Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-s2vjv Total loading time: 7.423 Render date: 2023-01-31T21:32:20.877Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8: 360369.CrossRefGoogle Scholar
Amunts, K., Schleicher, A., & Zilles, K. (2007). Cytoarchitecture of the cerebral cortex: more than localization. NeuroImage, 37: 10611065.CrossRefGoogle ScholarPubMed
Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. NeuroImage, 13: 903919.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104: 322335.CrossRefGoogle ScholarPubMed
Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94: 327337.CrossRefGoogle ScholarPubMed
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38: 95113.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (2000). Voxel-based morphometry: the methods. NeuroImage, 11: 805821.CrossRefGoogle ScholarPubMed
Atlas, L. Y., Lindquist, M. A., Bolger, N., & Wager, T. D. (2014). Brain mediators of the effects of noxious heat on pain. Pain, 155: 16321648.CrossRefGoogle ScholarPubMed
Atlas, L. Y., Whittington, R. A., Lindquist, M. A., Wielgosz, J., Sonty, N., & Wager, T. D. (2012). Dissociable influences of opiates and expectations on pain. Journal of Neuroscience, 32: 80538064.CrossRefGoogle ScholarPubMed
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). LME4: Linear mixed-effects models using Eigen and S4. R package version 1.
Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage, 20: 10521063.CrossRefGoogle Scholar
Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34: 144155.CrossRefGoogle ScholarPubMed
Bendriem, B. & Townsend, D. W. (1998). The Theory and Practice of 3D PET. Boston and Dordrecht: Kluwer.CrossRefGoogle Scholar
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57: 289300.Google Scholar
Bernstein, M. A., King, K. F., & Zhou, Z. J. (2004). Handbook of MRI Pulse Sequences. Burlington, MA: Elsevier Academic Press.Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19: 27672796.CrossRefGoogle ScholarPubMed
Birn, R. M., Saad, Z. S., & Bandettini, P. A. (2001). Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response. NeuroImage, 14: 817826.CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34: 537541.CrossRefGoogle ScholarPubMed
Bohning, D. E., Pecheny, A. P., Epstein, C. M., Speer, A. M., Vincent, D. J., Dannels, W., & George, M. S. (1997). Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport, 8: 25352538.CrossRefGoogle ScholarPubMed
Bohning, D. E., Shastri, A., McConnell, K. A., Nahas, Z., Lorberbaum, J. P., Roberts, D. R., Teneback, C., Vincent, D. J., & George, M. S. (1999). A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biological Psychiatry, 45: 385394.CrossRefGoogle ScholarPubMed
Bornhovd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., & Buchel, C. (2002). Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain, 125: 13261336.CrossRefGoogle ScholarPubMed
Boubela, R. N., Kalcher, K., Huf, W., Seidel, E. M., Derntl, B., Pezawas, L., … & Moser, E. (2015). fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. Scientific Reports, 5: 10499.CrossRefGoogle ScholarPubMed
Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16: 42074221.CrossRefGoogle ScholarPubMed
Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3: 243249.CrossRefGoogle ScholarPubMed
Brooks, J. C., Beckmann, C. F., Miller, K. L., Wise, R. G., Porro, C. A., Tracey, I., & Jenkinson, M. (2008). Physiological noise modelling for spinal functional magnetic resonance imaging studies. NeuroImage, 39: 680692.CrossRefGoogle ScholarPubMed
Brown, A. K., Fujita, M., Fujimura, Y., Liow, J. S., Stabin, M., Ryu, Y. H., … & Innis, R. B. (2007). Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. Journal of Nuclear Medicine, 48: 20722079.CrossRefGoogle ScholarPubMed
Buchel, C., Bornhovd, K., Quante, M., Glauche, V., Bromm, B., & Weiller, C. (2002), Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. Journal of Neuroscience, 22: 970976.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124: 138.CrossRefGoogle ScholarPubMed
Buracas, G. T. & Boynton, G. M. (2002). Efficient design of event-related fMRI experiments using M-sequences. NeuroImage, 16: 801813.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4: 215222.CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafo, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14: 365376.CrossRefGoogle ScholarPubMed
Buxton, R. B. & Frank, L. R. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. Journal of Cerebral Blood Flow & Metabolism, 17: 6472.CrossRefGoogle ScholarPubMed
Buxton, R. B., Frank, L. R., Wong, E. C., Siewert, B., Warach, S., & Edelman, R. R. (1998). A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magnetic Resonance in Medicine, 40: 383396.CrossRefGoogle ScholarPubMed
Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23: S220S233.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84: 262274.CrossRefGoogle ScholarPubMed
Chaimow, D., Yacoub, E., Ugurbil, K., & Shmuel, A. (2011). Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns. NeuroImage, 56: 627642.CrossRefGoogle ScholarPubMed
Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32: 359374.CrossRefGoogle ScholarPubMed
Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18: 192205.CrossRefGoogle ScholarPubMed
Coltheart, M. (2006). What has functional neuroimaging told us about the mind (so far)? Cortex, 42: 323331.CrossRefGoogle ScholarPubMed
Constable, R. T. & Spencer, D. D. (1999). Composite image formation in z-shimmed functional MR imaging. Magnetic Resonance in Medicine, 42: 110117.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. New York: John Wiley.CrossRefGoogle Scholar
Cribben, I., Haraldsdottir, R., Atlas, L. Y., Wager, T. D., & Lindquist, M. A. (2012). Dynamic connectivity regression: determining state-related changes in brain connectivity. NeuroImage, 61: 907920.CrossRefGoogle ScholarPubMed
de Quervain, D. J., Fischbacher, U., Treyer, V., Schellhammer, M., Schnyder, U., Buck, A., & Fehr, E. (2004). The neural basis of altruistic punishment. Science, 305: 12541258.CrossRefGoogle ScholarPubMed
Deckers, R. H., van Gelderen, P., Ries, M., Barret, O., Duyn, J. H., Ikonomidou, V. N., … & de Zwart, J. A. (2006). An adaptive filter for suppression of cardiac and respiratory noise in MRI time series data. NeuroImage, 33: 10721081.CrossRefGoogle ScholarPubMed
Denis Le Bihan, M. D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13: 534546.CrossRefGoogle Scholar
Denny, B. T., Kober, H., Wager, T. D., & Ochsner, K. N. (2012). A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. Journal of Cognitive Neuroscience, 24: 17421752.CrossRefGoogle ScholarPubMed
Desmond, J. E. & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118: 115128.CrossRefGoogle ScholarPubMed
Detre, J. A., Zhang, W. G., Roberts, D. A., Silva, A. C., Williams, D. S., Grandis, D. J., … & Leigh, J. S. (1994). Tissue-specific perfusion imaging using arterial spin-labeling. NMR in Biomedicine, 7: 7582.CrossRefGoogle ScholarPubMed
Devlin, J. T. & Poldrack, R. A. (2007). In praise of tedious anatomy. NeuroImage, 37: 10331041.CrossRefGoogle ScholarPubMed
Disbrow, E. A., Slutsky, D. A., Roberts, T. P., & Krubitzer, L. A. (2000). Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. Proceedings of the National Academy of Sciences of the USA, 97: 97189723.CrossRefGoogle ScholarPubMed
Doucet, G., Naveau, M., Petit, L., Zago, L., Crivello, F., Jobard, G., … & Joliot, M. (2012). Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought during rest. NeuroImage, 59: 31943200.CrossRefGoogle ScholarPubMed
Duong, T. Q., Yacoub, E., Adriany, G., Hu, X., Ugurbil, K., Vaughan, J. T., … & Kim, S. G. (2002). High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magnetic Resonance in Medicine, 48: 589593.CrossRefGoogle ScholarPubMed
Duvernoy, H. M. (2012). The Human Brain Stem and Cerebellum: Surface, Structure, Vascularization, and Three-Dimensional Sectional Anatomy, with MRI. Dordrecht: Springer Science & Business Media.Google Scholar
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25: 13251335.CrossRefGoogle ScholarPubMed
Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302: 290292.CrossRefGoogle ScholarPubMed
Elster, A. D. (1994). Questions and Answers in Magnetic Resonance Imaging. St. Louis, MO: Mosby.Google Scholar
Ethofer, T., Van De Ville, D., Scherer, K., & Vuilleumier, P. (2009). Decoding of emotional information in voice-sensitive cortices. Current Biology, 19: 10281033.CrossRefGoogle ScholarPubMed
Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S., Gunther, M., … & Yacoub, E. (2010). Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One, 5: e15710.CrossRefGoogle ScholarPubMed
Finsterbusch, J., Busch, M. G., & Larson, P. E. Z. (2013). Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations. Magnetic Resonance in Medicine, 70: 14911499.CrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9: 195207.CrossRefGoogle Scholar
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the USA, 102: 96739678.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56: 171184.CrossRefGoogle ScholarPubMed
Frey, K. A. (1999). Positron emission tomography. In Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., & Uhler, M. D. (eds.), Basic Neurochemistry, 6th edn. (pp. 11091131). Philadelphia: Lippincott, Williams, & Wilkins.Google Scholar
Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326: 399403.CrossRefGoogle ScholarPubMed
Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1: 1336.CrossRefGoogle ScholarPubMed
Friston, K. J. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61: 13001310.CrossRefGoogle ScholarPubMed
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6: 218229.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Turner, R., & Frackowiak, R. S. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage, 2: 157165.CrossRefGoogle ScholarPubMed
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19: 12731302.CrossRefGoogle ScholarPubMed
Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. NeuroImage, 12: 466477.CrossRefGoogle ScholarPubMed
Gianaros, P. J. & Wager, T. D. (2015). Brain–body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24: 313321.CrossRefGoogle ScholarPubMed
Glahn, D. C., Paus, T., & Thompson, P. M. (2007a). Imaging genomics: mapping the influence of genetics on brain structure and function. Human Brain Mapping, 28: 461463.CrossRefGoogle ScholarPubMed
Glahn, D. C., Thompson, P. M., & Blangero, J. (2007b). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28: 488501.CrossRefGoogle ScholarPubMed
Glover, G. H. & Law, C. S. (2001). Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magnetic Resonance in Medicine, 46:515522.CrossRefGoogle ScholarPubMed
Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44: 162167.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Goldman, R. I., Stern, J. M., Engel, J. Jr., & Cohen, M. S. (2000). Acquiring simultaneous EEG and functional MRI. Clinical Neurophysiology, 111: 19741980.CrossRefGoogle ScholarPubMed
Gonzalez-Castillo, J., Saad, Z. S., Handwerker, D. A., Inati, S. J., Brenowitz, N., & Bandettini, P. A. (2012). Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proceedings of the National Academy of Sciences of the USA, 109: 54875492.CrossRefGoogle ScholarPubMed
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14: 2136.CrossRefGoogle ScholarPubMed
Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57: 303311.CrossRefGoogle ScholarPubMed
Haacke, E. M. (1999). Magnetic Resonance Imaging: Physical Principles and Sequence Design. New York: John Wiley.Google Scholar
Haines, D. E. (2000). Neuroanatomy: An Atlas of Structures, Sections, and Systems. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324: 646648.CrossRefGoogle ScholarPubMed
Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., … & Ramadge, P. J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72: 404416.CrossRefGoogle ScholarPubMed
Haynes, J. D. (2015). A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron, 87: 257270.CrossRefGoogle Scholar
Haynes, J. D., Deichmann, R., & Rees, G. (2005). Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature, 438: 496499.CrossRefGoogle ScholarPubMed
Heeger, D. J. & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Reviews Neuroscience, 3: 142151.CrossRefGoogle ScholarPubMed
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287: 12691272.CrossRefGoogle ScholarPubMed
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the USA, 106: 20352040.CrossRefGoogle ScholarPubMed
Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science, 340: 639642.CrossRefGoogle ScholarPubMed
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sunderland, MA: Sinauer Associates.Google ScholarPubMed
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76: 12101224.CrossRefGoogle ScholarPubMed
Johansen-Berg, H. & Behrens, T. E. (2006). Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current Opinion in Neurology, 19: 379385.CrossRefGoogle ScholarPubMed
Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., … & Matthews, P. M. (2004). Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proceedings of the National Academy of Sciences of the USA, 101: 1333513340.CrossRefGoogle ScholarPubMed
Josephs, O. & Henson, R. N. (1999). Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354: 12151228.CrossRefGoogle Scholar
Kamitani, Y. & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8: 679685.CrossRefGoogle ScholarPubMed
Kao, M. H., Mandal, A., Lazar, N., & Stufken, J. (2009). Multi-objective optimal experimental designs for event-related fMRI studies. NeuroImage, 44: 849856.CrossRefGoogle ScholarPubMed
Kastner, S. & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23: 315341.Google ScholarPubMed
Kleinschmidt, A., Buchel, C., Zeki, S., & Frackowiak, R. S. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265: 24272433.CrossRefGoogle ScholarPubMed
Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., … & Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Annals of Neurology, 55: 306319.CrossRefGoogle ScholarPubMed
Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical–subcortical interactions in emotion: a meta-analysis of neuroimaging studies. NeuroImage, 42: 9981031.CrossRefGoogle ScholarPubMed
Kong, Y., Jenkinson, M., Andersson, J., Tracey, I., & Brooks, J. C. (2012). Assessment of physiological noise modelling methods for functional imaging of the spinal cord. NeuroImage, 60: 15381549.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Lindquist, M. A., Nichols, T. E., Poldrack, R. A., & Vul, E. (2010). Everything you never wanted to know about circular analysis, but were afraid to ask. Journal of Cerebral Blood Flow & Metabolism, 30: 15511557.CrossRefGoogle Scholar
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12: 535540.CrossRefGoogle ScholarPubMed
Kvitsiani, D., Ranade, S., Hangya, B., Taniguchi, H., Huang, J. Z., & Kepecs, A. (2013). Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature, 498: 363366.CrossRefGoogle ScholarPubMed
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., … & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the USA, 89: 56755679.CrossRefGoogle ScholarPubMed
Laufs, H., Daunizeau, J., Carmichael, D. W., & Kleinschmidt, A. (2008). Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. NeuroImage, 40: 515528.CrossRefGoogle ScholarPubMed
Leitao, J., Thielscher, A., Tunnerhoff, J., & Noppeney, U. (2015). Concurrent TMS-fMRI reveals interactions between dorsal and ventral attentional systems. Journal of Neuroscience, 35: 1144511457.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012a). The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences, 35: 121143.CrossRefGoogle ScholarPubMed
Lindquist, M. A., Caffo, B., & Crainiceanu, C. (2013). Ironing out the statistical wrinkles in “ten ironic rules.” NeuroImage, 81: 499502.CrossRefGoogle ScholarPubMed
Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012b). Estimating and testing variance components in a multi-level GLM. NeuroImage, 59: 490501.CrossRefGoogle Scholar
Lindquist, M. A., Waugh, C., & Wager, T. D. (2007). Modeling state-related fMRI activity using change-point theory. NeuroImage, 35: 11251141.CrossRefGoogle ScholarPubMed
Lindquist, M. A., Zhang, C. H., Glover, G., & Shepp, L. (2008). Rapid three-dimensional functional magnetic resonance imaging of the initial negative BOLD response. Journal of Magnetic Resonance, 191: 100111.CrossRefGoogle ScholarPubMed
Liu, T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types. Part II: design of experiments. NeuroImage, 21: 401413.CrossRefGoogle ScholarPubMed
Loggia, M. L., Chonde, D. B., Akeju, O., Arabasz, G., Catana, C., Edwards, R. R., … & Hooker, J. M. (2015). Evidence for brain glial activation in chronic pain patients. Brain, 138: 604615.CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453: 869878.CrossRefGoogle Scholar
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412: 150157.CrossRefGoogle ScholarPubMed
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the USA, 97: 43984403.CrossRefGoogle ScholarPubMed
Mai, J. K., Paxinos, G., & Voss, T. (2007). Atlas of the Human Brain, 3rd edn. New York: Academic Press.Google Scholar
Menon, R. S. (2002). Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magnetic Resonance in Medicine, 47: 19.CrossRefGoogle ScholarPubMed
Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E., & Buckner, R. L. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage, 11: 735759.CrossRefGoogle ScholarPubMed
Morawetz, C., Holz, P., Lange, C., Baudewig, J., Weniger, G., Irle, E., & Dechent, P. (2008). Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magnetic Resonance Imaging, 26: 4553.CrossRefGoogle ScholarPubMed
Mumford, J. A. & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39: 261268.CrossRefGoogle Scholar
Nichols, T. & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12: 419446.CrossRefGoogle ScholarPubMed
Nichols, T. E. & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15: 125.CrossRefGoogle ScholarPubMed
Noll, D. C., Fessler, J. A., & Sutton, B. P. (2005). Conjugate phase MRI reconstruction with spatially variant sample density correction. IEEE Transactions on Medical Imaging, 24: 325336.CrossRefGoogle ScholarPubMed
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10: 424430.CrossRefGoogle ScholarPubMed
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain: a meta-analysis of imaging studies on the self. NeuroImage, 31: 440457.CrossRefGoogle ScholarPubMed
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the USA, 87: 98689872.CrossRefGoogle ScholarPubMed
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the USA, 89: 59515955.CrossRefGoogle ScholarPubMed
Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439: 865870.CrossRefGoogle ScholarPubMed
Paus, T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2: 417424.CrossRefGoogle ScholarPubMed
Petrini, K., Pollick, F. E., Dahl, S., McAleer, P., McKay, L. S., Rocchesso, D., … & Puce, A. (2011). Action expertise reduces brain activity for audiovisual matching actions: an fMRI study with expert drummers. NeuroImage, 56: 14801492.CrossRefGoogle ScholarPubMed
Phillips, C., Rugg, M. D., & Friston, K. J. (2002). Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. NeuroImage, 16: 678695.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72: 692697.CrossRefGoogle ScholarPubMed
Price, C. J., Veltman, D. J., Ashburner, J., Josephs, O., & Friston, K. J. (1999). The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. NeuroImage, 10: 3644.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the USA, 98: 676682.CrossRefGoogle ScholarPubMed
Rasbash, J. (2002). A User’s Guide to MLwiN. Centre for Multilevel Modelling, University of London.Google Scholar
Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis, 2nd edn. Newbury Park, CA: Sage.Google Scholar
Reiman, E. M., Fusselman, M. J., Fox, P. T., & Raichle, M. E. (1989). Neuroanatomical correlates of anticipatory anxiety. Science, 243: 10711074 [erratum published in Science, 256 (1992): 1696].CrossRefGoogle ScholarPubMed
Rosen, B. R., Buckner, R. L., & Dale, A. M. (1998). Event-related functional MRI: past, present, and future. Proceedings of the National Academy of Sciences of the USA, 95: 773780.CrossRefGoogle ScholarPubMed
Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., … & Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16: 14791488.CrossRefGoogle ScholarPubMed
Saad, Z. S., Reynolds, R. C., Argall, B., Japee, S., & Cox, R. W. (2004). SUMA: an interface for surface-based intra- and inter-subject analysis with AFNI. IEEE International Symposium on Biomedical Imaging: Nano to Macro, 1512: 15101513.Google Scholar
Sandler, M. P. (2003). Diagnostic Nuclear Medicine. Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.CrossRefGoogle Scholar
Schacter, D. L., Buckner, R. L., Koutstaal, W., Dale, A. M., & Rosen, B. R. (1997). Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. NeuroImage, 6: 259269.CrossRefGoogle ScholarPubMed
Scheibe, C., Ullsperger, M., Sommer, W., & Heekeren, H. R. (2010). Effects of parametrical and trial-to-trial variation in prior probability processing revealed by simultaneous electroencephalogram/functional magnetic resonance imaging. Journal of Neuroscience, 30: 1670916717.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27: 23492356.CrossRefGoogle ScholarPubMed
Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., & Wald, L. L. (2012). Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magnetic Resonance in Medicine, 67: 12101224.CrossRefGoogle ScholarPubMed
Shulman, R. G. & Rothman, D. L. (1998). Interpreting functional imaging studies in terms of neurotransmitter cycling. Proceedings of the National Academy of Sciences of the USA, 95: 1199311998.CrossRefGoogle ScholarPubMed
Shulman, R. G., Rothman, D. L., Behar, K. L., & Hyder, F. (2004). Energetic basis of brain activity: implications for neuroimaging. Trends in Neurosciences, 27: 489495.CrossRefGoogle ScholarPubMed
Sibson, N. R., Dhankhar, A., Mason, G. F., Behar, K. L., Rothman, D. L., & Shulman, R. G. (1997). In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proceedings of the National Academy of Sciences of the USA, 94: 26992704.CrossRefGoogle ScholarPubMed
Sinha, R., Lacadie, C., Skudlarski, P., & Wexler, B. E. (2004). Neural circuits underlying emotional distress in humans. Annals of the New York Academy of Sciences, 1032: 254257.CrossRefGoogle ScholarPubMed
Skudlarski, P., Constable, R. T., & Gore, J. C. (1999). ROC analysis of statistical methods used in functional MRI: individual subjects. NeuroImage, 9: 311329.CrossRefGoogle ScholarPubMed
Smith, S. M. (2012). The future of FMRI connectivity. NeuroImage, 62: 12571266.CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Beckmann, C., Miller, K., & Woolrich, M. (2007). Meaningful design and contrast estimability in FMRI. NeuroImage, 34: 127136.CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., … & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23: S208S219.CrossRefGoogle ScholarPubMed
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17: 652660.CrossRefGoogle ScholarPubMed
Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. NeuroImage, 46: 10041017.CrossRefGoogle ScholarPubMed
Sternberg, S. (2001). Separate modifiability, mental modules, and the use of pure and composite measures to reveal them. Acta Psychologica (Amsterdam), 106: 147246.CrossRefGoogle Scholar
Summerfield, C., Greene, M., Wager, T., Egner, T., Hirsch, J., & Mangels, J. (2006). Neocortical connectivity during episodic memory formation. PLoS Biol, 4: e128.CrossRefGoogle ScholarPubMed
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11: 10041006.CrossRefGoogle ScholarPubMed
Sylvester, C. Y., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41: 357370.CrossRefGoogle ScholarPubMed
Tagliazucchi, E. & Laufs, H. (2014). Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron, 82: 695708.CrossRefGoogle ScholarPubMed
Talairach, J. & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart and New York: Thieme.Google Scholar
Taylor, J. E. & Worsley, K. J. (2006). Inference for magnitudes and delays of responses in the FIAC data using BRAINSTAT/FMRISTAT. Human Brain Mapping, 27: 434441.CrossRefGoogle ScholarPubMed
Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., & Toga, A. W. (1996). Three-dimensional statistical analysis of sulcal variability in the human brain. Journal of Neuroscience, 16: 42614274.CrossRefGoogle ScholarPubMed
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Renteria, M. E., … & Drevets, W. (2014). The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 8: 153182.Google ScholarPubMed
Tye, K. M., Prakash, R., Kim, S.-Y., Fenno, L. E., Grosenick, L., Zarabi, H., … & Deisseroth, K. (2011). Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 471: 358362.CrossRefGoogle ScholarPubMed
van Ast, V., Spicer, J., Smith, E., Schmer-Galunder, S., Liberzon, I., Abelson, J., & Wager, T. (2014). Brain mechanisms of social threat effects on working memory. Cerebral Cortex (September): bhu206.
Van Essen, D. C. & Dierker, D. L. (2007). Surface-based and probabilistic atlases of primate cerebral cortex. Neuron, 56: 209225.CrossRefGoogle ScholarPubMed
Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., & Anderson, C. H. (2001). An integrated software suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association, 8: 443459.CrossRefGoogle ScholarPubMed
Vazquez, A. L., Cohen, E. R., Gulani, V., Hernandez-Garcia, L., Zheng, Y., Lee, G. R., … & Noll, D. C. (2006). Vascular dynamics and BOLD fMRI: CBF level effects and analysis considerations. NeuroImage, 32: 16421655.CrossRefGoogle ScholarPubMed
Vazquez, A. L. & Noll, D. C. (1998). Nonlinear aspects of the BOLD response in functional MRI. NeuroImage, 7: 108118.CrossRefGoogle ScholarPubMed
Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., … & Raichle, M. E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447: 8386.CrossRefGoogle ScholarPubMed
Vogt, B. A., Nimchinsky, E. A., Vogt, L. J., & Hof, P. R. (1995). Human cingulate cortex: surface features, flat maps, and cytoarchitecture. Journal of Comparative Neurology, 359: 490506.CrossRefGoogle ScholarPubMed
Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4: 274290.CrossRefGoogle ScholarPubMed
Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368: 13881397.CrossRefGoogle ScholarPubMed
Wager, T. D., Jonides, J., & Reading, S. (2004a). Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage, 22: 16791693.CrossRefGoogle ScholarPubMed
Wager, T. D., Jonides, J., Smith, E. E., & Nichols, T. E. (2005b). Toward a taxonomy of attention shifting: individual differences in fMRI during multiple shift types. Cognitive, Affective, & Behavioral Neuroscience, 5: 127143.CrossRefGoogle Scholar
Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2: 150158.CrossRefGoogle ScholarPubMed
Wager, T. D. & Nichols, T. E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. NeuroImage, 18: 293309.CrossRefGoogle ScholarPubMed
Wager, T. D., Reading, S., & Jonides, J. (2004b). Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage, 22: 16791693.CrossRefGoogle ScholarPubMed
Wager, T. D., Vazquez, A, Hernandez, L, & Noll, D. C. (2005a). Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage, 25: 206218.CrossRefGoogle Scholar
Wager, T. D., Waugh, C. E., Lindquist, M., Noll, D. C., Fredrickson, B. L., & Taylor, S. F. (2009). Brain mediators of cardiovascular responses to social threat. Part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. NeuroImage, 47: 821835.CrossRefGoogle ScholarPubMed
Waugh, C. E., Hamilton, J. P., & Gotlib, I. H. (2010). The neural temporal dynamics of the intensity of emotional experience. NeuroImage, 49: 16991707.CrossRefGoogle ScholarPubMed
Wiech, K., Jbabdi, S., Lin, C. S., Andersson, J., & Tracey, I. (2014). Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain, 155: 20472055.CrossRefGoogle ScholarPubMed
Wilson, J. L. & Jezzard, P. (2003). Utilization of an intra-oral diamagnetic passive shim in functional MRI of the inferior frontal cortex. Magnetic Resonance in Medicine, 50: 10891094.CrossRefGoogle Scholar
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92: 381397.CrossRefGoogle ScholarPubMed
Wise, R. G., Rogers, R., Painter, D., Bantick, S., Ploghaus, A., Williams, P., … & Tracey, I. (2002). Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. NeuroImage, 16: 9991014.CrossRefGoogle ScholarPubMed
Woo, C. W., Koban, L., Kross, E., Lindquist, M. A., Banich, M. T., Ruzic, L., … & Wager, T. D. (2014a). Separate neural representations for physical pain and social rejection. Nature Communications, 5: 5380.CrossRefGoogle ScholarPubMed
Woo, C. W., Krishnan, A., & Wager, T. D. (2014b). Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage, 91: 412419.CrossRefGoogle ScholarPubMed
Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21: 17321747.CrossRefGoogle ScholarPubMed
Worsley, K. J. & Friston, K. J. (1995). Analysis of fMRI time-series revisited – again. NeuroImage, 2: 173181.CrossRefGoogle Scholar
Worsley, K. J., Taylor, J. E., Tomaiuolo, F., & Lerch, J. (2004). Unified univariate and multivariate random field theory. NeuroImage, 23: S189S195.CrossRefGoogle ScholarPubMed
Yacubian, J., Sommer, T., Schroeder, K., Glascher, J., Kalisch, R., Leuenberger, B., … & Buchel, C. (2007). Gene–gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences of the USA, 104: 81258130.CrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8: 665670.CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106: 11251165.Google ScholarPubMed
Zarahn, E. & Slifstein, M. (2001). A reference effect approach for power analysis in fMRI. NeuroImage, 14: 768779.CrossRefGoogle ScholarPubMed

References

Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 4: 544554.CrossRefGoogle ScholarPubMed
Berger, H. (1929). Ueber das Elektrenkephalogramm des Menschen. Archives für Psychiatrie Nervenkrankheiten, 87: 527570.CrossRefGoogle Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10: 433436.CrossRefGoogle ScholarPubMed
Brazdil, M., Roman, R., Falkenstein, M., Daniel, P., Jurak, P., & Rektor, I. (2002). Error processing: evidence from intracerebral ERP recordings. Experimental Brain Research, 146: 460466.CrossRefGoogle ScholarPubMed
Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents: EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13: 407420.CrossRefGoogle ScholarPubMed
Cheour, M., Leppanen, P. H., & Kraus, N. (2000). Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clinical Neurophysiology, 111: 416.CrossRefGoogle ScholarPubMed
Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Cambridge, MA: MIT Press.Google Scholar
Csepe, V. (1995). On the origin and development of the mismatch negativity. Ear and Hearing, 16: 91104.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G. & Baillet, S. (1998). A phonological representation in the infant brain. Neuroreport, 9: 18851888.CrossRefGoogle ScholarPubMed
Delorme, A. & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134: 921.CrossRefGoogle ScholarPubMed
Eimer, M. & Kiss, M. (2008). Involuntary attentional capture is determined by task set: evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 208: 14231433.CrossRefGoogle Scholar
Fischer, C., Luaute, J., Adeleine, P., & Morlet, D. (2004). Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology, 63: 669673.CrossRefGoogle ScholarPubMed
Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/Ne). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 231292). Oxford University Press.Google Scholar
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011a). Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology, 48: 17111725.CrossRefGoogle ScholarPubMed
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011b). Mass univariate analysis of event-related brain potentials/fields II: simulation studies. Psychophysiology, 48: 17261737.CrossRefGoogle ScholarPubMed
Hopf, J.-M., Luck, S. J., Boelmans, K., Schoenfeld, M. A., Boehler, N., Rieger, J., & Heinze, H.-J. (2006). The neural site of attention matches the spatial scale of perception. Journal of Neuroscience, 26: 35323540.CrossRefGoogle Scholar
Kappenman, E. S., Farrens, J. L., Luck, S. J., & Hajcak Proudfit, G. (2014). Behavioral and ERP measures of attentional bias to threat in the dot-probe task: poor reliability and lack of correlation with anxiety. Frontiers in Psychology, 5: 1368.CrossRefGoogle ScholarPubMed
Kappenman, E. S., Kaiser, S. T., Robinson, B. M., Morris, S. E., Hahn, B., Beck, V. M., Leonard, C. J., Gold, J. M., & Luck, S. J. (2012). Response activation impairments in schizophrenia: evidence from the lateralized readiness potential. Psychophysiology, 49: 7384.CrossRefGoogle ScholarPubMed
Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47: 888904.Google ScholarPubMed
Kappenman, E. S. & Luck, S. J. (2012). ERP components: the ups and downs of brainwave recordings. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 330). Oxford University Press.Google Scholar
Kappenman, E. S., Luck, S. J., Kring, A. M., Lesh, T. A., Mangun, G. R., Niendam, T., Ragland, J. D., Ranganath, C., Solomon, M., Swaab, T.Y., & Carter, C. S. (2016). Electrophysiological evidence for impaired control of motor output in schizophrenia. Cerebral Cortex, 18911899.CrossRef
Kappenman, E. S., MacNamara, A., & Hajcak Proudfit, G. (2015). Electrocortical evidence for rapid allocation of attention to threat in the dot-probe task. Social Cognitive and Affective Neuroscience, 10: 577583.CrossRefGoogle ScholarPubMed
Kayser, J., Tenke, C. E., Bhattacharya, N., Stuart, B. K., Hudson, J., & Bruder, G. E. (2000). Direct comparison of geodesic sensor net (128-channel) and conventional (30-channel) ERPs in tonal and phonetic oddball tasks. Psychophysiology, 37: S17.Google Scholar
Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: a comparison of single-participant and jackknife-based scoring methods. Psychophysiology, 45: 250274.CrossRefGoogle ScholarPubMed
Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20: 245251.CrossRefGoogle ScholarPubMed
Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science, 197: 792795.CrossRefGoogle ScholarPubMed
Lopez-Calderon, J. & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8: 213.CrossRefGoogle ScholarPubMed
Lorenzo-Lopez, L., Amenedo, E., & Cadaveira, F. (2008). Feature processing during visual search in normal aging: electrophysiological evidence. Neurobiology of Aging, 29: 11011110.CrossRefGoogle ScholarPubMed
Luck, S. J. (2012). Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 329360). Oxford University Press.Google Scholar
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd edn. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophrenia Research, 85: 174195.CrossRefGoogle ScholarPubMed
Luck, S. J. & Kappenman, E. S. (eds.) (2012). The Oxford Handbook of Event-Related Potential Components. Oxford University Press.Google Scholar
Luck, S. J., Kappenman, E. S., Fuller, R. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2009). Impaired response selection in schizophrenia: evidence from the P3 wave and the lateralized readiness potential. Psychophysiology, 46: 776786.CrossRefGoogle ScholarPubMed
Luck, S. J., Mathalon, D. H., O’Donnell, B. F., Spencer, K. M., Javitt, D. C., Ulhaaus, P. F., & Hämäläinen, M. S. (2011). A roadmap for the development and validation of ERP biomarkers in schizophrenia research. Biological Psychiatry, 70: 2834.CrossRefGoogle ScholarPubMed
Makeig, S. & Onton, J. (2012). ERP features and EEG dynamics: an ICA perspective. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of ERP Components (pp. 5186). Oxford University Press.Google Scholar
Maris, E. & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164: 177190.CrossRefGoogle ScholarPubMed
Näätänen, R. & Kreegipuu, K. (2012). The mismatch negativity (MMN). In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 143157). Oxford University Press.Google Scholar
Nunez, P. L. & Srinivasan, R. (2006). Electric Fields of the Brain, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Ochoa, C. J. & Polich, J. (2000). P300 and blink instructions. Clinical Neurophysiology, 111: 9398.CrossRefGoogle ScholarPubMed
Peirce, J. W. (2007). PsychoPy: psychophysics software in Python. Journal of Neuroscience Methods, 162: 813.CrossRefGoogle ScholarPubMed
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10: 437442.CrossRefGoogle ScholarPubMed
Perez, V. B. & Vogel, E. K. (2012). What ERPs can tell us about working memory. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 361372). Oxford University Press.Google Scholar
Picton, T. W. (2011). Human Auditory Evoked Potentials. San Diego, CA: Plural Publishing.Google Scholar
Polich, J. (2012). Neuropsychology of P300. In Luck, S. J. & Kappenman, E. S. (eds.), The Oxford Handbook of Event-Related Potential Components (pp. 159188). Oxford University Press.Google Scholar
Regan, D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. New York: Elsevier.Google Scholar
Roach, B. J. & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34: 907926.CrossRefGoogle Scholar
Sawaki, R. & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72: 14551470.CrossRefGoogle ScholarPubMed
Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology, 38: 343358.CrossRefGoogle ScholarPubMed
Tanner, D., Morgan-Short, K., & Luck, S. J. (in press). How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology.
Trainor, L., McFadden, M., Hodgson, L., Darragh, L., Barlow, J., Matsos, L., & Sonnadara, R. (2003). Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 51: 515.CrossRefGoogle ScholarPubMed
Woldorff, M. G. (1993). Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 30: 98119.CrossRefGoogle ScholarPubMed
Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28: 3042.CrossRefGoogle ScholarPubMed
Yeung, N. (2004). Relating cognitive and affective theories of the error-related negativity. In Ullsperger, M. & Falkenstein, M. (eds.), Errors, Conflicts, and the Brain: Current Opinions on Performance Monitoring (pp. 6370). Leipzig: MPI of Cognitive Neuroscience.Google Scholar

References

Berger, H. (1929). Ueder das Elektroencephalogramm des Menschen. Archives für Psychiatry Nervenkrankheiten, 87: 527570.CrossRefGoogle Scholar
Brodbeck, V., Kuhn, A., von Wegner, F., Morzelewski, A. Tagliazucchi, E., Borisov, S., … & Laufs, H. (2012). EEG microstates of wakefulness and NREM sleep. NeuroImage, 62: 21292139.CrossRefGoogle ScholarPubMed
Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatio-temporal analysis of multichannel EEG: CARTOOL. Computational Intelligence and Neuroscience, 1: 813870.Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Empirical evidence for low reproducibility indicates low pre-study odds. Nature Reviews Neuroscience, 14: 877.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Cacioppo, S. (2013). Minimal replicability, generalizability, and scientific advances in psychological science. European Journal of Personality, 27: 121122.Google Scholar
Cacioppo, J. T. & Dorfman, D. D. (1987). Waveform moment analysis in psychophysiological research. Psychological Bulletin, 102: 421438.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (2000). Handbook of Psychophysiology, 2nd edn. Cambridge University Press.Google Scholar
Cacioppo, S., Balogh, S., & Cacioppo, J. T. (2015). Implicit attention to negative social, in contrast to nonsocial, words in the Stroop task differs between individuals high and low in loneliness: evidence from event-related brain microstates. Cortex, 70: 213233.CrossRefGoogle ScholarPubMed
Cacioppo, S., Banagee, M., Balogh, S., Cardenas-Iniguez, C., Qualter, P., & Cacioppo, J. T. (2016). Loneliness and implicit attention to social threat: a high performance electrical neuroimaging study. Cognitive Neuroscience, 7: 138159.CrossRefGoogle ScholarPubMed
Cacioppo, S., Bianchi-Demicheli, F., Bischof, P., Deziegler, E., Michel, C. M., & Landis, T. (2013a). Hemispheric specialization varies with EEG brain resting states and phase of menstrual cycle. PLoS One, 8: e63196.CrossRefGoogle ScholarPubMed
Cacioppo, S. & Cacioppo, J. T. (2015). Dynamic spatiotemporal brain analyses using high-performance electrical neuroimaging: Part II. A step-by-step tutorial. Journal of Neuroscience Methods, 256: 184197.CrossRefGoogle Scholar
Cacioppo, S., Frum, C., Asp, E., Weiss, R. M., Lewis, L. W., & Cacioppo, J. T. (2013b). A quantitative meta-analysis of functional imaging studies of social rejection. Scientific Reports, 3: 2027.CrossRefGoogle ScholarPubMed
Cacioppo, S., Weiss, R. M., Runesha, H. B., & Cacioppo, J. T. (2014). Dynamic spatiotemporal brain analyses using high-performance electrical neuroimaging: theoretical framework and validation. Journal of Neuroscience Methods, 238: 1134.CrossRefGoogle Scholar
Collura, T. F. (1993). History and evolution of electroencephalographic instruments and techniques. Journal of Clinical Neurophysiology, 10: 476504.CrossRefGoogle ScholarPubMed
Decety, J. & Cacioppo, S. (2012). The speed of morality: a high-density electrical neuroimaging study. Journal of Neurophysiology, 108: 30683072.CrossRefGoogle ScholarPubMed
Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS One, 7: e30135.CrossRefGoogle ScholarPubMed
Francis, G. (2014). The frequency of excess success for articles in Psychological Science. Psychonomic Bulletin & Review, 21, 11801187.CrossRefGoogle ScholarPubMed
Gartner, M., Brodbeck, V., Helmut, L., & Schneider, G. (2015). A stochastic model for EEG microstate sequence analysis. NeuroImage, 104: 199208.CrossRefGoogle ScholarPubMed
Gloor, P. (1969). Hans Berger on the electroencephalogram of man. EEG Clinical Neurophysiology, Suppl. 28: 136.Google Scholar
Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: current status and future directions. Neuroscience & Biobehavioral Reviews, 49: 105113.CrossRefGoogle ScholarPubMed
Koenig, T., Prichep, L., Lehmann, D., Sosa, P. V., Braeker, E., Kleinlogel, H., … & John, E. R. (2002). Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage, 1: 4148.CrossRefGoogle Scholar
Lehmann, D. (1987). Principles of spatial analysis. In Gevins, A. & Remond, A. (eds.), Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 1: Methods of Analysis of Brain Electrical and Magnetic Signals (pp. 309354). Amsterdam: Elsevier.Google Scholar
Lehmann, D. & Skrandies, W. (1980). Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalography & Clinical Neurophysiology, 48: 609621.CrossRefGoogle ScholarPubMed
Lehmann, D. & Skrandies, W. (1984). Spatial analysis of evoked potentials in man: a review. Progress in Neurobiology, 23: 227250.CrossRefGoogle ScholarPubMed
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J. & Kappenman, E. S. (eds.) (2012). The Oxford Handbook of Event-Related Potential Components. New York: Oxford University Press.Google Scholar
Ortigue, S., Michel, C. M., Murray, M. M., Mohr, C., Carbonnel, S., & Landis, T. (2004). Electrical neuroimaging reveals early generator modulation to emotional words. NeuroImage, 21: 12421251.CrossRefGoogle ScholarPubMed
Ortigue, S., Sinigaglia, C., Rizzolatti, G., & Grafton, S. T. (2010). Understanding actions of others: the electrodynamics of the left and right hemispheres – a high-density EEG neuroimaging study. PLoS One, 5: 13.CrossRefGoogle ScholarPubMed
Ortigue, S., Thompson, J. C., Parasuraman, R., & Grafton, S. T. (2009). Spatio-temporal dynamics of human intention understanding in temporo-parietal cortex: a combined EEG/fMRI repetition suppression paradigm. PLoS One, 4: 6962.CrossRefGoogle ScholarPubMed
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Transactions on Biomedical Engineering, 42: 658665.CrossRefGoogle Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. J., … & Taylor, M. J. (2000). Guidelines for using event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37: 127152.CrossRefGoogle ScholarPubMed
Sarter, M., Bernston, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.CrossRefGoogle Scholar
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, ID 879716.CrossRef
Volkmer, T., Tahaghoghi, S. M. M., & Williams, H. E. (2004). Gradual transition detection using average frame similarity. Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, vol. 9 (p. 139). Washington, DC: IEEE Computer Society.CrossRefGoogle Scholar

References

Abraham, W. C. & Bear, M. F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences, 19: 126130.CrossRefGoogle ScholarPubMed
Agnew, W. F. & McCreery, D. B. (1987). Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery, 20: 143147.CrossRefGoogle ScholarPubMed
Agudelo-Toro, A. & Neef, A. (2013). Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. Journal of Neural Engineering, 10: 026019.CrossRefGoogle ScholarPubMed
Albert, D. J. (1966). The effects of polarizing currents on the consolidation of learning. Neuropsychologia, 4: 6577.CrossRefGoogle Scholar
Allen, E. A., Pasley, B. N., Duong, T., & Freeman, R.D. (2007). Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science, 317: 19181921.CrossRefGoogle ScholarPubMed
Amassian, V. E., Cracco, R. Q., Maccabee, P. J., Cracco, J. B., Rudell, A., & Eberle, L. (1989). Suppression of visual perception by magnetic coil-stimulation of human occipital cortex. Electroencephalography & Clinical Neurophysiology, 74: 458462.CrossRefGoogle ScholarPubMed
Amassian, V. E., Maccabee, P. J., Cracco, R. Q., Cracco, J. B., Rudell, A. P., & Eberle, L. (1993). Measurement of information processing delays in human visual cortex with repetitive magnetic coil stimulation. Brain Research, 605: 317321.CrossRefGoogle ScholarPubMed
Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O., Demmer, I., & Sommer, M. (2002). Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception. NeuroReport, 13: 22292233.CrossRefGoogle ScholarPubMed
Antal, A., Nitsche, M. A., Kincses, T. Z., Lampe, C., & Paulus, W. (2003). No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. Neuroreport, 15: 297302.CrossRefGoogle Scholar
Awiszus, F. (2003). TMS and threshold hunting. Supplements to EEG Clinical Neurophysiology, 56: 1323.CrossRefGoogle ScholarPubMed
Aydin-Abidin, S., Trippe, J., Funke, K., Eysel, U. T., & Benali, A. (2008). High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Experimental Brain Research, 188: 249261.CrossRefGoogle ScholarPubMed
Bagati, D., Mittal, S., Praharaj, S. K., Sarcar, M., Kakra, M., & Kurnar, P. (2012). Repetitive transcranial magnetic stimulation safely administered after seizure. Journal of ECT, 28: 6061.CrossRefGoogle ScholarPubMed
Balslev, D., Braet, W., McAllister, C., & Miall, R. C. (2007). Interindividual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. Journal of Neuroscience Methods, 162: 309313.CrossRefGoogle Scholar
Barker, A. T. (2002). The history and basic principles of magnetic nerve stimulation. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., & Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 317). London: Arnold.Google Scholar
Barker, A. T., Garnham, C. W., & Freeston, I. L. (1991). Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalography & Clinical Neurophysiology Supplement, 43: 227237.Google ScholarPubMed
Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1: 11061107.CrossRefGoogle ScholarPubMed
Berardelli, A., Inghilleri, M., Gilio, F., Romeo, S., Pedace, F., Currà, A., & Manfredi, M. (1999). Effects of repetitive cortical stimulation on the silent period evoked by magnetic stimulation. Experimental Brain Research, 125: 8286.CrossRefGoogle ScholarPubMed
Berardelli, A., Inghilleri, M., Rothwell, J. C., Romeo, S., Currà, A., Gilio, F., … & Manfredi, M. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Experimental Brain Research, 122: 7984.CrossRefGoogle ScholarPubMed
Bestmann, S., Thilo, K. V., Sauner, D., Siebner, H. R., & Rothwell, J.C. (2002). Parietal magnetic stimulation delays visuomotor mental rotation at increased processing demands. NeuroImage, 17: 15121520.CrossRefGoogle ScholarPubMed
Bestmann, S. J., Baudewig, J., & Frahm, J. (2003a). On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. Journal of Magnetic Resonance Imaging, 17: 309316.CrossRefGoogle ScholarPubMed
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2003b). Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. NeuroImage, 20: 16851696.CrossRefGoogle ScholarPubMed
Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2004). Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience, 19: 19501962.CrossRefGoogle ScholarPubMed
Bijsterbosch, J. D., Barker, A. T., Lee, K.-H., & Woodruff, P. W. R. (2012). Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Medical Biological Engineering and Computing, 50: 671681.CrossRefGoogle ScholarPubMed
Bikson, M., Bulow, P., Stiller, J. W., Datta, A., Battaglia, F., Karnup, S. V., & Postolache, T. T. (2008). Transcranial direct current stimulation for major depression: a general system for quantifying transcranial electrotherapy dosage. Current Treatment Options in Neurology, 10: 377385.CrossRefGoogle ScholarPubMed
Bliss, T. V., Collingridge, G. L., & Morris, R. G. (2003) Introduction: longterm potentiation and structure of the issue. Philosophical Transactions of the Royal Society London B: Biological Sciences, 358: 607611.CrossRefGoogle Scholar
Bliss, T. V. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232: 331356.CrossRefGoogle ScholarPubMed
Bohning, D. E., Shastri, A., Nahas, Z., Lorberbaum, J. P., Andersen, S. W., Dannels, W. R., … & George, M. S. (1998). Echopolar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Investigative Radiology, 33: 336340.CrossRefGoogle ScholarPubMed
Bonato, C., Miniussi, C., & Rossini, P. M. (2006).Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clinical Neurophysiology, 117: 16991707.CrossRefGoogle ScholarPubMed
Boroojerdi, B., Battaglia, F., Muellbacher, W., & Cohen, W. G. (2001a). Mechanisms influencing stimulus-response properties of the human corticospinal system. Clinical Neurophysiology, 112: 931937.CrossRefGoogle ScholarPubMed
Boroojerdi, B., Phipps, M., Kopylev, L., Wharton, C. M., Cohen, L. G., & Grafman, J. (2001b). Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology, 56: 526528.CrossRefGoogle ScholarPubMed
Boroojerdi, B., Prager, A., Muellbacher, W., & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1 Hz transcranial magnetic stimulation. Neurology, 54: 15291531.CrossRefGoogle ScholarPubMed
Brasil-Neto, J. P., McShane, L. M., Fuhr, P., Hallett, M., & Cohen, L. G. (1992). Topographic mapping of the human cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalography & Clinical Neurophysiology, 85: 916.CrossRefGoogle ScholarPubMed
Brem, A.-K., Fried, P. J., Horvath, J. C., Robertson, E. M., & Pascual-Leone, A. (2014). Is neuroenhancement by noninvasive brain stimulation a zero-sum proposition? NeuroImage, 85: 10581068.CrossRefGoogle ScholarPubMed
Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3: 243249.CrossRefGoogle ScholarPubMed
Bungert, A., Chambers, C. D., Phillips, M., & Evans, J. (2006). Reducing image artefacts in concurrent TMS/fMRI by passive shimming. NeuroImage, 59: 21672174.CrossRefGoogle Scholar
Buzsaki, G. (2006). Rhythms of the Brain. Oxford University Press.CrossRefGoogle Scholar
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313: 16261628.CrossRefGoogle ScholarPubMed
Cantarero, G. & Celnik, P. (2015). Applications of TMS to study brain connectivity. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 191212). Hoboken, NJ: Wiley-Blackwell.CrossRefGoogle Scholar
Caparelli, E. C., Backus, W., Telang, F., Wang, G.-J., Maloney, T., Goldstein, R. Z., & Henn., F. (2012). Is 1 Hz rTMS always inhibitory in healthy individuals? The Open Neuroimaging Journal, 6: 6974.CrossRefGoogle ScholarPubMed
Cardenas-Morales, L., Nowak, D. A., Kammer, T., Wolf, R. C., & Schonfeldt-Lecuona, C. (2010). Mechanisms and applications of theta-burst rTMS on the human motor cortex. Brain Topography, 22: 294306.CrossRefGoogle ScholarPubMed
Cattaneo, Z., Rota, F., Vecchi, T., & Silvanto, J. (2008). Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. European Journal of Neuroscience, 28: 19241929.CrossRefGoogle ScholarPubMed
Cattaneo, Z., Rota, F., Walsh, V., Vecchi, T., & Silvanto, J. (2009). TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex. Cerebral Cortex, 19: 23212325.CrossRefGoogle ScholarPubMed
Chanes, L., Quentin, R., Tallon-Baudry, C., & Valero-Cabré, A. (2013). Causal frequency-specific contributions of frontal spatiotemporal patterns induced by noninvasive neurostimulation to human visual performance. Journal of Neuroscience, 33: 50005005.CrossRefGoogle ScholarPubMed
Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., … & Rothwell, J. C. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 586: 57175725.CrossRefGoogle ScholarPubMed
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z. W., Williams, L. M., … & Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the USA, 110: 1994419949.CrossRefGoogle ScholarPubMed
Chen, R. (2004). Interactions between inhibitory and excitatory circuits in the human motor cortex. Experimental Brain Research, 154: 110.CrossRefGoogle ScholarPubMed
Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48: 13981403.CrossRefGoogle ScholarPubMed
Chervyakov, A. V., Piradov, M. A., Chernikova, L. A., Nazarova, M. A., Gnezditsky, V. V., Savitskaya, N. G., & Fedin, P. A. (2013). Capability of navigated repeated transcranial magnetic stimulation in stroke rehabilitation (randomized blind sham-controlled study). Journal of the Neurological Sciences, 333: 246247.CrossRefGoogle Scholar
Chiramberro, M., Lindberg, N., Isometsä, E., Kähkönen, S., & Appelberg, B. (2013). Repetitive transcranial magnetic stimulation induced seizures in an adolescent patient with major depression: a case report. Brain Stimulation, 6: 830831.CrossRefGoogle Scholar
Cohen, D. & Cuffin, B. N. (1991). Developing a more focal magnetic stimulator. Part I: Some basic principles. Journal of Clinical Neurophysiology, 8: 102111.CrossRefGoogle ScholarPubMed
Cohen, D. A., Freitas, C., Tormos, J. M., Oberman, L., Eldaief, M., & Pascual-Leone, A. (2010). Enhancing plasticity through repeated rTMS sessions: the benefits of a night of sleep. Clinical Neurophysiology, 121: 21592164.CrossRefGoogle Scholar
Cohen Kadosh, R., Cohen Kadosh, K., Schuhmann, T., Kaas, A., Goebel, R., Henik, A., & Sack, A. T. (2007). Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Current Biology, 17: 689693.CrossRefGoogle ScholarPubMed
Cooper, A. C. G., Humphreys, G. W., Hulleman, J., Praamstra, P., & Georgeson, M. (2004). Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Experimental Brain Research, 155: 2429.CrossRefGoogle ScholarPubMed
Counter, S. A., Borg, E., Lofqvist, L., & Brismar, T. (1990). Hearing loss from the acoustic artifact of the coil used in extracranial magnetic stimulation. Neurology, 40: 11591162.CrossRefGoogle ScholarPubMed
Crowther, L. J., Porzig, K., Hadimani, R. L., Brauer, H., & Jile, D. C. (2012). Calculation of Lorentz forces on coils for transcranial magnetic stimulation during magnetic resonance imaging. IEEE Transactions on Magnetics, 48: 40584061.CrossRefGoogle Scholar
Daskalakis, Z. J., Moller, B., Christensen, B. K., Fitzgerald, P. B., Gunraj, C., & Chen, R. (2006). The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Experimental Brain Research, 174: 403412.CrossRefGoogle ScholarPubMed
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2: 201207.CrossRefGoogle ScholarPubMed
Davey, K. R. & Riehl, M. E. (2006). Suppressing the surface field during transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 53: 190194.CrossRefGoogle ScholarPubMed
de Graaf, T. A., Jacobs, C., Roebroeck, A., & Sack, A. T. (2009). FMRI effective connectivity and TMS chronometry: complementary accounts of causality in the visuospatial judgment network. PLoS One, 4: e8307.CrossRefGoogle ScholarPubMed
Deblieck, C., Thompson, B., Iacoboni, M., & Wu, A. D. (2008). Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study. Human Brain Mapping, 29: 662670.CrossRefGoogle ScholarPubMed
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimulation, 6: 113.CrossRefGoogle ScholarPubMed
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2014). Coil design considerations for deep transcranial magnetic stimulation. Clinical Neurophysiology, 125: 12021212.CrossRefGoogle ScholarPubMed
Deng, Z.-D. & Peterchev, A. V. (2011). Transcranial magnetic stimulation coil with electronically switchable active and sham modes. Conference Proceedings of the IEEE Engineering Medicine Biology Society.
Denslow, S., Lomarev, M., George, M. S., & Bohning, D. E. (2005). Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biological Psychiatry, 57: 752760.CrossRefGoogle ScholarPubMed
Devanne, H., Lavoie, B. A., & Capaday, C. (1997). Input–output properties and gain changes in the human corticospinal pathway. Experimental Brain Research, 114: 329338.CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Oliviero, A., Profice, P., Pennisi, M. A., Pilato, F., Zito, G., … & Tonali, P. A. (2003). Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. Journal of Physiology, 547: 485496.CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Pilato, F., Saturno, E., Oliviero, A., Dileone, M., Mazzone, P., … & Rothwell, J. (2005). Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. Journal of Physiology, 565: 945950.CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Profice, P., Ranieri, F., Capone, F., Dileone, M., Oliviero, A., & Pilato, F. (2012). I-wave origin and modulation. Brain Stimulation, 5: 512525.CrossRefGoogle ScholarPubMed
Dmochowski, J. P., Datta, A., Bikson, M., Su, Y., & Parra, L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8: 046011.CrossRefGoogle ScholarPubMed
Edwardson, M., Fetz, E. E., & Avery, D. H. (2011). Seizure produced by 20 Hz transcranial magnetic stimulation during isometric muscle contraction in a healthy subject. Clinical Neurophysiology, 122: 23242327.CrossRefGoogle Scholar
Ellison, A., Battelli, L., Cowey, A., & Walsh, V. (2003). The effect of expectation on facilitation of color/form conjunction tasks by TMS over area V5. Neuropsychologia, 41: 17941801.CrossRefGoogle Scholar
Emara, T. H., Moustafa, R. R., Elnahas, N. M., Elganzoury, A. M., Abdo, T. A., Mohamed, S. A., & Eletribi, M. A. (2010). Repetitive transcranial magnetic stimulation at 1 Hz and 5 Hz produces sustained improvement in motor function and disability after ischaemic stroke. European Journal of Neurology, 17: 12031209.CrossRefGoogle ScholarPubMed
Esser, S. K., Hill, S. L., & Tononi, G. (2005). Modeling the effects of transcranial magnetic stimulation on cortical units. Journal of Neurophysiology, 94: 622639.CrossRefGoogle Scholar
Esser, S. K., Huber, R., Massimini, M., Peterson, M. J., Ferrarelli, F., & Tononi, G. (2006). A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Research Bulletin, 69: 8694.CrossRefGoogle ScholarPubMed
Feredoes, E., Tononi, G., & Postle, B. R. (2007). The neural bases of the short-term storage of verbal information are anatomically variable across individuals. Journal of Neuroscience, 27: 1100311008.CrossRefGoogle ScholarPubMed
Ferreri, F. & Rossini, P. M. (2013). TMS and TMS–EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Reviews in the Neurosciences, 24: 431442.CrossRefGoogle Scholar
Fitzgerald, P. B., Fountain, S., & Daskalakis, Z. J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology, 117: 25842596.CrossRefGoogle Scholar
Fox, J. J. & Schroeder, C. E. (2005). The case for feedforward multisensory convergence during early cortical processing. Neuroreport, 16: 419423.CrossRefGoogle Scholar
Fox, M. D., Liu, H., & Pascual-Leone, A. (2012). Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage, 66: 151160.CrossRefGoogle ScholarPubMed
Fox, P., Ingham, R., George, M. S., Mayberg, H., Ingham, J., Roby, J., … & Jerabek, P. (1997). Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport, 8: 27872791.CrossRefGoogle ScholarPubMed
Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375: 93102.CrossRefGoogle ScholarPubMed
Fridlund, A. J. & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23: 567589.CrossRefGoogle ScholarPubMed
Fuggetta, G., Pavone, E. F., Fiaschi, A., & Manganotti, P. (2008). Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Human Brain Mapping, 29: 113.CrossRefGoogle ScholarPubMed
Gangitano, M., Valero-Cabré, A., Tormos, J. M., Mottaghy, F. M., Romero, J. R., & Pascual-Leone, A. (2002). Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clinical Neurophysiology, 113: 12491257.CrossRefGoogle ScholarPubMed
George, M. S., Short, E. B., Kerns, S. E., Li, X., Hanlon, C., Pelic, C., … & Fox, J. (2015). Therapeutic applications of rTMS for psychiatric and neurological conditions. In Reti, I. M. (ed.), Brain Stimulation: Methodologies and Interventions (pp. 213232). Hoboken, NJ: Wiley-Blackwell.CrossRefGoogle Scholar
Goetz, S. M., Luber, B., Lisanby, S. H., Murphy, D. L., Kozyrkov, I. C., Grill, W., & Peterchev, A. V. (2016). Enhancement of rTMS neuromodulatory effects with novel waveforms demonstrated via controllable pulse parameter TMS. Brain Stimulation 9: 3947.CrossRefGoogle Scholar
Goetz, S. M., Luber, B., Lisanby, S. H., & Peterchev, A. V. (2014). A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimulation, 7: 541552.CrossRefGoogle ScholarPubMed
Goetz, S. M., Pfaeffl, M., Huber, J., Singer, M., Marquardt, R., & Weyh, T. (2012). Circuit topology and control principle for a first magnetic stimulator with fully controllable waveform. Conference Proceedings of IEEE Engineering Medical Biology Society.CrossRef
Goetz, S. M., Whiting, P. A., & Peterchev, A. V. (2011). Threshold estimation with transcranial magnetic stimulation: algorithm comparison. Clinical Neurophysiology, 122: S197.CrossRefGoogle Scholar
Gómez, L., Morales, L., Trápaga, O., & Morales, H. (2011). Seizure induced by sub-threshold 10-Hz rTMS in a patient with multiple risk factors. Clinical Neurophysiology, 122: 10571058.CrossRefGoogle Scholar
Grefkes, C., Nowak, D. A., Wang, L. E., Dafotakis, M., Eickhoff, S. B., & Fink, G. R. (2010). Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage, 50: 233242.CrossRefGoogle ScholarPubMed
Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L. G., Mall, V., … & Siebner, H. R. (2012). A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology, 123: 858882.CrossRefGoogle ScholarPubMed
Grosbras, M. H. & Paus, T. (2002). Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. Journal of Cognitive Neuroscience, 14: 11091120.CrossRefGoogle ScholarPubMed
Grosbras, M. H. & Paus, T. (2003). Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. European Journal of Neuroscience, 18: 31213126.CrossRefGoogle ScholarPubMed
Hamada, M., Hanajima, R., Terao, Y., Arai, N., Furubayashi, T., Inomata-Terada, S., … & Ugawa, Y. (2007). Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clinical Neurophysiology, 118: 26722682.CrossRefGoogle ScholarPubMed
Hamada, M., Strigaro, G., Murase, N., Sadnicka, A., Galea, J. M., Edwards, M. J., & Rothwell, J. C. (2012). Cerebellar modulation of human associative plasticity. Journal of Physiology, 590: 23652374.CrossRefGoogle ScholarPubMed
Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., … & Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. Journal of Physiology, 586: 39273947.CrossRefGoogle ScholarPubMed
Hamada, M. & Ugawa, Y. (2010). Quadripulse stimulation:a new patterned rTMS. Restorative Neurology and Neuroscience, 28: 419424.Google ScholarPubMed
Hamidi, M., Johnson, J. S., Feredoes, E., & Postle, B. R. (2011). Does high-frequency repetitive transcranial magnetic stimulation produce residual and/or cumulative effects within an experimental session? Brain Topography, 23: 355367.CrossRefGoogle ScholarPubMed
Hamidi, M., Slagter, H. A., Tononi, G., & Postle, B. R. (2009). Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Frontiers in Integrative Neuroscience, 3. doi: 10.3389/neuro.07.014.2009.CrossRefGoogle ScholarPubMed
Hannula, H., Neuvonen, T., Savolainen, P., Hiltunen, J., Ma, Y.-Y., Antila, H., … & Pertovaara, A. (2010). Increasing top-down suppression from prefrontal cortex facilitates tactile working memory. NeuroImage, 49: 10911098.CrossRefGoogle ScholarPubMed
Harel, E. V., Zangen, A., Roth, Y., Reti, I., Braw, Y., & Levkovitz, Y. (2011). H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World Journal of Biological Psychiatry, 12: 119126.CrossRefGoogle ScholarPubMed
Harris, J. A., Clifford, C. W. G., & Miniussi, C. (2008). The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? Journal of Cognitive Neuroscience, 20: 734740.CrossRefGoogle ScholarPubMed
Haug, B. A., Schönle, P. W., Knobloch, C., & Köhne, M. (1992). Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalography & Clinical Neurophysiology, 85: 158160.CrossRefGoogle ScholarPubMed
Heller, L. & van Hulsteyn, D. B. (1992). Brain stimulation using electromagnetic sources: theoretical aspects. Biophysical Journal, 63: 129138.CrossRefGoogle ScholarPubMed
Herwig, U., Abler, B., Schonfeldt-Lecuona, C., Wunderlich, A., Grothe, J., Spitzer, M., & Walter, H. (2003a). Verbal storage in a premotor-parietal network: evidence from fMRI-guided magnetic stimulation. NeuroImage, 20: 10321041.CrossRefGoogle Scholar
Herwig, U., Satrapi, P., & Schonfeldt-Lecuona, C. (2003b). Using the International 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16: 9599.CrossRefGoogle ScholarPubMed
Hoeft, F., Wu, D.-A., Hernandez, A., Glover, G. H., & Shimojo, S. (2008). Electronically switchable sham transcranial magnetic stimulation (TMS) system. PLoS One, 3: e1923.CrossRefGoogle ScholarPubMed
Hoogendam, J. M., Ramakers, G. M. J., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3: 95118.CrossRefGoogle ScholarPubMed
Horvath, J. C., Forte, J. D., & Carter, O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia, 66: 213236.CrossRefGoogle ScholarPubMed
Houdayer, E., Degardin, A., Cassim, F., Bocquillon, P., Derambure, P., & Devanne, H. (2008). The effects of low- and high-frequency repetitive TMS on the input/output properties of the human corticospinal pathway. Experimental Brain Research, 187: 207217.CrossRefGoogle ScholarPubMed
Hu, S. H., Wang, S. S., Zhang, M. M., Wang, J.-W., Hu, J.-B., & Huang, M.-L. (2011). Repetitive transcranial magnetic stimulation-induced seizure of a patient with adolescent-onset depression: a case report and literature review. Journal of International Medical Research, 39: 20392044.CrossRefGoogle ScholarPubMed
Huang, Y. Z., Chen, R. S., Rothwell, J. C., & Wen, H.-Y. (2007). The after-effect of human theta burst stimulation is NMDA receptor dependent. Clinical Neurophysiology, 118: 1028.CrossRefGoogle ScholarPubMed
Huang, Y. Z., Edwards, M. J., Rounis, E., Bhalia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45: 201206.CrossRefGoogle ScholarPubMed
Huang, Y.-Z., Sommer, M., Thickbroom, G., Hamada, M., Pascual-Leone, A., Paulus, W., … & Ugawa, Y. (2009). Consensus: new methodologies for brain stimulation. Brain Stimulation, 2: 213.CrossRefGoogle ScholarPubMed
Ilmoniemi, R. J. & Kičić, D. (2010) Methodology for combined TMS and EEG. Brain Topography, 22: 233248.CrossRefGoogle ScholarPubMed
Ilmoniemi, R. J., Virtanen, J., Ruohonen, J., Karhu, J., Aronen, H. J., Naatanen, R., & Katila, T. (1997). Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport, 8: 35373540.CrossRefGoogle ScholarPubMed
Iriki, A., Pavlides, C., Keller, A., & Asanuma, H. (1989). Long-term potentiation in the motor cortex. Science, 245: 13851387.CrossRefGoogle ScholarPubMed
Iyer, M. B., Schleper, N., & Wassermann, E. M. (2003). Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. Journal of Neuroscience, 23: 1086710872.CrossRefGoogle ScholarPubMed
Jalinous, R. (2002). Principles of magnetic stimulator design. In Pascual-Leone, A., Davey, N. J., Rothwell, J., Wassermann, E. M., and Puri, B. K. (eds.), Handbook of Transcranial Magnetic Stimulation (pp. 3038). London: Arnold.Google Scholar
Janicak, P. G., O’Reardon, J. P., Sampson, S. M., Husain, M. M., Lisanby, S. H., Rado, J. T., … & Demitrack, M. A. (2008). Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. Journal of Clinical Psychiatry, 69: 222232.CrossRefGoogle ScholarPubMed
Jennum, P., Winkel, H., & Fuglsang-Frederiksen, A. (1995). Repetitive magnetic stimulation and motor evoked potentials. Electroencephalography & Clinical Neurophysiology, 97: 96101.CrossRefGoogle ScholarPubMed
Ji, R. R., Schlaepfer, T. E., Aizenman, C. D., Epstein, C. M., Qiu, D., Huang, J. C., & Rupp, F. (1998). Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proceedings of the National Academy of Sciences of the USA, 95: 1563515640CrossRefGoogle ScholarPubMed
Juan, C. H. & Walsh, V. (2003). Feedback to V1: a reverse hierarchy in vision. Experimental Brain Research, 150: 259263.CrossRefGoogle ScholarPubMed
Jung, P. & Ziemann, U. (2009). Homeostatic and nonhomeostatic modulation of learning in human motor cortex. Journal of Neuroscience, 29: 55975604.CrossRefGoogle ScholarPubMed
Kähkönen, S., Komssi, S., Wilenius, J., & Ilmoniemi, R. J. (2005). Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. NeuroImage, 24: 955960.CrossRefGoogle ScholarPubMed
Kähkönen, S., Wilenius, J., Komssi, S., & Ilmoniemi, R. J. (2004). Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation. Clinical Neurophysiology, 115: 583588.CrossRefGoogle ScholarPubMed
Kaminski, J. A., Korb, F. M., Viliringer, A., & Ott, D. V. M. (2011). Transcranial magnetic stimulation intensities in cognitive paradigms. PloS One, 6: e24836.CrossRefGoogle ScholarPubMed
Kamitani, Y. & Schimojo, S. (1999). Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nature Neuroscience, 2: 767771.CrossRefGoogle ScholarPubMed
Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U., & Topka, H. (2001). Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology, 112: 250258.CrossRefGoogle ScholarPubMed
Kammer, T. & Nusseck, H. G. (1998). Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? Neuropsychologia, 36: 11611166.CrossRefGoogle ScholarPubMed
Kammer, T., Puls, K., Erb, M., & Grodd, W. (2005). Transcranial magnetic stimulation in the visual system. II: Characterization of induced phosphenes and scotomas. Experimental Brain Research, 160: 129140.CrossRefGoogle ScholarPubMed
Kessler, S. K., Turkeltaub, P. E., Benson, J. G., & Hamilton, R. H. (2012). Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimulation, 5: 155162.CrossRefGoogle ScholarPubMed
Kimiskidis, V. K., Papagiannopoulos, S., Sotirakoglou, K., Kazis, D. A., Kazis, A., & Mills, K. R. (2005). Silent period to transcranial magnetic stimulation: construction and properties of stimulus–response curves in healthy volunteers. Experimental Brain Research, 163: 2131.CrossRefGoogle ScholarPubMed
Kleim, J., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., & Cramer, S. C. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9: 735737.CrossRefGoogle ScholarPubMed
Klimesch, W., Sauseng, P., & Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17: 11291133.CrossRefGoogle ScholarPubMed
Kohler, S., Paus, T., Buckner, R. L., & Milner, B. (2006). Effect of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. Journal of Cognitive Neuroscience, 16: 178188.CrossRefGoogle Scholar
Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Shroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94: 19041911.CrossRefGoogle ScholarPubMed
Lang, N., Rothkegel, H., Reiber, H., Hasan, A., Sueske, E., Tergau, F., … & Paulus, W. (2011). Circadian modulation of GABA-mediated cortical inhibition. Cerebral Cortex, 21: 22992306.CrossRefGoogle ScholarPubMed
Lang, N., Siebner, H. R., Ernst, D., Nitsche, M. A., Paulus, W., Lemon, R. N., & Rothwell, J. C. (2004). Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biological Psychiatry, 56: 634638.CrossRefGoogle ScholarPubMed
Lang, N., Speck, S., Harms, J., Rothkegel, H., Paulus, W., & Sommer, M. (2008). Dopaminergic potentiation of rTMS induced motor cortex inhibition. Biological Psychiatry, 3: 231233.CrossRefGoogle Scholar
Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368: 347350.CrossRefGoogle ScholarPubMed
Levkovitz, Y., Roth, Y., Harel, E. V., Braw, Y., Sheer, A., & Zangen, A. (2007). A randomized controlled feasibility and safety study of deep transcranial magnetic stimulation. Clinical Neurophysiology, 118: 27302744.CrossRefGoogle ScholarPubMed
Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9: article 181.CrossRefGoogle ScholarPubMed
Lisanby, S. H., Gutman, D., Luber, B., Schroeder, C., & Sackeim, H. A. (2001). Sham TMS: intracerebral measurements of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49: 460463.CrossRefGoogle ScholarPubMed
Lisman, J. E. & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77: 10021016.CrossRefGoogle ScholarPubMed
Liston, C., Chen, A. C., Zebley, B. D., Drysdale, A. T., Gordon, R., Leuchter, B., … & Dubin, M. J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76: 517526.CrossRefGoogle ScholarPubMed
Lolas, F. (1977). Low-level electric currents and brain indicators of behavioral activation. Arquivos de Neuro-Psiquiatria, 35: 325328.CrossRefGoogle Scholar
Loo, C., Sachdev, P., Elsayed, H., McDarmont, B., Mitchell, P., Wilkinson, M., … & Gandevia, S. (2001). Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychologic functioning, electroencephalogram, and auditory threshold in depressed patients. Biological Psychiatry, 49: 615623.CrossRefGoogle ScholarPubMed
Lorenzano, C., Gilio, F., Inghilleri, M., & Berardelli, A. (2002). Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Experimental Brain Research, 147: 186192.Google ScholarPubMed
Luber, B. (2014). Neuroenhancement by noninvasive brain stimulation is not a net zero-sum proposition. Frontiers in Systems Neuroscience, 8: article 129.CrossRefGoogle Scholar
Luber, B., Balsam, P., Nguyen, T., Gross, M., & Lisanby, S. H. (2007a). Classical conditioned learning using transcranial magnetic stimulation. Experimental Brain Research, 183: 361369.CrossRefGoogle ScholarPubMed
Luber, B., Kinnunen, L. H., Rakitin, B. C., Ellsasser, R., Stern, Y., & Lisanby, S. H. (2007b). Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency and time-dependent effects. Brain Research, 1128: 120129.CrossRefGoogle Scholar
Luber, B. & Lisanby, S. H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage, 85: 961970.CrossRefGoogle Scholar
Luber, B., Stanford, A. D., Bulow, P., Nguyen, T., Rakitin, B. C., Habeck, C., … & Lisanby, S. H. (2008). Remediation of sleep-deprivation induced visual working memory impairment with fMRI-guided transcranial magnetic stimulation. Cerebral Cortex, 18: 20772085.CrossRefGoogle ScholarPubMed
Luber, B., Steffener, J., Tucker, A., Habeck, C., Peterchev, A. V., Deng, Z.-D., … & Lisanby, S. H. (2013). Extended remediation of sleep deprivation-induced working memory deficits using fMRI-guided repetitive transcranial magnetic stimulation. Sleep, 36: 857871.CrossRefGoogle Scholar
Maccabee, P. J., Amassian, V. E., Eberle, L. P., & Cracco, R. Q. (1993). Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. Journal of Physiology in London, 460: 210219.CrossRefGoogle Scholar
Maccabee, P. J., Nagarajan, S. S., Amassian, V. E., Durand, D. M., Szabo, A. Z., Ahad, A. B., … & Eberle, L. P. (1998). Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve. Journal of Physiology, 513.2, 571585.CrossRefGoogle ScholarPubMed
Maki, H. & Ilmoniemi, R. J. (2010). The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neuroscience Letters, 478: 2428.CrossRefGoogle ScholarPubMed
Mancini, M., Pellicciari, M. C., Brignani, D., Mauri, P., De Marchis, C., Miniussi, C., & Conforto, S. (2015). Automatic artifact suppression in simultaneous tDCS-EEG using adaptive filtering. Conference Proceedings IEEE Engineering, Medical and Biological Society.CrossRef
Mangia, A. L., Pirini, M., & Cappello, A. (2014). Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Frontiers of Human Neuroscience, 8: 601.CrossRefGoogle ScholarPubMed
Matthews, N., Luber, B., Qian, N., & Lisanby, S. (2001). Transcranial magnetic stimulation differentially affects speed and direction judgments. Experimental Brain Research, 140: 397406.CrossRefGoogle ScholarPubMed
McConnell, K. A., Nahas, Z., Shastri, A., Lorberbaum, J. P., Kozel, F. A., Bohning, D. E., & George, M. S. (2001). The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biological Psychiatry, 49: 454459.CrossRefGoogle ScholarPubMed
McKinley, R. A., Bridges, N., Walters, C. M., & Nelson, J. (2012). Modulating the brain at work using noninvasive transcranial stimulation. NeuroImage, 59: 129137.CrossRefGoogle Scholar
Mennemeier, M. S., Triggs, W., Chelette, K, C., Woods, A. J., Kimbrell, T., & Domhoffer, J. (2009). Sham transcranial magnetic stimulation using electrical stimulation of the scalp. Brain Stimulation, 2: 169173.CrossRefGoogle ScholarPubMed
Meuller, J. K., Grigsby, E. M., Prevosto, V., Petraglia, F. W. III, Rao, H., Deng, Z.-D., … & Grill, W. M. (2014). Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nature Neuroscience, 17: 11301136.CrossRefGoogle Scholar
Mills, K. R. & Nithi, K. A. (1997). Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve, 20: 570576.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modeling non-invasive brain stimulation in cognitive neuroscience. Neuroscience & Biobehavioral Reviews, 37: 17021712.CrossRefGoogle Scholar
Miniussi, C., Ruzzoli, M., & Walsh, V. (2010). The mechanism of transcranial magnetic stimulation in cognition. Cortex, 46: 128130.CrossRefGoogle ScholarPubMed
Miranda, P. C., Hallett, M., & Basser, P. J. (2003). The electric field induced in the brain by magnetic stimulation: a 3-D finite element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Transactions on Biomedical Engineering, 50: 10741085.CrossRefGoogle ScholarPubMed
Mishory, A., Molnar, C., Koola, J., Li, X., Kozel, F. A., Myrick, H., … & George, M. S. (2004). The maximum-likelihood strategy for determining transcranial magnetic stimulation motor threshold, using parameter estimation by sequential testing is faster than conventional methods with similar precision. Journal of ECT, 20: