. (1980). Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalography & Clinical Neurophysiology, 48: 609–621.Google Scholar
Lehmann, D. & Skrandies, W. (1984). Spatial analysis of evoked potentials in man: a review. Progress in Neurobiology, 23: 227–250.Google Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J. & Kappenman, E. S. (eds.) (2012). The Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.Google Scholar
Ortigue, S., Michel, C. M., Murray, M. M., Mohr, C., Carbonnel, S., & Landis, T. (2004). Electrical neuroimaging reveals early generator modulation to emotional words. NeuroImage, 21: 1242–1251.Google Scholar
Ortigue, S., Sinigaglia, C., Rizzolatti, G., & Grafton, S. T. (2010). Understanding actions of others: the electrodynamics of the left and right hemispheres – a high-density EEG neuroimaging study. PLoS One, 5: 13.Google Scholar
Ortigue, S., Thompson, J. C., Parasuraman, R., & Grafton, S. T. (2009). Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: a combined EEG/fMRI repetition suppression paradigm. PLoS One, 4: 6962.Google Scholar
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Transactions on Biomedical Engineering, 42: 658–665.Google Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. J., … & Taylor, M. J. (2000). Guidelines for using event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37: 127–152.Google Scholar
Sarter, M., Bernston, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 13–21.Google Scholar
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, ID 879716.Google Scholar
Volkmer, T., Tahaghoghi, S. M. M., & Williams, H. E. (2004). Gradual transition detection using average frame similarity. Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, vol. 9 (p. 139). Washington, DC: IEEE Computer Society.Google Scholar
References
Abraham, W. C. & Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 19: 126–130.Google Scholar
Agnew, W. F. & McCreery, D. B. (1987). Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery, 20: 143–147.Google Scholar
Agudelo-Toro, A. & Neef, A. (2013). Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. Journal of Neural Engineering, 10: 026019.Google Scholar
Albert, D. J. (1966). The effects of polarizing currents on the consolidation of learning. Neuropsychologia, 4: 65–77.CrossRefGoogle Scholar
Allen, E. A., Pasley, B. N., Duong, T., & Freeman, R.D. (2007). Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science, 317: 1918–1921.Google Scholar
Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A., & Eberle, L. (1989). Suppression of visual perception by magnetic coil-stimulation of human occipital cortex. Electroencephalography & Clinical Neurophysiology, 74: 458–462.Google Scholar
Amassian, V. E., Maccabee, P. J., Cracco, R. Q., Cracco, J. B., Rudell, A. P., & Eberle, L. (1993). Measurement of information processing delays in human visual cortex with repetitive magnetic coil stimulation. Brain Research, 605: 317–321.Google Scholar
Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O., Demmer, I., & Sommer, M. (2002). Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception. NeuroReport, 13: 2229–2233.Google Scholar
Antal, A., Nitsche, M. A., Kincses, T. Z., Lampe, C., & Paulus, W. (2003). No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Neuroreport, 15: 297–302.Google Scholar
Awiszus, F. (2003). TMS and threshold hunting. Supplements to EEG Clinical Neurophysiology, 56: 13–23.Google Scholar
Aydin-Abidin, S., Trippe, J., Funke, K., Eysel, U. T., & Benali, A. (2008). High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Experimental Brain Research, 188: 249–261.Google Scholar
Bagati, D., Mittal, S., Praharaj, S. K., Sarcar, M., Kakra, M., & Kurnar, P. (2012). Repetitive transcranial magnetic stimulation safely administered after seizure. Journal of ECT, 28: 60–61.Google Scholar
Balslev, D., Braet, W., McAllister, C., & Miall, R. C. (2007). Interindividual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. Journal of Neuroscience Methods, 162: 309–313.Google Scholar
Barker, A. T. (2002). The history and basic principles of magnetic nerve stimulation. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., & Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 3–17). London: Arnold.Google Scholar
Barker, A. T., Garnham, C. W., & Freeston, I. L. (1991). Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalography & Clinical Neurophysiology Supplement, 43: 227–237.Google Scholar
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1: 1106–1107.Google Scholar
Berardelli, A., Inghilleri, M., Gilio, F., Romeo, S., Pedace, F., Currà, A., & Manfredi, M. (1999). Effects of repetitive cortical stimulation on the silent period evoked by magnetic stimulation. Experimental Brain Research, 125: 82–86.Google Scholar
Berardelli, A., Inghilleri, M., Rothwell, J. C., Romeo, S., Currà, A., Gilio, F., … & Manfredi, M. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Experimental Brain Research, 122: 79–84.Google Scholar
Bestmann, S., Thilo, K. V., Sauner, D., Siebner, H. R., & Rothwell, J.C. (2002). Parietal magnetic stimulation delays visuomotor mental rotation at increased processing demands. NeuroImage, 17: 1512–1520.CrossRefGoogle ScholarPubMed
Bestmann, S. J., Baudewig, J., & Frahm, J. (2003a). On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. Journal of Magnetic Resonance Imaging, 17: 309–316.Google Scholar
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2003b). Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. NeuroImage, 20: 1685–1696.Google Scholar
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2004). Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience, 19: 1950–1962.Google Scholar
Bijsterbosch, J. D., Barker, A. T., Lee, K.-H., & Woodruff, P. W. R. (2012). Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Medical Biological Engineering and Computing, 50: 671–681.Google Scholar
Bikson, M., Bulow, P., Stiller, J. W., Datta, A., Battaglia, F., Karnup, S. V., & Postolache, T. T. (2008). Transcranial direct current stimulation for major depression: a general system for quantifying transcranial electrotherapy dosage. Current Treatment Options in Neurology, 10: 377–385.Google Scholar
Bliss, T. V., Collingridge, G. L., & Morris, R. G. (2003) Introduction: longterm potentiation and structure of the issue. Philosophical Transactions of the Royal Society London B: Biological Sciences, 358: 607–611.Google Scholar
Bliss, T. V. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232: 331–356.Google Scholar
Bohning, D. E., Shastri, A., Nahas, Z., Lorberbaum, J. P., Andersen, S. W., Dannels, W. R., … & George, M. S. (1998). Echopolar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Investigative Radiology, 33: 336–340.Google Scholar
Bonato, C., Miniussi, C., & Rossini, P. M. (2006).Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clinical Neurophysiology, 117: 1699–1707.Google Scholar
Boroojerdi, B., Battaglia, F., Muellbacher, W., & Cohen, W. G. (2001a). Mechanisms influencing stimulus-response properties of the human corticospinal system. Clinical Neurophysiology, 112: 931–937.Google Scholar
Boroojerdi, B., Phipps, M., Kopylev, L., Wharton, C. M., Cohen, L. G., & Grafman, J. (2001b). Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology, 56: 526–528.Google Scholar
Boroojerdi, B., Prager, A., Muellbacher, W., & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1 Hz transcranial magnetic stimulation. Neurology, 54: 1529–1531.Google Scholar
Brasil-Neto, J. P., McShane, L. M., Fuhr, P., Hallett, M., & Cohen, L. G. (1992). Topographic mapping of the human cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalography & Clinical Neurophysiology, 85: 9–16.Google Scholar
Brem, A.-K., Fried, P. J., Horvath, J. C., Robertson, E. M., & Pascual-Leone, A. (2014). Is neuroenhancement by noninvasive brain stimulation a zero-sum proposition? NeuroImage, 85: 1058–1068.Google Scholar
Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3: 243–249.Google Scholar
Bungert, A., Chambers, C. D., Phillips, M., & Evans, J. (2006). Reducing image artefacts in concurrent TMS/fMRI by passive shimming. NeuroImage, 59: 2167–2174.Google Scholar
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313: 1626–1628.Google Scholar
Cantarero, G. & Celnik, P. (2015). Applications of TMS to study brain connectivity. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 191–212). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Caparelli, E. C., Backus, W., Telang, F., Wang, G.-J., Maloney, T., Goldstein, R. Z., & Henn., F. (2012). Is 1 Hz rTMS always inhibitory in healthy individuals? The Open Neuroimaging Journal, 6: 69–74.Google Scholar
Cardenas-Morales, L., Nowak, D. A., Kammer, T., Wolf, R. C., & Schonfeldt-Lecuona, C. (2010). Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topography, 22: 294–306.Google Scholar
Cattaneo, Z., Rota, F., Vecchi, T., & Silvanto, J. (2008). Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. European Journal of Neuroscience, 28: 1924–1929.Google Scholar
Cattaneo, Z., Rota, F., Walsh, V., Vecchi, T., & Silvanto, J. (2009). TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex. Cerebral Cortex, 19: 2321–2325.Google Scholar
Chanes, L., Quentin, R., Tallon-Baudry, C., & Valero-Cabré, A. (2013). Causal frequency-specific contributions of frontal spatiotemporal patterns induced by noninvasive neurostimulation to human visual performance. Journal of Neuroscience, 33: 5000–5005.Google Scholar
Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., … & Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 586: 5717–5725.Google Scholar
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z. W., Williams, L. M., … & Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the USA, 110: 19944–19949.Google Scholar
Chen, R. (2004). Interactions between inhibitory and excitatory circuits in the human motor cortex. Experimental Brain Research, 154: 1–10.Google Scholar
Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 1398–1403.Google Scholar
Chervyakov, A. V., Piradov, M. A., Chernikova, L. A., Nazarova, M. A., Gnezditsky, V. V., Savitskaya, N. G., & Fedin, P. A. (2013). Capability of navigated repeated transcranial magnetic stimulation in stroke rehabilitation (randomized blind sham-controlled study). Journal of the Neurological Sciences, 333: 246–247.Google Scholar
Chiramberro, M., Lindberg, N., Isometsä, E., Kähkönen, S., & Appelberg, B. (2013). Repetitive transcranial magnetic stimulation induced seizures in an adolescent patient with major depression: a case report. Brain Stimulation, 6: 830–831.Google Scholar
Cohen, D. & Cuffin, B. N. (1991). Developing a more focal magnetic stimulator. Part I: Some basic principles. Journal of Clinical Neurophysiology, 8: 102–111.Google Scholar
Cohen, D. A., Freitas, C., Tormos, J. M., Oberman, L., Eldaief, M., & Pascual-Leone, A. (2010). Enhancing plasticity through repeated rTMS sessions: the benefits of a night of sleep. Clinical Neurophysiology, 121: 2159–2164.Google Scholar
Cohen Kadosh, R., Cohen Kadosh, K., Schuhmann, T., Kaas, A., Goebel, R., Henik, A., & Sack, A. T. (2007). Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Current Biology, 17: 689–693.Google Scholar
Cooper, A. C. G., Humphreys, G. W., Hulleman, J., Praamstra, P., & Georgeson, M. (2004). Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Experimental Brain Research, 155: 24–29.Google Scholar
Counter, S. A., Borg, E., Lofqvist, L., & Brismar, T. (1990). Hearing loss from the acoustic artifact of the coil used in extracranial magnetic stimulation. Neurology, 40: 1159–1162.Google Scholar
Crowther, L. J., Porzig, K., Hadimani, R. L., Brauer, H., & Jile, D. C. (2012). Calculation of Lorentz forces on coils for transcranial magnetic stimulation during magnetic resonance imaging. IEEE Transactions on Magnetics, 48: 4058–4061.Google Scholar
Daskalakis, Z. J., Moller, B., Christensen, B. K., Fitzgerald, P. B., Gunraj, C., & Chen, R. (2006). The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Experimental Brain Research, 174: 403–412.Google Scholar
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2: 201–207.Google Scholar
Davey, K. R. & Riehl, M. E. (2006). Suppressing the surface field during transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 53: 190–194.CrossRefGoogle ScholarPubMed
de Graaf, T. A., Jacobs, C., Roebroeck, A., & Sack, A. T. (2009). FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network. PLoS One, 4: e8307.Google Scholar
Deblieck, C., Thompson, B., Iacoboni, M., & Wu, A. D. (2008). Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Human Brain Mapping, 29: 662–670.Google Scholar
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimulation, 6: 1–13.Google Scholar
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2014). Coil design considerations for deep transcranial magnetic stimulation. Clinical Neurophysiology, 125: 1202–1212.Google Scholar
Deng, Z.-D. & Peterchev, A. V. (2011). Transcranial magnetic stimulation coil with electronically switchable active and sham modes. Conference Proceedings of the IEEE Engineering Medicine Biology Society.Google Scholar
Denslow, S., Lomarev, M., George, M. S., & Bohning, D. E. (2005). Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biological Psychiatry, 57: 752–760.CrossRefGoogle ScholarPubMed
Devanne, H., Lavoie, B. A., & Capaday, C. (1997). Input–output properties and gain changes in the human corticospinal pathway. Experimental Brain Research, 114: 329–338.Google Scholar
Di Lazzaro, V., Oliviero, A., Profice, P., Pennisi, M. A., Pilato, F., Zito, G., … & Tonali, P. A. (2003). Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. Journal of Physiology, 547: 485–496.Google Scholar
Di Lazzaro, V., Pilato, F., Saturno, E., Oliviero, A., Dileone, M., Mazzone, P., … & Rothwell, J. (2005). Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. Journal of Physiology, 565: 945–950.Google Scholar
Di Lazzaro, V., Profice, P., Ranieri, F., Capone, F., Dileone, M., Oliviero, A., & Pilato, F. (2012). I-wave origin and modulation. Brain Stimulation, 5: 512–525.Google Scholar
Dmochowski, J. P., Datta, A., Bikson, M., Su, Y., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8: 046011.Google Scholar
Edwardson, M., Fetz, E. E., & Avery, D. H. (2011). Seizure produced by 20 Hz transcranial magnetic stimulation during isometric muscle contraction in a healthy subject. Clinical Neurophysiology, 122: 2324–2327.Google Scholar
Ellison, A., Battelli, L., Cowey, A., & Walsh, V. (2003). The effect of expectation on facilitation of color/form conjunction tasks by TMS over area V5. Neuropsychologia, 41: 1794–1801.Google Scholar
Emara, T. H., Moustafa, R. R., Elnahas, N. M., Elganzoury, A. M., Abdo, T. A., Mohamed, S. A., & Eletribi, M. A. (2010). Repetitive transcranial magnetic stimulation at 1 Hz and 5 Hz produces sustained improvement in motor function and disability after ischaemic stroke. European Journal of Neurology, 17: 1203–1209.Google Scholar
Esser, S. K., Hill, S. L., & Tononi, G. (2005). Modeling the effects of transcranial magnetic stimulation on cortical units. Journal of Neurophysiology, 94: 622–639.Google Scholar
Esser, S. K., Huber, R., Massimini, M., Peterson, M. J., Ferrarelli, F., & Tononi, G. (2006). A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Research Bulletin, 69: 86–94.Google Scholar
Feredoes, E., Tononi, G., & Postle, B. R. (2007). The neural bases of the short-term storage of verbal information are anatomically variable across individuals. Journal of Neuroscience, 27: 11003–11008.Google Scholar
Ferreri, F. & Rossini, P. M. (2013). TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Reviews in the Neurosciences, 24: 431–442.Google Scholar
Fitzgerald, P. B., Fountain, S., & Daskalakis, Z. J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology, 117: 2584–2596.Google Scholar
Fox, J. J. & Schroeder, C. E. (2005). The case for feedforward multisensory convergence during early cortical processing. Neuroreport, 16: 419–423.Google Scholar
Fox, M. D., Liu, H., & Pascual-Leone, A. (2012). Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage, 66: 151–160.Google Scholar
Fox, P., Ingham, R., George, M. S., Mayberg, H., Ingham, J., Roby, J., … & Jerabek, P. (1997). Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport, 8: 2787–2791.Google Scholar
Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375: 93–102.Google Scholar
Fridlund, A. J. & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23: 567–589.Google Scholar
Fuggetta, G., Pavone, E. F., Fiaschi, A., & Manganotti, P. (2008). Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Human Brain Mapping, 29: 1–13.Google Scholar
Gangitano, M., Valero-Cabré, A., Tormos, J. M., Mottaghy, F. M., Romero, J. R., & Pascual-Leone, A. (2002). Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clinical Neurophysiology, 113: 1249–1257.Google Scholar
George, M. S., Short, E. B., Kerns, S. E., Li, X., Hanlon, C., Pelic, C., … & Fox, J. (2015). Therapeutic applications of rTMS for psychiatric and neurological conditions. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 213–232). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Goetz, S. M., Luber, B., Lisanby, S. H., Murphy, D. L., Kozyrkov, I. C., Grill, W., & Peterchev, A. V. (2016). Enhancement of rTMS neuromodulatory effects with novel waveforms demonstrated via controllable pulse parameter TMS. Brain Stimulation 9: 39–47.Google Scholar
Goetz, S. M., Luber, B., Lisanby, S. H., & Peterchev, A. V. (2014). A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimulation, 7: 541–552.Google Scholar
Goetz, S. M., Pfaeffl, M., Huber, J., Singer, M., Marquardt, R., & Weyh, T. (2012). Circuit topology and control principle for a first magnetic stimulator with fully controllable waveform. Conference Proceedings of IEEE Engineering Medical Biology Society.Google Scholar
Goetz, S. M., Whiting, P. A., & Peterchev, A. V. (2011). Threshold estimation with transcranial magnetic stimulation: algorithm comparison. Clinical Neurophysiology, 122: S197.Google Scholar
Gómez, L., Morales, L., Trápaga, O., & Morales, H. (2011). Seizure induced by sub-threshold 10-Hz rTMS in a patient with multiple risk factors. Clinical Neurophysiology, 122: 1057–1058.Google Scholar
Grefkes, C., Nowak, D. A., Wang, L. E., Dafotakis, M., Eickhoff, S. B., & Fink, G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage, 50: 233–242.Google Scholar
Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., … & Siebner, H. R. (2012). A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology, 123: 858–882.Google Scholar
Grosbras, M. H. & Paus, T. (2002). Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. Journal of Cognitive Neuroscience, 14: 1109–1120.Google Scholar
Grosbras, M. H. & Paus, T. (2003). Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. European Journal of Neuroscience, 18: 3121–3126.Google Scholar
Hamada, M., Hanajima, R., Terao, Y., Arai, N., Furubayashi, T., Inomata-Terada, S., … & Ugawa, Y. (2007). Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clinical Neurophysiology, 118: 2672–2682.Google Scholar
Hamada, M., Strigaro, G., Murase, N., Sadnicka, A., Galea, J. M., Edwards, M. J., & Rothwell, J. C. (2012). Cerebellar modulation of human associative plasticity. Journal of Physiology, 590: 2365–2374.Google Scholar
Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., … & Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. Journal of Physiology, 586: 3927–3947.Google Scholar
Hamada, M. & Ugawa, Y. (2010). Quadripulse stimulation:a new patterned rTMS. Restorative Neurology and Neuroscience, 28: 419–424.Google Scholar
Hamidi, M., Johnson, J. S., Feredoes, E., & Postle, B. R. (2011). Does high-frequency repetitive transcranial magnetic stimulation produce residual and/or cumulative effects within an experimental session? Brain Topography, 23: 355–367.Google Scholar
Hamidi, M., Slagter, H. A., Tononi, G., & Postle, B. R. (2009). Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Frontiers in Integrative Neuroscience, 3. doi: 10.3389/neuro.07.014.2009.Google Scholar
Hannula, H., Neuvonen, T., Savolainen, P., Hiltunen, J., Ma, Y.-Y., Antila, H., … & Pertovaara, A. (2010). Increasing top-down suppression from prefrontal cortex facilitates tactile working memory. NeuroImage, 49: 1091–1098.Google Scholar
Harel, E. V., Zangen, A., Roth, Y., Reti, I., Braw, Y., & Levkovitz, Y. (2011). H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World Journal of Biological Psychiatry, 12: 119–126.Google Scholar
Harris, J. A., Clifford, C. W. G., & Miniussi, C. (2008). The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? Journal of Cognitive Neuroscience, 20: 734–740.Google Scholar
Haug, B. A., Schönle, P. W., Knobloch, C., & Köhne, M. (1992). Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalography & Clinical Neurophysiology, 85: 158–160.Google Scholar
Heller, L. & van Hulsteyn, D. B. (1992). Brain stimulation using electromagnetic sources: theoretical aspects. Biophysical Journal, 63: 129–138.Google Scholar
Herwig, U., Abler, B., Schonfeldt-Lecuona, C., Wunderlich, A., Grothe, J., Spitzer, M., & Walter, H. (2003a). Verbal storage in a premotor-parietal network: evidence from fMRI-guided magnetic stimulation. NeuroImage, 20: 1032–1041.Google Scholar
Herwig, U., Satrapi, P., & Schonfeldt-Lecuona, C. (2003b). Using the International 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16: 95–99.Google Scholar
Hoeft, F., Wu, D.-A., Hernandez, A., Glover, G. H., & Shimojo, S. (2008). Electronically switchable sham transcranial magnetic stimulation (TMS) system. PLoS One, 3: e1923.Google Scholar
Hoogendam, J. M., Ramakers, G. M. J., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3: 95–118.Google Scholar
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia, 66: 213–236.Google Scholar
Houdayer, E., Degardin, A., Cassim, F., Bocquillon, P., Derambure, P., & Devanne, H. (2008). The effects of low- and high-frequency repetitive TMS on the input/output properties of the human corticospinal pathway. Experimental Brain Research, 187: 207–217.Google Scholar
Hu, S. H., Wang, S. S., Zhang, M. M., Wang, J.-W., Hu, J.-B., & Huang, M.-L. (2011). Repetitive transcranial magnetic stimulation-induced seizure of a patient with adolescent-onset depression: a case report and literature review. Journal of International Medical Research, 39: 2039–2044.Google Scholar
Huang, Y. Z., Chen, R. S., Rothwell, J. C., & Wen, H.-Y. (2007). The after-effect of human theta burst stimulation is NMDA receptor dependent. Clinical Neurophysiology, 118: 1028.Google Scholar
Huang, Y. Z., Edwards, M. J., Rounis, E., Bhalia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45: 201–206.Google Scholar
Huang, Y.-Z., Sommer, M., Thickbroom, G., Hamada, M., Pascual-Leone, A., Paulus, W., … & Ugawa, Y. (2009). Consensus: new methodologies for brain stimulation. Brain Stimulation, 2: 2–13.Google Scholar
Ilmoniemi, R. J. & Kičić, D. (2010) Methodology for combined TMS and EEG. Brain Topography, 22: 233–248.Google Scholar
Ilmoniemi, R. J., Virtanen, J., Ruohonen, J., Karhu, J., Aronen, H. J., Naatanen, R., & Katila, T. (1997). Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport, 8: 3537–3540.Google Scholar
Iriki, A., Pavlides, C., Keller, A., & Asanuma, H. (1989). Long-term potentiation in the motor cortex. Science, 245: 1385–1387.Google Scholar
Iyer, M. B., Schleper, N., & Wassermann, E. M. (2003). Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. Journal of Neuroscience, 23: 10867–10872.Google Scholar
Jalinous, R. (2002). Principles of magnetic stimulator design. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., and Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 30–38). London: Arnold.Google Scholar
Janicak, P. G., O’Reardon, J. P., Sampson, S. M., Husain, M. M., Lisanby, S. H., Rado, J. T., … & Demitrack, M. A. (2008). Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. Journal of Clinical Psychiatry, 69: 222–232.Google Scholar
Jennum, P., Winkel, H., & Fuglsang-Frederiksen, A. (1995). Repetitive magnetic stimulation and motor evoked potentials. Electroencephalography & Clinical Neurophysiology, 97: 96–101.Google Scholar
Ji, R. R., Schlaepfer, T. E., Aizenman, C. D., Epstein, C. M., Qiu, D., Huang, J. C., & Rupp, F. (1998). Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proceedings of the National Academy of Sciences of the USA, 95: 15635–15640Google Scholar
Juan, C. H. & Walsh, V. (2003). Feedback to V1: a reverse hierarchy in vision. Experimental Brain Research, 150: 259–263.Google Scholar
Jung, P. & Ziemann, U. (2009). Homeostatic and nonhomeostatic modulation of learning in human motor cortex. Journal of Neuroscience, 29: 5597–5604.Google Scholar
Kähkönen, S., Komssi, S., Wilenius, J., & Ilmoniemi, R. J. (2005). Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. NeuroImage, 24: 955–960.Google Scholar
Kähkönen, S., Wilenius, J., Komssi, S., & Ilmoniemi, R. J. (2004). Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation. Clinical Neurophysiology, 115: 583–588.Google Scholar
Kaminski, J. A., Korb, F. M., Viliringer, A., & Ott, D. V. M. (2011). Transcranial magnetic stimulation intensities in cognitive paradigms. PloS One, 6: e24836.Google Scholar
Kamitani, Y. & Schimojo, S. (1999). Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nature Neuroscience, 2: 767–771.Google Scholar
Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U., & Topka, H. (2001). Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology, 112: 250–258.Google Scholar
Kammer, T. & Nusseck, H. G. (1998). Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? Neuropsychologia, 36: 1161–1166.Google Scholar
Kammer, T., Puls, K., Erb, M., & Grodd, W. (2005). Transcranial magnetic stimulation in the visual system. II: Characterization of induced phosphenes and scotomas. Experimental Brain Research, 160: 129–140.Google Scholar
Kessler, S. K., Turkeltaub, P. E., Benson, J. G., & Hamilton, R. H. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimulation, 5: 155–162.Google Scholar
Kimiskidis, V. K., Papagiannopoulos, S., Sotirakoglou, K., Kazis, D. A., Kazis, A., & Mills, K. R. (2005). Silent period to transcranial magnetic stimulation: construction and properties of stimulus–response curves in healthy volunteers. Experimental Brain Research, 163: 21–31.Google Scholar
Kleim, J., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., & Cramer, S. C. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9: 735–737.Google Scholar
Klimesch, W., Sauseng, P., & Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17: 1129–1133.Google Scholar
Kohler, S., Paus, T., Buckner, R. L., & Milner, B. (2006). Effect of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. Journal of Cognitive Neuroscience, 16: 178–188.Google Scholar
Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Shroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94: 1904–1911.Google Scholar
Lang, N., Rothkegel, H., Reiber, H., Hasan, A., Sueske, E., Tergau, F., … & Paulus, W. (2011). Circadian modulation of GABA-mediated cortical inhibition. Cerebral Cortex, 21: 2299–2306.Google Scholar
Lang, N., Siebner, H. R., Ernst, D., Nitsche, M. A., Paulus, W., Lemon, R. N., & Rothwell, J. C. (2004). Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biological Psychiatry, 56: 634–638.Google Scholar
Lang, N., Speck, S., Harms, J., Rothkegel, H., Paulus, W., & Sommer, M. (2008). Dopaminergic potentiation of rTMS induced motor cortex inhibition. Biological Psychiatry, 3: 231–233.Google Scholar
Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368: 347–350.Google Scholar
Levkovitz, Y., Roth, Y., Harel, E. V., Braw, Y., Sheer, A., & Zangen, A. (2007). A randomized controlled feasibility and safety study of deep transcranial magnetic stimulation. Clinical Neurophysiology, 118: 2730–2744.Google Scholar
Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9: article 181.Google Scholar
Lisanby, S. H., Gutman, D., Luber, B., Schroeder, C., & Sackeim, H. A. (2001). Sham TMS: intracerebral measurements of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49: 460–463.Google Scholar
Lisman, J. E. & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77: 1002–1016.Google Scholar
Liston, C., Chen, A. C., Zebley, B. D., Drysdale, A. T., Gordon, R., Leuchter, B., … & Dubin, M. J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76: 517–526.Google Scholar
Lolas, F. (1977). Low-level electric currents and brain indicators of behavioral activation. Arquivos de Neuro-Psiquiatria, 35: 325–328.Google Scholar
Loo, C., Sachdev, P., Elsayed, H., McDarmont, B., Mitchell, P., Wilkinson, M., … & Gandevia, S. (2001). Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychologic functioning, electroencephalogram, and auditory threshold in depressed patients. Biological Psychiatry, 49: 615–623.Google Scholar
Lorenzano, C., Gilio, F., Inghilleri, M., & Berardelli, A. (2002). Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Experimental Brain Research, 147: 186–192.Google Scholar
Luber, B. (2014). Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition. Frontiers in Systems Neuroscience, 8: article 129.Google Scholar
Luber, B., Balsam, P., Nguyen, T., Gross, M., & Lisanby, S. H. (2007a). Classical conditioned learning using transcranial magnetic stimulation. Experimental Brain Research, 183: 361–369.Google Scholar
Luber, B., Kinnunen, L. H., Rakitin, B. C., Ellsasser, R., Stern, Y., & Lisanby, S. H. (2007b). Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency and time-dependent effects. Brain Research, 1128: 120–129.Google Scholar
Luber, B. & Lisanby, S. H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage, 85: 961–970.Google Scholar
Luber, B., Stanford, A. D., Bulow, P., Nguyen, T., Rakitin, B. C., Habeck, C., … & Lisanby, S. H. (2008). Remediation of sleep-deprivation induced visual working memory impairment with fMRI-guided transcranial magnetic stimulation. Cerebral Cortex, 18: 2077–2085.Google Scholar
Luber, B., Steffener, J., Tucker, A., Habeck, C., Peterchev, A. V., Deng, Z.-D., … & Lisanby, S. H. (2013). Extended remediation of sleep deprivation-induced working memory deficits using fMRI-guided repetitive transcranial magnetic stimulation. Sleep, 36: 857–871.Google Scholar
Maccabee, P. J., Amassian, V. E., Eberle, L. P., & Cracco, R. Q. (1993). Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. Journal of Physiology in London, 460: 210–219.Google Scholar
Maccabee, P. J., Nagarajan, S. S., Amassian, V. E., Durand, D. M., Szabo, A. Z., Ahad, A. B., … & Eberle, L. P. (1998). Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve. Journal of Physiology, 513.2, 571–585.Google Scholar
Maki, H. & Ilmoniemi, R. J. (2010). The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neuroscience Letters, 478: 24–28.Google Scholar
Mancini, M., Pellicciari, M. C., Brignani, D., Mauri, P., De Marchis, C.,