Skip to main content Accessibility help
Hostname: page-component-5d59c44645-hb754 Total loading time: 0 Render date: 2024-03-01T12:30:06.479Z Has data issue: false hasContentIssue false

25 - Psychophysiology in Pursuit of Psychopathology

from Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
University of Chicago
Louis G. Tassinary
Texas A & M University
Gary G. Berntson
Ohio State University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Achim, A. M & Lepage, M. (2005). Episodic memory-related activation in schizophrenia: meta-analysis. British Journal of Psychiatry, 187: 500509.Google Scholar
Antisevic, A., Van Snellenberg, J. X., Cohen, R. E., Repovs, G., Dowd, E. C., & Barch, D. M. (2012). Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophrenia Bulletin, 38: 608621.Google Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8: 170177.CrossRefGoogle ScholarPubMed
Aupperle, R. L. & Paulus, M. P. (2010). Neural systems underlying approach and avoidance in anxiety disorders. Dialogues in Clinical Neuroscience, 12: 517531.Google Scholar
Ax, A. F. (1962). Psychophysiological methodology for the study of schizophrenia. In Roessler, R. & Greenfield, N. S. (eds.), Physiological Correlates of Psychological Disorder (pp. 2944). Madison: University of Wisconsin Press.Google Scholar
Banich, M. T. (2009). Executive function: the search for an integrated account. Current Directions in Psychological Science, 18: 8994.Google Scholar
Banich, M. T., Mackiewicz, K. L., Depue, B. E., Whitmer, A. J., Miller, G. A., & Heller, W. (2009). Cognitive control mechanisms, emotion and memory: a neural perspective with implications for psychopathology. Neuroscience & Biobehavioral Reviews, 33: 613630.Google Scholar
Barch, D. M. & Dowd, E. C. (2010). Goal representation and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36: 919934.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychological Bulletin, 133: 124.CrossRefGoogle ScholarPubMed
Benjamin, L. S. (1967). Facts and artifacts in using analysis of covariance to “undo” the law of initial values. Psychophysiology, 4: 187206.Google Scholar
Berenbaum, H. (2013). Classification and psychopathology research. Journal of Abnormal Psychology, 122: 894901.Google Scholar
Bramon, E., Rabe-Hesketh, S., Sham, P., Murray, R. M., & Frangou, S. (2004). Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophrenia Research, 70: 315329.Google Scholar
Bredemeier, K. & Berenbaum, H. (2013). Cross-sectional and longitudinal relations between working memory performance and worry. Journal of Experimental Psychopathology, 4: 420434.CrossRefGoogle Scholar
Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50: 7481.Google Scholar
Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89: 156162.Google Scholar
Buck, C. W., Carscallen, H. B., & Hobbs, G. E. (1950). Temperature regulation in schizophrenia: I. Comparison of schizophrenic and normal subjects. II. Analysis of duration of psychosis. Archives of Neurology and Psychiatry, 64: 828842.Google Scholar
Buck, C. W., Carscallen, H. B., & Hobbs, G. E. (1951). Effect of prefrontal lobotomy on temperature regulation in schizophrenic patients. Archives of Neurology and Psychiatry, 65: 197205.Google Scholar
Cacioppo, J. T., Berntson, G. G., & Nusbaum, H. C. (2008). Neuroimaging as a new tool in the toolbox of psychological science. Current Directions in Psychological Science, 17: 6267.Google Scholar
Cacioppo, J. T. & Cacioppo, S. (2013). Social neuroscience. Perspectives on Psychological Science, 8: 667669.CrossRefGoogle ScholarPubMed
Canolty, R. T. & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14: 506515.Google Scholar
Castaneda, A. E., Suvisaari, J., Marttunen, M., Perälä, J., Saarni, S. I., Aalto-Setälä, T., … & Tuulio-Henriksson, A. (2010). Cognitive functioning in a population-based sample of young adults with anxiety disorders. European Psychiatry, 26: 346353.CrossRefGoogle Scholar
Chapman, L. J. & Chapman, J. P. (1973). Problems in the measurement of cognitive deficit. Psychological Bulletin, 79: 380385.Google Scholar
Chapman, L. J. & Chapman, J. P. (1989). Strategies for resolving the heterogeneity of schizophrenics and their relatives using cognitive measures. Journal of Abnormal Psychology, 98: 357366.Google Scholar
Chapman, L. J. & Chapman, J. P. (2001). Commentary on two articles concerning generalized and specific cognitive deficits. Journal of Abnormal Psychology, 110: 3139.Google Scholar
Chen, Y.-H., Stone-Howell, B., Edgar, J. C., Huang, M., Wootton, C., Hunter, M. A., … & Cañive, J. C. (2016). Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia. British Journal of Psychiatry, 206: 160167.Google Scholar
Cisler, J. M., Bacon, A. K., & Williams, N. L. (2009). Phenomenological characteristics of attentional biases toward threat: a critical review. Cognitive Therapy and Research, 33: 221234.Google Scholar
Cohen, L. H. & Patterson, M. (1937). Effect of pain on the heart rate of normal and schizophrenic individuals. Journal of General Psychology, 17: 273289.Google Scholar
Collette, F., Hogge, M., Salmon, E., & Van der Linden, M. (2006). Exploration of the neural substrates of executive functioning by functional neuroimaging. Neuroscience, 139: 209221.Google Scholar
Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25: 409423.Google Scholar
Crocker, L. D., Heller, W., Warren, S. L., O’Hare, A. J., Infantolino, Z. P., & Miller, G. A. (2013). Relationships among cognition, emotion, and motivation: implications for intervention and neuroplasticity in psychopathology. Frontiers in Human Neuroscience, 7: 261.Google Scholar
Cuthbert, B. N. (2014a). The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13: 2835.Google Scholar
Cuthbert, B. N. (2014b). Translating intermediate phenotypes to psychopathology: the NIMH research domain criteria. Psychophysiology, 51: 12051206.Google Scholar
Davidson, R. J. (1998). Review of psychophysiology: the mind–body perspective. Psychophysiology, 35: 352355.Google Scholar
Davis, P. A. & Davis, H. (1939). The electroencephalograms of psychotic patients. American Journal of Psychiatry, 95: 10071025.Google Scholar
Decety, J. & Cacioppo, J. (2010). Frontiers in human neuroscience: the golden triangle and beyond. Perspectives on Psychological Science, 5: 767771.Google Scholar
Derakshan, N. & Eysenck, M. W. (1998). Working memory capacity in high trait-anxious and repressor groups. Cognition & Emotion, 12: 697713.Google Scholar
Derakshan, N. & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance: new developments from attentional control theory. European Psychologist, 14: 168176.Google Scholar
Dichter, G. S., Felder, J. N., Petty, C., Bizzell, J., Ernst, M., & Smoski, M. J. (2009). The effects of psychotherapy on neural responses to rewards in major depression. Biological Psychiatry, 66: 886897.Google Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Edgar, J. C., Hanlon, F. M., Huang, M. X., Weisend, M. P., Thoma, R. J., Carpenter, B., … & Miller, G. A. (2008). Superior temporal gyrus spectral abnormalities in schizophrenia. Psychophysiology, 45: 812824.Google Scholar
Edgar, J. C., Keller, J., Heller, W., & Miller, G. A. (2007). Psychophysiology in the study of psychopathology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 665687). Cambridge University Press.Google Scholar
Engels, A. S., Heller, W., Mohanty, A., Herrington, J. D., Banich, M. T., Webb, A. G., & Miller, G. A. (2007). Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology, 44: 352363.Google Scholar
Engels, A. S., Heller, W., Spielberg, J. M., Warren, S. L., Sutton, B. P., Banich, M. T., & Miller, G. A. (2010). Co-occurring anxiety influences patterns of brain activity in depression. Cognitive, Affective, & Behavioral Neuroscience, 10: 141156.Google Scholar
Epstein, J., Pan, H., Kocsis, J. H., Yang, Y., Butler, T., Chusid, J., … & Silbersweig, D. A. (2006). Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. American Journal of Psychiatry, 163: 17841790.Google Scholar
Esslinger, C., Englisch, S., Inta, D., Rausch, F., Schirmbeck, F., Mier, D., … & Zink, M. (2012). Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophrenia Research, 140: 114121.Google Scholar
Etkin, A. & Wager, T. D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164: 14761488.Google Scholar
Eysenck, M. W. & Derakshan, N. (2011). New perspectives in attentional control theory. Personality and Individual Differences, 50: 955960.Google Scholar
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7: 336353.Google Scholar
Eysenck, M. W., Payne, S., & Derakshan, N. (2005). Trait anxiety, visuospatial processing, and working memory. Cognition & Emotion, 19: 12141228.Google Scholar
Fabiani, M. (2015). The embodied brain. Psychophysiology, 52: 15.Google Scholar
Fenton, A. A. (2015). Excitation-inhibition discoordination in rodent models of mental disorders. Biological Psychiatry, 77: 10791088.Google Scholar
Figee, M., Vink, M., de Geus, F., Vulink, N., Veltman, D. J., Westenberg, H., & Denys, D. (2011). Dysfunctional reward circuitry in obsessive-compulsive disorder. Biological Psychiatry, 69: 867874.Google Scholar
Fleiss, J. L. & Tanur, J. M. (1973). The analysis of covariance in psychopathology. In Hammer, M., Salzinger, K., & Sutton, S. (eds.), Psychopathology: Contributions from the Social, Behavioral, and Biological Sciences (pp. 509527). New York: John Wiley.Google Scholar
Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., … & Dahl, R. E. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166: 6473.Google Scholar
Forbes, E. E., May, J. C., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., … & Dahl, R. E. (2006). Reward-related decision-making in pediatric major depressive disorder: an fMRI study. Journal of Child Psychology and Psychiatry, 47: 10311040.Google Scholar
Foti, D. & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: evidence from event-related potentials. Biological Psychology, 81: 18.Google Scholar
Frances, A. (2013). Saving Normal: An Insider’s Revolt against Out-of-Control Psychiatric Diagnosis, DSM-5, Big Pharma, and the Medicalization of Ordinary Life. New York: HarperCollins.Google Scholar
Friedman, T., Sehatpour, P., Dias, E., Perrin, M., & Javitt, D. C. (2012). Differential relationships of mismatch negativity and visual P1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biological Psychiatry, 71: 521529.Google Scholar
Goeleven, E., De Raedt, R., Baert, S., & Koster, E. H. W. (2006). Deficient inhibition of emotional information in depression. Journal of Affective Disorders, 93: 149157.Google Scholar
Gold, J. M., Barch, D. M., Carter, C. S., Dakin, S., Luck, S. J., Macdonald, A. W. III, … & Strauss, M. (2012). Clinical, functional, and intertask correlations of measures developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 38: 144152.Google Scholar
Gotlib, I. H., Hamilton, J. P., Cooney, R. E., Singh, M. K., Henry, M. L., & Joormann, J. (2010). Neural processing of reward and loss in girls at risk for major depression. Archives of General Psychiatry, 67: 380387.Google Scholar
Gotlib, I. H. & Joormann, J. (2010). Cognition and depression: current status and future directions. Annual Review of Clinical Psychology, 6: 285312.Google Scholar
Grimm, O., Heinz, A., Walter, H., Kirsch, P., Erik, S., Haddad, L., … & Meyer-Lindenberg, A. (2014). Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia. JAMA Psychiatry, 71: 531539.Google Scholar
Guyer, A. E., Choate, V. R., Detloff, A., Benson, B., Nelson, E. E., Perez-Edgar, K., … & Ernst, M. (2012). Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. American Journal of Psychiatry, 169: 205212.Google Scholar
Guyer, A. E., Nelson, E. E., Perez-Edgar, K., Hardin, M. G., Roberson-Nay, R., Monk, C. S., … & Ernst, M. (2006). Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. Journal of Neuroscience, 26: 63996405.Google Scholar
Hamilton, H. K., Sun, J. C., Green, M. F., Kee, K. S., Lee, J., Sergi, M., … & Yee, C.M. (2014). Social cognition and functional outcome in schizophrenia: the moderating role of cardiac vagal tone. Journal of Abnormal Psychology, 123: 764770.Google Scholar
Hanlon, F. M., Houck, J. M., Pyeatt, C. J., Lundy, L. S., Euler, M. J., Weisend, M. P., … & Tesche, C. D. (2011). Bilateral hippocampal dysfunction in schizophrenia. NeuroImage, 58: 11581168.Google Scholar
Haut, K. M., van Erp, T. G., Knowlton, B., Bearden, C. E., Subotnik, K., Ventura, J., … & Cannon, T. D. (2015). Contributions of feature binding during encoding and functional connectivity of the medial temporal lobe structures to episodic memory deficits across the prodromal and first-episode phases of schizophrenia. Clinical Psychological Science, 3: 159174.Google Scholar
Hazlett, H., Dawson, M. E., Schell, A. M., & Nuechterlein, K. H. (1997). Electrodermal activity as a prodromal sign in schizophrenia. Biological Psychiatry, 41: 111113.Google Scholar
Heller, W., Koven, N. S., & Miller, G. A. (2003). Regional brain activity in anxiety and depression, cognition/emotion interaction, and emotion regulation. In Hugdahl, K. & Davidson, R. J. (eds.), The Asymmetrical Brain (pp. 533564). Cambridge, MA: MIT Press.Google Scholar
Heller, W., Nitschke, J. B., Etienne, M. A., & Miller, G. A. (1997). Patterns of regional brain activity differentiate types of anxiety. Journal of Abnormal Psychology, 106: 376385.Google Scholar
Hempel, R. J., Tulen, J. H., van Beveren, N. J., van Steenis, H. G., Mulder, P. G., & Hengeveld, M. W. (2005). Physiological responsivity to emotional pictures in schizophrenia. Journal of Psychiatric Research, 39: 509518.Google Scholar
Herrington, J. D., Koven, N., Heller, W., Miller, G. A., & Nitschke, J. B. (2009). Frontal asymmetry in emotion, motivation, personality and psychopathology: Electrocortical and hemodynamic neuroimaging. In Wood, S. J., Allen, N., & Pantelis, C. (eds.), The Neuropsychology of Mental Illness (pp. 4966). Cambridge University Press.Google Scholar
Horan, W. P., Foti, D., Hajcak, G., Wynn, J. K., & Green, M. F. (2012). Intact motivated attention in schizophrenia: evidence from event-related potentials. Schizophrenia Research, 135: 9599.Google Scholar
Horan, W. P., Wynn, J. K., Kring, A. M., Simons, R. F., & Green, M. F. (2010). Electrophysiological correlates of emotional responding in schizophrenia. Journal of Abnormal Psychology, 119: 1830.Google Scholar
Hyman, S. E. (2010). The diagnosis of mental disorders: the problem of reification. Annual Review of Clinical Psychology, 69: 155179.Google Scholar
Insel, T. R. & Cuthbert, B. N. (2015). Brain disorders? Precisely. Science, 348: 499500.Google Scholar
Javitt, D. C., Spencer, K. M., Thaker, G. K., Winterer, G., & Hajos, M. (2008). Neurophysiological biomarkers for drug development in schizophrenia. Nature Reviews Drug Discovery, 7: 6883.Google Scholar
Jeon, Y. W. & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology, 40: 684701.Google Scholar
Johnson, D. R. (2009). Emotional attention set-shifting and its relationship to anxiety and emotion regulation. Emotion, 9: 681690.Google Scholar
Joormann, J. (2010). Cognitive inhibition and emotion regulation in depression. Current Directions in Psychological Science, 19: 161166.Google Scholar
Kappenman, E. S., Kaiser, S. T., Robinson, B. M., Morris, S. E., Hahn, B., Beck, V. M., … & Luck, S. J. (2012). Response activation impairments in schizophrenia: evidence from the lateralized readiness potential. Psychophysiology, 49: 7384.Google Scholar
Kappenman, E. S. & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47: 888904.Google Scholar
Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … & Yee, C. M. (2014). Committee report. Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51: 121.Google Scholar
Keller, J., Hicks, B. D., & Miller, G. A. (2000). Psychophysiology in the study of psychopathology. In Tassinary, L. G., Cacioppo, J. T., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 2nd edn. (pp. 719750). Cambridge University Press.Google Scholar
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63: 686692.Google Scholar
Koster, E. H. W., Fox, E., & MacLeod, C. (2009). Introduction to the special section on cognitive bias modification in emotional disorders. Journal of Abnormal Psychology, 118: 14.Google Scholar
Kozak, M. J. & Cuthbert, B. N. (2016). The NIMH Research Domain Criteria initiative: background, issues, and pragmatics. Psychophysiology, 53: 286297.Google Scholar
Kozak, M. J. & Miller, G. A. (1982). Hypothetical constructs versus intervening variables: a re-appraisal of the three-systems model of anxiety assessment. Behavioral Assessment, 14: 347358.Google Scholar
Kring, A. M., Germans Gard, M., & Gard, D. E. (2011). Emotion deficits in schizophrenia: timing matters. Journal of Abnormal Psychology, 120: 7987.Google Scholar
Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123: 287297.Google Scholar
Landis, C. (1932). Electrical phenomena of the skin. Psychological Bulletin, 29: 693752.Google Scholar
Lang, P. J. (1968). Fear reduction and fear behavior: problems in treating a construct. In Shlien, J. M. (ed.), Research in Psychotherapy, Volume 3 (pp. 90102). Washington, DC: American Psychological Association.Google Scholar
Lang, P. J. (1978). Anxiety: toward a psychophysiological definition. In Akiskal, H. S. & Webb, W. L. (eds.), Psychiatric Diagnosis: Exploration of Biological Criteria (pp. 265389). New York: Spectrum.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97: 377395.Google Scholar
Lang, P. J. & Buss, A. H. (1968). Psychological deficit in schizophrenia: II. Interference and activation. In Holmes, D. S. (ed.), Reviews of Research in Behavior Pathology (pp. 400452). New York: John Wiley.Google Scholar
Letkiewicz, A. M., Miller, G. A., Crocker, L. D., Warren, S. L., Infantolino, Z. P., Mimnaugh, K. J., & Heller, W. (2014). Executive function deficits in daily life prospectively predict increases in depressive symptoms. Cognitive Therapy and Research, 38: 612620Google Scholar
Levin, R. L., Heller, W., Mohanty, A., Herrington, J. D., & Miller, G. A. (2007). Cognitive deficits in depression and functional specificity of regional brain activity. Cognitive Therapy and Research, 31: 211233.CrossRefGoogle Scholar
Lilienfeld, S. O. (2007). Cognitive neuroscience and depression: legitimate versus illegitimate reductionism and five challenges. Cognitive Therapy and Research, 31: 263272.Google Scholar
Lilienfeld, S. O. (2014). The Research Domain Criteria (RDoC): an analysis of methodological and conceptual challenges. Behaviour Research and Therapy, 62: 129139.Google Scholar
Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53: 213220.Google Scholar
Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophrenia Research, 85: 174195.Google Scholar
Luck, S. J., Mathalon, D. H., O’Donnell, B. F., Hämäläinen, M. S., Spencer, K. M., Javitt, D. C., & Uhlhaas, P. J. (2011). A roadmap for the development and validation of event-related potential biomarkers in schizophrenia research. Biological Psychiatry, 70: 2834.Google Scholar
Malmo, R. B. & Shagass, C. (1949). Physiological studies of reaction to stress in anxiety states and early schizophrenia. Psychosomatic Medicine, 11: 924.Google Scholar
Malmo, R. B. & Shagass, C. (1952). Studies of blood pressure in psychiatric patients under stress. Psychosomatic Medicine, 14: 8293.Google Scholar
Martinez, A., Hillyard, S. A., Dias, E. C., Hagler, D. J. Jr., Butler, P. D., Guilfoyle, D. N., … & Javitt, D. C. (2008). Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. Journal of Neuroscience, 28: 74927500.Google Scholar
Mathews, A. & MacLeod, C. (1994). Cognitive approaches to emotion and emotional disorders. Annual Review of Psychology, 45: 2550.CrossRefGoogle ScholarPubMed
Mathews, A. & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1: 167195.Google Scholar
McCabe, C., Cowen, P. J., & Harmer, C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology, 205: 667677.Google Scholar
Meehl, P. E. (1971). High school yearbooks: a reply to Schwartz. Journal of Abnormal Psychology, 77: 143148.Google Scholar
Miller, G. A. (ed.) (1995). The Behavioral High-Risk Paradigm in Psychopathology. New York: Springer-Verlag.Google Scholar
Miller, G. A. (1996). Presidential address. How we think about cognition, emotion, and biology in psychopathology. Psychophysiology, 33: 615628.Google Scholar
Miller, G. A. (2000). Editorial. Psychophysiology, 37: 14.Google Scholar
Miller, G. A. (2010). Mistreating psychology in the decades of the brain. Perspectives on Psychological Science, 5: 716743.Google Scholar
Miller, G. A. & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110: 4048.Google Scholar
Miller, G. A., Crocker, L. D., Spielberg, J. M., Infantolino, Z. P, & Heller, W. (2013). Issues in localization of brain function: the case of lateralized frontal cortex in cognition, emotion, and psychopathology. Frontiers in Integrative Neuroscience, 7: 19.Google Scholar
Miller, G. A., Elbert, T., Sutton, B. P., & Heller, W. (2007a). Innovative clinical assessment technologies: challenges and opportunities in neuroimaging. Psychological Assessment, 19: 5873.Google Scholar
Miller, G. A., Engels, A. S., & Herrington, J. D. (2007b). The seduction of clinical science: challenges in psychological and biological convergence. In Treat, T. A., Bootzin, R. R., & Baker, T. B. (eds.), Psychological Clinical Science: Papers in Honor of Richard McFall (pp. 5374). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Miller, G. A. & Kozak, M. J. (1993). Three-system assessment and the construct of emotion. In Birbaumer, N. & Öhman, A. (eds.), The Structure of Emotion: Psychophysiological, Cognitive and Clinical Aspects (pp. 3147). Seattle: Hogrefe & Huber Publishers.Google Scholar
Miller, G. A., & Rockstroh, B. (2013). Endophenotypes in psychopathology research: where do we stand? Annual Review of Clinical Psychology, 9: 177213.Google Scholar
Miller, M. B., Chapman, J. P., Chapman, L. J., & Collins, J. (1995). Task difficulty and cognitive deficits in schizophrenia. Journal of Abnormal Psychology, 104: 251258.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41: 49100.Google Scholar
Monk, C. S., Klein, R. G., Telzer, E. H., Schroth, E. A., Mannuzza, S., Moulton, J. L. III, … & Ernst, M. (2008). Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. American Journal of Psychiatry, 165: 9098.Google Scholar
Moran, Z. D., Williams, T. J., Bachman, P., Nuechterlein, K. H., Subotnik, K., & Yee, C. M. (2012). Spectral decomposition of P50 suppression in schizophrenia during concurrent visual processing. Schizophrenia Research, 140: 237242.CrossRefGoogle ScholarPubMed
Morris, R. W., Vercammen, A., Lenroot, R., Moore, L., Langton, J. M., Short, B., … & Weickert, W. (2012). Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia. Molecular Psychiatry, 17: 280289.Google Scholar
Moser, J. S., Moran, T. P., & Jendrusina, A. A. (2012). Parsing relationships between dimensions of anxiety and action monitoring brain potentials in female undergraduates. Psychophysiology, 49: 310.Google Scholar
Moser, J. S., Moran, T. P., Schroder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring: a meta-analysis and conceptual framework. Frontiers in Human Neuroscience, 7: 466.Google Scholar
Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., & Glenthøj, B. (2012). Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biological Psychiatry, 71: 898905.Google Scholar
Nitschke, J. B., Heller, W., Palmieri, P. A., & Miller, G. A. (1999). Contrasting patterns of brain activity in anxious apprehension and anxious arousal. Psychophysiology, 36: 628637.Google Scholar
Olino, T. M., McMakin, D. L., Dahl, R. E., Ryan, N. D., Silk, J. S., Birmaher, B., … & Forbes, E. E. (2011). “I won, but I’m not getting my hopes up”: depression moderates the relationship of outcomes and reward anticipation. Psychiatry Research, 194: 393395.Google Scholar
Olvet, D. M. & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clinical Psychology Review, 28: 13431354Google Scholar
Pimia, T., Woods, R. P., Hamilton, L. S., Lyden, H., Joshi, S. H., Asarnow, R. F., … & Narr, K. L. (2015). Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. Schizophrenia Research, 161: 357366.Google Scholar
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Ryan Bogdan, A. M., … & Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166: 702710.Google Scholar
Popov, T. G., Carolus, A., Schubring, D., Popova, P., Miller, G. A., & Rockstroh, B. S. (2015). Targeted training modifies oscillatory brain activity in schizophrenia patients. NeuroImage: Clinical, 7: 807814.Google Scholar
Popov, T., Jordanov, T., Rockstroh, B., Elbert, T., Merzenich, M. M., & Miller, G. A. (2011a). Specific cognitive training normalizes auditory sensory gating in schizophrenia: a randomized trial. Biological Psychiatry, 69: 465471.Google Scholar
Popov, T., Jordanov, T., Weisz, N., Elbert, T., Rockstroh, B., & Miller, G. A. (2011b). Evoked and induced oscillatory activity contributes to abnormal auditory sensory gating in schizophrenia. NeuroImage, 56: 307314.Google Scholar
Popov, T., Miller, G. A., Rockstroh, B., & Weisz, N. (2013). Modulation of alpha power and functional connectivity during facial affect recognition. Journal of Neuroscience, 33: 60186026.Google Scholar
Ragland, J. D., Laird, A. R., Ranganath, C., Blumenfeld, R. S., Gonzales, S. M., & Glahn, D. C. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. American Journal of Psychiatry, 166: 863874.Google Scholar
Rasetti, R., Mattay, V. S., White, M. G., Sambataro, F., Podell, J. E., Zoltick, B., … & Weinberger, D. R. (2014). Altered hippocampal-parahippocampal function during stimulus encoding: a potential indicator of genetic liability for schizophrenia. JAMA Psychiatry, 71: 236247.Google Scholar
Salmelin, R. & Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalograhy and Clinical Neurophysiology, 91: 237248.Google Scholar
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., … & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: Research Domain Criteria. Journal of Abnormal Psychology, 119: 631639.Google Scholar
Sass, S. M., Heller, W., Stewart, J. L., Silton, R. L., Edgar, C., Fisher, J. E., & Miller, G. A. (2010). Time course of attentional bias to threat in anxiety: emotion and gender specificity. Psychophysiology, 47: 247259.Google Scholar
Schaefer, H. S., Putnam, K. M., Benca, R. M., & Davidson, R. J. (2006). Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre- and post-treatment depression. Biological Psychiatry, 60: 974986.Google Scholar
Sharp, P. B., Miller, G. A., & Heller, W. (2015). Transdiagnostic dimensions of anxiety: neural mechanisms, executive functions, and new directions. International Journal of Psychophysiology, 98: 365377.Google Scholar
Shvil, E., Rusch, H. L., Sullivan, G. M., & Neria, Y. (2013). Neural, psychophysiological, and behavioral markers of fear processing in PTSD: a review of the literature. Current Psychiatry Reports, 15: 110.Google Scholar
Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Edgar, J. C., Spielberg, J. M., … & Miller, G. A. (2011). Depression and anxious apprehension distinguish frontocingulate cortical activity during top-down attentional control. Journal of Abnormal Psychology, 120: 272285.Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychological Bulletin, 139: 81132.Google Scholar
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6: 328.Google Scholar
Somerville, L. H., Wagner, D. D., Wig, G. S., Moran, J. M., Whalen, P. J., & Kelley, W. M. (2012). Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cerebral Cortex, 23: 4960.Google Scholar
Spielberg, J. M., De Leon, A. A., Bredemeier, K., Heller, W., Engels, A. S., Warren, S. L., … & Miller, G. A. (2013). Anxiety type modulates immediate vs. delayed engagement of attention-related brain regions. Brain and Behavior, 3: 532551.Google Scholar
Spielberg, J. M., Heller, W., Silton, R. L., Stewart, J. L., & Miller, G. A. (2011). Approach and avoidance profiles distinguish dimensions of anxiety and depression. Cognitive Therapy and Research, 35: 359371.Google Scholar
Spielberg, J. M., Miller, G. A., Warren, S. L., Engels, A. S., Crocker, L. D., Banich, M. T., … & Heller, W. (2012). A brain network instantiating approach and avoidance motivation. Psychophysiology, 49: 12001214.Google Scholar
Spielberg, J. M., Stewart, J. L., Levin, R. L., Miller, G. A., & Heller, W. (2008). Prefrontal cortex, emotion, and approach/withdrawal motivation. Social and Personality Psychology Compass, 2: 135153.Google Scholar
Spitzer, R. L. (2009). DSM-V transparency: fact or rhetoric? Psychiatric Times, March 6, 2009. Retrieved June 6, 2015 from Scholar
Stein, M. B. & Paulus, M. P. (2009). Imbalance of approach and avoidance: the yin and yang of anxiety disorders. Biological Psychiatry, 66: 10721074.Google Scholar
Stern, J. A. (1964). Toward a definition of psychophysiology. Psychophysiology, 1: 9091.Google Scholar
Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hägele, C., Suchotzki, K., … & Ströhle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26: 677688.Google Scholar
Taylor, S. F., Kang, J., Brege, I. S., Tso, I. F., Hosanagar, A., & Johnson, T. D. (2012). Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. Biological Psychiatry, 71: 136145.Google Scholar
Taylor, S. F., Phan, K. L., Britton, J. C., & Liberzon, I. (2005). Neural response to emotional salience in schizophrenia. Neuropsychopharmacology, 30: 984995.Google Scholar
Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS One, 7: e39127.Google Scholar
Tong, F. & Pratte, M. S. (2012). Decoding patterns of human brain activity. Annual Review of Psychology, 63: 483509.Google Scholar
Ursu, S., Kring, A. M., Gard, M. G., Minzenberg, M. J., Yoon, J. H., & Ragland, J. D., … & Carter, C. S. (2011). Prefrontal cortical deficits and impaired cognition–emotion interactions in schizophrenia. American Journal of Psychiatry, 168: 276285.Google Scholar
Verona, E. & Miller, G. A. (2015). Analysis of covariance. In Cautin, R. L. & Lilienfeld, S. O. (eds.), The Encyclopedia of Clinical Psychology (pp. 16). New York: John Wiley.Google Scholar
Volz, M., Hamm, A. O., Kirsch, P., & Rey, E. R. (2003). Temporal course of emotional startle modulation in schizophrenia patients. International Journal of Psychophysiology, 49: 123137.Google Scholar
Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., … & Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35: 24272439.Google Scholar
Warren, S. L., Crocker, L. D., Spielberg, J. M., Engels, A. S., Banich, M. T., Sutton, B. P., … & Heller, W. (2013). Cortical organization of inhibition-related functions and modulation by psychopathology. Frontiers in Human Neuroscience, 7: 271.Google Scholar
Whitfield-Gabrieli, S. & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8: 4976.Google Scholar
Williams, T. J., Nuechterlein, K. H., Subotnik, K. L., & Yee, C. M. (2011). Distinct neural generators of sensory gating in schizophrenia. Psychophysiology, 48: 470478.Google Scholar
Woodward, N. D., Waldie, B., Rogers, B., Tibbo, P., Seres, P., & Purdon, S. E. (2009). Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophrenia Research, 109: 182190.Google Scholar
Yee, C. M., Mathis, K. I., Sun, J. C., Sholty, G. L., Lang, P. J., Bachman, P., … & Nuechterlein, K. H. (2010a). Integrity of emotional and motivational states during the prodromal, first-episode and chronic phases of schizophrenia. Journal of Abnormal Psychology, 119: 7182.Google Scholar
Yee, C. M., Sholty, G. L., Sun, J. C., Mathis, K. I., Williams, T. J., Bachman, P., … & Nuechterlein, K. H. (2015). Elevated cortisol as a predictor of clinical state across the prodromal, first-episode, and chronic phases of schizophrenia. (Manuscript in preparation.)Google Scholar
Yee, C. M., Williams, T. J., White, P. M., Nuechterlein, K. H., Ames, D., & Subotnik, K. L. (2010b). Attentional modulation of the P50 suppression deficit in recent-onset and chronic schizophrenia. Journal of Abnormal Psychology, 119: 3139.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats