Skip to main content Accessibility help
×
Hostname: page-component-7d684dbfc8-kpkbf Total loading time: 0 Render date: 2023-09-22T16:22:53.912Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

General Methods

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abelson, R. P. (1995). Statistics as Principled Argument. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Abelson, R. P. & Prentice, D. A. (1997). Contrast tests of interaction hypotheses. Psychological Methods, 2: 315328.CrossRefGoogle Scholar
Aiken, L. S. & West, S. G. (1991). Multiple Regression: Testing and Interpreting Interactions. Newbury Park, CA: Sage.Google Scholar
Algina, J. & Keselman, H. J. (1997). Detecting repeated measures effects with univariate and multivariate statistics. Psychological Methods, 2: 208218.CrossRefGoogle Scholar
Altmann, E. M. (2004). Advance preparation in task switching: what work is being done? Psychological Science, 15: 616622.CrossRefGoogle Scholar
Amodio, D. M. & Bartholow, B. D. (2011). Event-related-potential methods in social cognition. In Klauer, C., Voss, A., & Stahl, C. (eds.), Cognitive Methods in Social Psychology (pp. 303339). New York: Guilford Press.Google Scholar
Arruda, J. E., McGee, H. A., Zhang, H., & Stanny, C. J. (2011). The effects of EEG data transformations on the solution accuracy of principal component analysis. Psychophysiology, 48: 370376.CrossRefGoogle ScholarPubMed
Baron, R. M. & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51: 11731182.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bigger, J. Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … & van der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. T. (1994a). Autonomic space and physiological response. Psychophysiology, 31, 4461.CrossRefGoogle Scholar
Berntson, G. G., Quigley, K. S., Lang, J. F., & Boysen, S. T. (1990). An approach to artifact identification: application to heart period data. Psychophysiology, 27: 586598.CrossRefGoogle ScholarPubMed
Berntson, G. G., Uchino, B. N., & Cacioppo, J. T. (1994b). Origins of baseline variance and the law of initial value. Psychophysiology, 31: 204210.CrossRefGoogle Scholar
Blumenthal, T. D., Cuthbert, B. N., Gilion, D. L., Hackley, S., Lipp, O. V., & van Boxtel, A. (2005). Committee report. Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42: 115.CrossRefGoogle ScholarPubMed
Borenstein, M., Cohen, J., & Rothstein, H. (1997). Power and Precision. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google ScholarPubMed
Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems: I. Effects of inequality of variance in the one-way classification. Annals of Mathematical Statistics, 25: 290302.CrossRefGoogle Scholar
Box, G. E. P. & Jenkins, G. M. (1970). Time Series Analysis. San Francisco, CA: Holden Day.Google Scholar
Bryk, A. S. & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101: 147158.CrossRefGoogle Scholar
Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: a Monte Carlo investigation. Psychological Bulletin, 113: 566579.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Fridlund, A. J. (1990). The skeletomotor system. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 325384). Cambridge University Press.Google Scholar
Cary, N. C. (1989). SAS/IML Software: Usage and Reference, Version 6. SAS Institute.Google Scholar
Cary, N. C. (1996). SAS/STAT Software: Changes and Enhancements through Release 6.11. SAS Institute.Google Scholar
Casella, G. (1985). An introduction to empirical Bayesian data analysis. American Statistician, 39: 8387.Google Scholar
Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: between-subject and within-subject design. Journal of Economic Behavior & Organization, 81: 18.CrossRefGoogle Scholar
Cheung, M. N. (1981). Detection of and recovery from errors in cardiac interbeat intervals. Psychophysiology, 18: 341346.CrossRefGoogle ScholarPubMed
Chi, E. M. & Reinsel, G. C. (1989). Models of longitudinal data with random effects and AR-1 errors. Journal of the American Statistical Association, 84: 452459.CrossRefGoogle Scholar
Chow, S. L. (1996). Statistical Significance: Rationale, Validity, and Utility. Thousand Oaks, CA: Sage.Google Scholar
Cleveland, W. S. (1985). The Elements of Graphing Data. Monterey, CA: Wadsworth.Google Scholar
Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences, rev. edn. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112: 155159.CrossRefGoogle ScholarPubMed
Cohen, J. (1994). The earth is round (p <.05). American Psychologist, 49: 9971003.CrossRefGoogle Scholar
Cohen, J. & Cohen, P. (1975). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cohen, J. & Cohen, P. (1983). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd edn. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cole, J. W. L. & Grizzle, J. E. (1966). Application of multivariate analysis of variance to repeated measures experiments. Biometrics, 22: 810828.CrossRefGoogle Scholar
Coles, M. G. H. (1989). Modern mind–brain reading: psychophysiology, physiology, and cognition. Psychophysiology, 26: 251269.CrossRefGoogle ScholarPubMed
Coles, M. G. H., Gratton, G., & Donchin, E. (1988). Detecting early communication: using measures of movement-related potentials to illuminate human information processing. Biological Psychology, 26: 6989.CrossRefGoogle ScholarPubMed
Cook, E. W. & Miller, G. A. (1992). Digital filtering: background and tutorial for psychophysiologists. Psychophysiology, 29: 350367.CrossRefGoogle ScholarPubMed
Cook, R. D. & Weisberg, S. (1994). An Introduction to Regression Graphics. New York: John Wiley.CrossRefGoogle Scholar
Cooper, H., Camic, P. M., Long, D. L., Panter, A. T., Rindskopf, D., & Sher, K. J. (2012). APA Handbook of Research Methods in Psychology, vol 1: Foundations, Planning, Measures, and Psychometrics. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Cumming, G. (2014). The new statistics: why and how. Psychological Science, 25: 729.CrossRefGoogle Scholar
Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61: 532574.CrossRefGoogle Scholar
Curtin, J. J., Lozano, D. L., & Allen, J. J. B (2007). The psychophysiology laboratory. In Coan, J. A. & Allen, J. J. B. (eds.), The Handbook of Emotion Elicitation and Assessment (pp. 398425). Oxford University Press.Google Scholar
D’Amico, E. J., Neilands, T. B., & Zambarano, R. (2001). Power analysis for multivariate and repeated measures designs: a flexible approach using the SPSS MANOVA procedure. Behavior Research Methods, Instruments, & Computers, 33: 479484.CrossRefGoogle ScholarPubMed
Darlington, R. B. (1990). Regression and Linear Models. New York: McGraw-Hill.Google Scholar
Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In Davidson, R. J. & Hugdahl, K. (eds.), Brain Asymmetry (pp. 361388). Cambridge, MA: MIT Press.Google Scholar
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Naatanen, R., … & Van Petten, C. (2009). Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120: 18831908.CrossRefGoogle ScholarPubMed
Efron, B. & Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253: 390395.CrossRefGoogle ScholarPubMed
Elmes, D. G., Kantowitz, B. H., & Roedinger, H. L. III (2012). Research Methods, 9th edn. Belmont, CA: Wadsworth.Google Scholar
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39: 175191.CrossRefGoogle ScholarPubMed
Fluchêre, F., Deveaux, M., Burle, B., Vidal, F., van den Wildenberg, W. P., Witjas, T., … & Hasbroucq, T. (2015). Dopa therapy and action impulsivity: subthreshold error activation and suppression in Parkinson’s disease. Psychopharmacology, 232: 17351746.CrossRefGoogle ScholarPubMed
Frick, R. W. (1996). The appropriate use of null hypothesis testing. Psychological Methods, 1: 379390.CrossRefGoogle Scholar
Fridlund, A. J. & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23: 567589.CrossRefGoogle ScholarPubMed
Gianaros, P. J., Quigley, K. S., Muth, E. R., Levine, M. E., Vasko, R. C. J., & Stern, R. M. (2003). Relationship between temporal changes in cardiac parasympathetic activity and motion sickness severity. Psychophysiology, 40: 3944.CrossRefGoogle ScholarPubMed
Gibbons, R. D., Hedeker, D., Elkin, I., Waternaux, C., Kraemer, H. C., Greenhouse, J. B., … & Watkins, J. T. (1993). Some conceptual and statistical issues in analysis of longitudinal psychiatric data: application to the NIMH Treatment of Depression Collaborative Research Program Dataset. Archives of General Psychiatry, 50: 739750.CrossRefGoogle ScholarPubMed
Gibbons, R. D., Hedeker, D., Waternaux, C., & Davis, J. M. (1988). Random regression models: a comprehensive approach to the analysis of longitudinal psychiatric date. Psychopharmacological Bulletin, 24: 438443.Google Scholar
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography & Clinical Neurophysiology, 55: 468484.CrossRefGoogle ScholarPubMed
Greenen, R. & van de Vijver, F. J. R. (1993). A simple test of the law of initial values. Psychophysiology, 30: 525530.CrossRefGoogle Scholar
Greenhouse, J. B. & Junker, B.W. (1992). Exploratory statistical methods, with applications to psychiatric research. Psychoneuroendocrinology, 17: 423441.CrossRefGoogle ScholarPubMed
Greenhouse, S. W. & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24: 95112.CrossRefGoogle Scholar
Greenwald, A. G., Gonzalez, R., Harris, R. H., & Guthrie, D. (1996). Effect sizes and p-values: what should be reported and what should be replicated? Psychophysiology, 33: 175183.CrossRefGoogle ScholarPubMed
Gueorguieva, R. & Krystal, J. H. (2004). Move over anova: progress in analyzing repeated-measures data andits reflection in papers published in the archives of general psychiatry. Archives of General Psychiatry, 61: 310317.CrossRefGoogle Scholar
Guilford, J. P. (1954). Psychometric Methods. New York: McGraw-Hill.Google Scholar
Harris, R. J. (1991). Significance tests are not enough: the role of effect size estimation in theory corroboration. Theory and Psychology, 1: 375382.CrossRefGoogle Scholar
Hayes, A. F. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York: Guilford Press.Google Scholar
Hayes, A. F. & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41: 924936.CrossRefGoogle ScholarPubMed
Hays, W. L. (1994). Statistics. Orlando, FL: Rinehart and Winston.Google Scholar
Hedeker, D. & Gibbons, R. D. (2006). Longitudinal Data Analysis. Hoboken, NJ: John Wiley.Google Scholar
Hintze, J. (2004). NCSS PASS. Retrieved from www.ncss.com/pass.html
Hoffman, L. (2015). Longitudinal Analysis: Modeling Within-Person Fluctuation and Change. New York: Routledge.Google Scholar
Howell, G. T. & Lacroix, G. L. (2012). Decomposing interactions using GLM in combination with the COMPARE, LMATRIX and MMATRIX subcommands in SPSS. Tutorials in Quantitative Methods for Psychology, 8: 122.CrossRefGoogle Scholar
Huster, R. J., Debener, S., Eichele, T., & Herrmann, C. S. (2012). Methods for simultaneous EEG-fMRI: an introductory review. Journal of Neuroscience, 32: 60536060.CrossRefGoogle ScholarPubMed
Huynh, H. & Feldt, L. S. (1970). Conditions under which mean square ratios in repeated measurement designs have exact F distributions. Journal of the American Statistical Association, 65: 15821589.CrossRefGoogle Scholar
Huynh, H. & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1: 6982.CrossRefGoogle Scholar
Jaccard, J., Becker, M. A., & Wood, G. (1984). Pairwise multiple comparison procedures: a review. Psychological Bulletin, 96: 589596.CrossRefGoogle Scholar
Jackson, A. F. & Bolger, D. J. (2014). The neurophysiological basis of EEG and EEG measurement: a review for the rest of us. Psychophysiology, 51: 10611071.CrossRefGoogle Scholar
Jacob, R. G., Thayer, J. F., Manuck, S. B., Muldoon, M. F., Tamres, L. K., Williams, D. M., … & Gatsonis, C. (1999). Ambulatory blood pressure responses and the circumplex model of mood: a 4-day study. Psychosomatic Medicine, 61: 319333.CrossRefGoogle ScholarPubMed
Jacoby, W. G. (1997). Statistical Graphics for Univariate and Bivariate Data: Quantitative Applications in Social Sciences. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38: 324329.CrossRefGoogle Scholar
James, G. S. (1954). Tests of linear hypotheses in univariate and multivariate analysis when the ratios of the population variances are unknown. Biometrika, 41: 1943.Google Scholar
Janicki-Deverts, D. & Kamarck, T. W. (2008). Ambulatory blood pressure monitoring. In Luecken, L. J. & Gallo, L. C. (eds.), Handbook of Physiological Research Methods in Health Psychology (pp. 159182). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Jennings, J. R. (1986). Bodily changes during attending. In Coles, M. G. H., Donchin, E., & Porges, S. W. (eds.), Psychophysiology: Systems, Processes and Applications (pp. 268289). New York: Guilford Press.Google Scholar
Jennings, J. R., Berg, W. K., Hutcheson, J. S., Obrist, P., Porges, S. W., & Turpin, G. (1981). Publication guidelines for heart rate studies in men. Psychophysiology, 18: 226231.CrossRefGoogle Scholar
Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M., & Johnson, P. (1992). Alternate cardiovascular baseline assessment techniques: vanilla or resting baseline? Psychophysiology, 29: 742750.CrossRefGoogle ScholarPubMed
Jennings, J. R. & McKnight, J. D. (1994). Inferring vagal tone from heart rate variability. Psychosomatic Medicine, 56: 194196.CrossRefGoogle ScholarPubMed
Jennings, J. R. & Wood, C. C. (1976). The epsilon-adjusted procedure for repeated measures analyses of variance. Psychophysiology, 13: 277278.CrossRefGoogle Scholar
Johnson, P. O. & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1: 5793.Google Scholar
Judd, C. M., McClelland, G. H., & Smith, E. R. (1996). Testing treatment by covariate interactions when treatment varies within participants. Psychological Methods, 1: 366378.CrossRefGoogle Scholar
Kamarck, T. W., Jennings, J. R., Debski, T. W., Glickman-Weiss, E., Eddy, M. J., & Manuck, S. B. (1992). Reliable measures of behaviorally-evoked cardiovascular reactivity from a PC-based test battery: results from student and community samples. Psychophysiology, 29: 1728.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Schwartz, J. E., Janicki, D. L., Shiffman, S., & Raynor, D. A. (2003). Correspondence between laboratory and ambulatory measures of cardiovascular reactivity: a multilevel modeling approach. Psychophysiology, 40: 675683.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Schwartz, J. E., Shiffman, S., Muldoon, M. F., Sutton-Tyrrell, K., & Janicki, D. L. (2005). Psychosocial stress and cardiovascular risk: what is the role of daily experience? Journal of Personality, 73: 17491774.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Shiffman, S., Sutton-Tyrrell, K., Muldoon, M. F., & Tepper, P. (2012). Daily psychological demands are associated with 6-year progression of carotid artery atherosclerosis: the Pittsburgh Healthy Heart Project. Psychosomatic Medicine, 74: 432439.CrossRefGoogle ScholarPubMed
Kamarck, T. W., Shiffman, S., & Wethington, E. (2011). Measuring psychosocial stress using ecological momentary assessment methods. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 597617). New York: Springer.Google Scholar
Kamen, R. (1987). Introduction to Signals and Systems. New York: Macmillan.Google Scholar
Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., … & Yee, C. M. (2014). Committee report. Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51: 121.CrossRefGoogle ScholarPubMed
Kenny, D. A. (1979). Correlation and Causality. New York: John Wiley.Google Scholar
Keppel, G. (1991). Design and Analysis: A Researcher’s Handbook, 3rd edn. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Keppel, G. & Wickens, T. D. (2004). Design and Analysis: A Researcher’s Handbook, 4th edn. Upper Saddle River, NJ: Pearson/Prentice-Hall.Google Scholar
Kerlinger, F. N. L. & Lee, H. B. (2000). Foundations of Behavioral Research, 4th edn. New York: Harcourt College.Google Scholar
Keselman, H. J., Carriere, K. C., & Lix, L. M. (1993). Testing repeated measures hypotheses when covariance matrices are heterogeneous. Journal of Educational Statistics, 18: 305319.CrossRefGoogle Scholar
Keselman, H. J., Keselman, J. C., & Lix, L. M. (1995). The analysis of repeated measurements: univariate tests, multivariate tests, or both? British Journal of Mathematical and Statistical Psychology, 48: 319338.CrossRefGoogle Scholar
Keselman, H. J., Kowalchuk, R. K., Algina, J., Lix, L. M., & Wilcox, R. R. (2000). Testing treatment effects in repeated measures designs: Trimmed means and bootstrapping. British Journal of Mathematical and Statistical Psychology, 53: 175191.CrossRefGoogle ScholarPubMed
Keselman, H. J., Rogan, J. C., Mendoza, J. L., & Breen, L. J. (1980). Testing the validity conditions of repeated measures F tests. Psychological Bulletin, 87: 479481.CrossRefGoogle Scholar
Keselman, J. C. & Keselman, H. J. (1990). Analyzing unbalanced repeated measures designs. British Journal of Mathematical and Statistical Psychology, 43: 265282.CrossRefGoogle Scholar
Khatree, R. & Naik, D. N. (1995). Applied Multivariate Statistics with SAS Software. Cary, NC: SAS Institute.Google Scholar
Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Sciences, 3rd edn. Monterey, CA: Brooks/Cole.Google Scholar
Kline, R. B. (2004). Beyond Significance Testing: Reforming Data Analysis Methods in Behavioral Research. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Krantz, D. S. & Manuck, S. B. (1984). Acute psychophysiologic reactivity and risk of cardiovascular disease: a review and methodologic critique. Psychological Bulletin, 96: 435464.CrossRefGoogle ScholarPubMed
Kristjansson, S. D., Kircher, J. C., & Webb, A. K. (2007). Multilevel models for repeated measures research designs in psychophysiology: an introduction to growth curve modeling. Psychophysiology, 44: 728736.CrossRefGoogle ScholarPubMed
Laird, N. M. & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38: 963974.CrossRefGoogle ScholarPubMed
Lavori, P. (1990). ANOVA, MANOVA, my black hen: comments on repeated measures. Archives of General Psychiatry, 47: 775778.CrossRefGoogle ScholarPubMed
Law, L. N., Levey, A. B., & Martin, I. (1980). Response detection and measurement. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 629663). Chichester: John Wiley.Google Scholar
Levey, A. B. (1980). Measurement units in psychophysiology. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 597628). Chichester: John Wiley.Google Scholar
Levey, M. N. (1977). Parasympathetic control of the heart. In Randall, W. C. (ed.), Neural Regulation of the Heart (pp. 95129). Oxford University Press.Google Scholar
Levey, M. N. & Martin, P. (1984). Parasympathetic control of the heart. In Randall, W. C. (ed.), Nervous Control of Cardiovascular Function (pp. 6894). Oxford University Press.Google Scholar
Lippold, O. C. J. (1967). Electromyography. In Venables, P. H. & Martin, I. (eds.), A Manual of Psychophysiological Methods (pp. 246297). New York: John Wiley.Google Scholar
Little, T. D. (2013). Longitudinal Structural Equation Modeling. New York: Guilford Press.Google Scholar
Lix, L. M. &Keselman, H. H. (1995). Approximate degrees of freedom tests: a unified perspective on testing for mean equality. Psychological Bulletin, 117: 547560.CrossRefGoogle Scholar
Llabre, M. M., Spitzer, S. B., Saab, P. G., Ironson, G. H., & Schneiderman, N. (1991). The replicability and specificity of delta versus residualized change as measures of cardiovascular reactivity to behavioral challenges. Psychophysiology, 28: 701711.CrossRefGoogle Scholar
Loewenfeld, I. E. (1993). The Pupil: Anatomy, Physiology, and Clinical Applications. Ames, IA: Iowa State University Press.Google Scholar
Loftus, G. R. M. (1994). Why psychology will never be a real science until we change the way that we analyze data. Paper presented at the 102nd Annual Convention of the American Psychological Association, Los Angeles, California.
Loftus, G. R. M. & Masson, M. E. J. (1994). Using confidence intervals in within-subject designs. Psychonomic Bulletin and Review, 1: 476490.CrossRefGoogle ScholarPubMed
Lykken, D. T. (1972). Range correction applied to heart rate and GSR data. Psychophysiology, 9: 373379.CrossRefGoogle ScholarPubMed
Maxwell, S. E. & Delaney, H. D. (1993). Bivariate median splits and spurious statistical significance. Psychological Bulletin, 113: 181200.CrossRefGoogle Scholar
Maxwell, S. E. & Delaney, H. D. (2004). Designing Experiments and Analyzing Data: A Model Comparison Approach, 2nd edn. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Meyers, D. L. (1991). Misinterpretation of interaction effects: a reply to Rosnow and Rosenthal. Psychological Bulletin, 110: 571573.CrossRefGoogle Scholar
Michell, J. (1986). Measurement scales and statistics: a clash of paradigms. Psychological Bulletin, 100: 398407.CrossRefGoogle Scholar
Miller, G. A. & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110: 4048.CrossRefGoogle ScholarPubMed
Moriarty, J., Hogan, M., & Stewart, I. (2011). Starting slow: the effects of response-switching frequency on patterns of cardiovascular reactivity. Psychology, Health & Medicine, 16: 1218.CrossRefGoogle ScholarPubMed
Mortensen, J. A., Lehn, H., Evensmoen, H. R., & Haberg, A. K. (2015). Evidence for an antagonistic interaction between reward and punishment sensitivity on striatal activity: a verification of the joint subsystems hypothesis. Personality and Individual Differences, 74: 214219.CrossRefGoogle Scholar
Muller, K. E. & Barton, C. N. (1989). Approximate power for repeated measures ANOVA lacking sphericity. Journal of the American Statistical Association, 84: 549555.CrossRefGoogle Scholar
Muller, K. E. & Barton, C. N. (1991). Correction to “Approximate power for repeated measures ANOVA lacking sphericity.” Journal of the American Statistical Association, 86: 255256.Google Scholar
Muller, K. E., LaVange, L. M., Ramey, S. L., & Ramey, C. T. (1992). Power calculations for general linear multivariate models including repeated measures applications. Journal of the American Statistical Association, 87: 12091226.CrossRefGoogle ScholarPubMed
Myers, N. D., Brincks, A. M., Ames, A. J., Prado, G. J., Penedo, F. J., & Benedict, C. (2012). Multilevel modeling in psychosomatic medicine research. Psychosomatic Medicine, 74: 925936.CrossRefGoogle ScholarPubMed
Myrtek, M. & Foerster, F. (1986). The law of initial value: a rare exception. Biological Psychology, 22: 227237.CrossRefGoogle ScholarPubMed
Nicol, A. A. M. & Pexman, P. M. (2010). Displaying Your Findings: A Practical Guide for Creating Figures, Posters, and Presentations, 6th edn. Washington, DC: American Psychological Association.Google Scholar
Nussbaum, E. M. (2015). Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique. New York: Routledge.Google Scholar
O’Brien, R. G. & Muller, K. E. (1993). Unified power analysis for t-tests through multivariate hypotheses. In Edwards, L. K. (ed.), Applied Analysis of Variance in the Behavioral Sciences (pp. 297344). New York: Marcel Dekker.Google Scholar
Osterhout, L., Bersick, M., & McKinnon, R. (1997). Brain potentials elicited by words: word length and frequency predict the latency of an early negativity. Biological Psychology, 46: 143168.CrossRefGoogle ScholarPubMed
Overall, J. E. & Tonidandel, S. (2010). The case for use of simple difference scores to test the significance of differences in mean rates of change in controlled repeated measurements designs. Multivariate Behavioral Research, 45: 806827.CrossRefGoogle ScholarPubMed
Petrinovich, L. & Widaman, K. F. (1984). An evaluation of statistical strategies to analyze repeated-measures data. In Peeke, H. V. S. & Petrinovich, L. (eds.), Habituation, Sensitivation, and Behavior (pp. 105201). Orlando, FL: Academic Press.Google Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr., … & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37: 127152.CrossRefGoogle ScholarPubMed
Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30: 547548.CrossRefGoogle ScholarPubMed
Porges, S. W. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage – a polyvagal theory. Psychophysiology, 32: 301318.CrossRefGoogle Scholar
Porges, S. W. & Bohrer, R. E. (1990). The analysis of periodic processes in psychophysiological research. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology (pp. 708753). Cambridge University Press.Google Scholar
Poulton, E. C. (1973). Unwanted range effects from using within-subject experimental designs. Psychological Bulletin, 80: 113121.CrossRefGoogle Scholar
Poulton, E. C. (1982). Influential companions: effects of one strategy on another in the within-subjects designs of cognitive psychology. Psychological Bulletin, 91: 673690.CrossRefGoogle Scholar
Poulton, E. C. & Edwards, R. S. (1979). Asymmetric transfer in within-participants experiments on stress interaction. Ergonomics, 22: 945961.CrossRefGoogle Scholar
Poulton, E. C. & Freeman, P. R. (1966). Unwanted asymmetrical transfer effects with balanced experimental designs. Psychological Bulletin, 66: 18.CrossRefGoogle ScholarPubMed
Preacher, K. J. & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36: 717731.CrossRefGoogle ScholarPubMed
Quigley, K. S. & Berntson, G. G. (1990). Autonomic interactions and chronotropic control of the heart: heart period versus heart rate. Psychophysiology, 33: 605611.CrossRefGoogle Scholar
Ritz, T., Dahme, B., Dubois, A. B., Folgering, H., Fritz, G. K., Harver, A., … & Van de Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39: 546567.CrossRefGoogle ScholarPubMed
Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement of change. Psychological Bulletin, 92: 726748.CrossRefGoogle Scholar
Rosenthal, R. & Rosnow, R. L. (1985). Contrast Analysis: Focused Comparisons in the Analysis of Variance. New York: Holt, Rinehart, & Winston.Google Scholar
Rosenthal, R. & Rosnow, R. L. (1991). Essentials of Behavioral Research: Explanation and Prediction, 2nd edn. New York: McGraw-Hill.Google Scholar
Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach. Cambridge University Press.Google Scholar
Rosnow, R. L. & Rosenthal, R. (1989a). Definition and interpretation of interaction effects. Psychological Bulletin, 105: 143146.CrossRefGoogle Scholar
Rosnow, R. L. & Rosenthal, R. (1989b). Statistical procedures and the justification of knowledge in psychological science. American Psychologist, 44: 12761284.CrossRefGoogle Scholar
Rosnow, R. L. & Rosenthal, R. (1991). If you’re looking at the cell means, you’re not looking at only the interaction (unless all main effects are zero). Psychological Bulletin, 110: 574576.CrossRefGoogle Scholar
Rosnow, R. L. & Rosenthal, R. (1995). Some things you learn aren’t so: Cohen’s paradox, Asch’s paradigm, and the interpretation of interaction. Psychological Science, 6: 39.CrossRefGoogle Scholar
Rozeboom, W. W. (1960). The fallacy of the null hypothesis significance test. Psychological Bulletin, 57: 416428.CrossRefGoogle ScholarPubMed
Russell, D. W. (1990). The analysis of psychophysiological data: multivariate approaches. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology (pp. 775801). Cambridge University Press.Google Scholar
Schroeder, L. D., Sjoquist, D. L., & Stephan, P. E. (1986). Understanding Regression Analysis: An Introductory Guide. Newbury Park, CA: Sage.CrossRefGoogle Scholar
Selig, J. P. & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6: 144164.CrossRefGoogle Scholar
Shapiro, D., Lane, J. D., Light, K. C., Myrtek, M., Suwada, Y., & Steptoe, A. (1996). Blood pressure publication guidelines. Psychophysiology, 33: 112.CrossRefGoogle ScholarPubMed
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google ScholarPubMed
Sidani, S. & Lynn, M. R. (1993). Examining amount and pattern of change: comparing repeated measures ANOVA and individual regression analysis. Nursing Research, 42: 283286.CrossRefGoogle ScholarPubMed
Siegal, S. (1956). Nonparametric Statistics. New York: McGraw-Hill.Google Scholar
Stearns, S. D. & David, R. A. (1993). Signal Processing Algorithms in Fortran and C. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Stemmler, G. & Fahrenberg, J. (1989). Psychophysiological assessment: conceptual, psychometric, and statistical issues. In Turpin, G. (ed.), Handbook of Clinical Psychophysiology (pp. 71104). Chichester: John Wiley.Google Scholar
Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological Recording, 2nd edn. Oxford University Press.Google Scholar
Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In Stevens, S. S. (ed.), Handbook of Experimental Psychology (pp. 149). New York: John Wiley.Google Scholar
Stiratelli, R., Laird, N. M., & Ware, J. H. (1984). Random-effects models for serial observations with binary response. Biometrics, 40: 961971.CrossRefGoogle ScholarPubMed
Tabachnick, B. G. & Fidell, L. S. (2014). Cleaning up your act. In Tabachick, B. G. & Fidell, L. S., Using Multivariate Statistics, 6th edn. (pp. 93152). Harlow: Pearson.Google Scholar
Thede, L. (1996). Analog and Digital Filter Design Using C. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R. (1990). Envisioning Information. Cheshire, CT: Graphics Press.Google Scholar
Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Cheshire, CT: Graphics Press.Google Scholar
Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.Google Scholar
van Boxtel, G. J. M. (1998). Computational and statistical methods for analyzing event-related potential data. Behavior Research Methods, Instruments, & Computers, 30: 87102.CrossRefGoogle Scholar
van Boxtel, G. J. M., van den Boogaart, B., & Brunia, C. H. M. (1993). The contingent negative variation in a choice reaction time task. Journal of Psychophysiology, 7: 1123.Google Scholar
van Ravenswaaij-Arts, C. M. A., Kolle’e, L. A. A., Hopman, J. C. W., Stoelinga, G. B. A., & van Geijn, H. P. (1993). Heart rate variability. Annals of Internal Medicine, 118: 463447.CrossRefGoogle ScholarPubMed
Wainer, H. & Thissen, D. (1981). Graphical data analysis. Annual Review of Psychology, 32: 191241.CrossRefGoogle Scholar
Wainer, H. & Thissen, D. (1993). Graphical data analysis. In Keren, G. & Lewis, C. (eds.), A Handbook for Data Analysis in the Behavioral Sciences: Statistical Issues (pp. 391457). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician, 39: 95101.Google Scholar
Wasserman, S. B. & Bockenholt, U. (1989). Bootstrapping: applications to psychophysiology. Psychophysiology, 26: 208221.CrossRefGoogle ScholarPubMed
Weiss, S. (2014). The fault in our stats. Observer, 27: 2930.Google Scholar
Welch, B. L. (1947). The generalization of “Student’s” problem when several different population variances are unequal. Biometrika, 29: 350362.CrossRefGoogle Scholar
Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38: 330336.CrossRefGoogle Scholar
White, T. L. & McBurney, D. H. (2013). Research Methods, 9th edn. Belmont, CA: Wadsworth.Google Scholar
Wilder, J. (1958). Modern psychophysiology and the law of initial value. American Journal of Psychotherapy, 12: 199221.CrossRefGoogle ScholarPubMed
Wilson, R. S. (1967). Analysis of autonomic reaction patterns. Psychophysiology, 4: 125142.CrossRefGoogle ScholarPubMed
Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Attention, Perception, & Psychophysics, 72: 20312046.CrossRefGoogle ScholarPubMed
Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., & Bugiardini, R. (2012). Heart rate variability today. Progress in Cardiovascular Diseases, 55: 321331.CrossRefGoogle ScholarPubMed
Zahn, T. P. & Kreusi, M. J. P. (1993). Autonomic activity in boys with disruptive behavior disorders. Psychophysiology, 30: 605614.CrossRefGoogle ScholarPubMed
Zuckerman, M., Hodgins, H. S., Zuckerman, A., & Rosenthal, R. (1993). Contemporary issues in the analysis of data. Psychological Sciences, 4: 4953.CrossRefGoogle Scholar

References

Algina, J. & Penfield, R. D. (2009). Classical test theory. In Millsap, R. E. & Maydeu-Olivares, A. (eds.), The Sage Handbook of Quantitative Methods in Psychology (pp. 93122). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49: 10171034.Google ScholarPubMed
Brennan, R. L. (1992). Elements of Generalizability Theory, rev. edn. Iowa City, IA: American College Testing.Google Scholar
Brennan, R. L. (1995). The conventional wisdom about group mean scores. Journal of Educational Measurement, 32: 385396.CrossRefGoogle Scholar
Brennan, R. L. (2001). Generalizability Theory. New York: Springer.CrossRefGoogle Scholar
Brennan, R. L. (ed.) (2006). Educational Measurement, 4th edn. Lanham, MD: Rowman & Littlefield.Google Scholar
Brennan, R. L., Gao, X., & Colton, D. A. (1995). Generalizability analyses of work keys listening and writing tests. Educational and Psychological Measurement, 55: 157176.CrossRefGoogle Scholar
Brennan, R. L. & Kane, M. T. (1977). An index of dependability for mastery tests. Journal of Educational Measurement, 14: 277289.CrossRefGoogle Scholar
Burgess, A. P. & Gruzelier, J. H. (1996). The reliability of event-related desynchronisation: a generalisability study analysis. International Journal of Psychophysiology, 23: 163169.CrossRefGoogle ScholarPubMed
Burt, K. B. & Obradović, J. (2013). The construct of psychophysiological reactivity: statistical and psychometric issues. Developmental Review, 33: 2957.CrossRefGoogle Scholar
Bush, N. R., Alkon, A., Obradović, J., Stamperdahl, J., & Boyce, W. T. (2011). Differentiating challenge reactivity from psychomotor activity in studies of children’s psychophysiology: considerations for theory and measurement. Journal of Experimental Child Psychology, 110: 6279.CrossRefGoogle Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990a). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Tassinary, L. G. (eds.) (1990b). Principles of Psychophysiology. Cambridge University Press.Google Scholar
Campbell, D. T. & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56: 81105.CrossRefGoogle ScholarPubMed
Campbell, N. R. (1957). Foundations of Science: The Philosophy of Theory. New York: Dover.Google Scholar
Cardinet, J., Johnson, S., & Pini, G. (2009). Applying Generalizability Theory Using EduG. New York: Routledge.Google Scholar
Cardinet, J., Tourneur, Y., & Allal, L. (1976). The symmetry of generalizability theory: application to educational measurement. Journal of Educational Measurement, 13: 119135.CrossRefGoogle Scholar
Cardinet, J., Tourneur, Y., & Allal, L. (1981). Extension of generalizability theory and its application in educational measurement. Journal of Educational Measurement, 18: 183204.CrossRefGoogle Scholar
Clayson, P. E. & Larson, M. J. (2013). Psychometric properties of conflict monitoring and conflict adaptation indices: response time and conflict N2 event-related potentials. Psychophysiology, 50: 12091219.CrossRefGoogle ScholarPubMed
Coan, J. A., Allen, J. J. B., & McKnight, P. E. (2006). A capability model of individual differences in frontal EEG asymmetry. Biological Psychology, 72: 198207.CrossRefGoogle ScholarPubMed
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd edn. New York: Routledge.Google Scholar
Cole, D. A., Howard, G. S., & Maxwell, S. E. (1981). Effects of mono- versus multiple-operationalization in construct validation efforts. Journal of Consulting and Clinical Psychology, 49: 395405.CrossRefGoogle Scholar
Crocker, L. & Algina, J. (2006). Introduction to Classical and Modern Test Theory. Independence, KY: Cengage.Google Scholar
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16: 292334.CrossRefGoogle Scholar
Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The Dependability of Behavioral Measurements: Theory of Generalizability of Scores and Profiles. New York: John Wiley.Google Scholar
Cronbach, L. J. & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52: 281302.CrossRefGoogle ScholarPubMed
de Ayala, R. J. (2008). The Theory and Practice of Item Response Theory. New York: Guilford Press.Google Scholar
Di Nocera, F., Ferlazzo, F., & Borghi, V. (2001). G theory and the reliability of psychophysiological measures: a tutorial. Psychophysiology, 38: 796806.CrossRefGoogle Scholar
Embretson, S. & Reise, S. P. (2000). Item Response Theory for Psychologists. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Fahrenberg, J., Foerster, F., Schneider, H. J., Müller, W., & Myrtek, M. (1986). Predictability of individual differences in activation processes in a field setting based on laboratory measures. Psychophysiology, 23: 323333.CrossRefGoogle Scholar
Feldt, L. S. & Brennan, R. L. (1989). Reliability. In Lin, R. L. (ed.), Educational Measurement, 3rd edn. (pp. 105146). New York: Macmillan.Google Scholar
Fiske, D. W. (1987). Construct invalidity comes from method effects. Educational and Psychological Measurement, 47: 285307.CrossRefGoogle Scholar
Gao, X. & Harris, D. J. (2012). Generalizability theory. In Cooper, H., Camic, P. M., Long, D. L., Panter, A. T., Rindskopf, D., & Sher, K. J. (eds.), APA Handbook of Research Methods in Psychology, vol. 1: Foundations, Planning, Measures, and Psychometrics (pp. 661681). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Garćia-Vera, M. & Sanz, J. (1999). How many self-measured blood pressure readings are needed to estimate hypertensive patients’ “true” blood pressure? Journal of Behavioral Medicine, 22: 93113.CrossRefGoogle ScholarPubMed
Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). Measurement Theory for the Behavioral Sciences. San Francisco, CA: Freeman.Google Scholar
Guion, R. M. (1978). Scoring of content domain samples. Journal of Applied Psychology, 63: 449506.CrossRefGoogle Scholar
Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: Sage.Google Scholar
Hammond, K. R., Hamm, R. M., & Grassia, J. (1986). Generalizing over conditions by combining the multitrait–multimethod matrix and the representative design of experiments. Psychological Bulletin, 100: 257269.CrossRefGoogle ScholarPubMed
Hecimovich, M. D., Peiffer, J. J., & Harbaugh, A. G. (2014). Development and psychometric evaluation of a post exercise exhaustion scale utilizing the Rasch measurement model. Psychology of Sports and Exercise, 15: 569579.CrossRefGoogle Scholar
Hoyt, W. T. (2000). Rater bias in psychological research: when is it a problem and what can we do about it? Psychological Methods, 5: 6486.CrossRefGoogle Scholar
Kamarck, T. W., Debski, T. T., & Manuck, S. B. (2000). Enhancing the laboratory-to-life generalizability of cardiovascular reactivity using multiple occasions of measurement. Psychophysiology, 37: 533542.CrossRefGoogle Scholar
Kane, M. T. & Brennan, R. L. (1977). The generalizability of class means. Review of Educational Research, 47: 267292.CrossRefGoogle Scholar
Kelley, T. L. (1927). Interpretation of Educational Measurements. New York: Macmillan.Google Scholar
Kenny, D. A. (1995). The multitrait–multimethod matrix: design, analysis, and conceptual issues. In Shrout, P. E. & Fiske, S. T. (eds.), Personality, Research, Methods, and Theory: A Festschrift Honoring Donald W. Fiske (pp. 111124). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Llabre, M. M., Ironson, G. H., Spitzer, S. B., Gellman, M. D., Weidler, D. J. & Schneiderman, N. (1988). How many blood pressure measurements are enough? An application of generalizability theory to the study of blood pressure reliability. Psychophysiology, 25: 97106.CrossRefGoogle Scholar
Llabre, M. M., Spitzer, S. B., Saab, P. G, Ironson, G. H., & Schneiderman, N. (1991). The reliability and specificity of delta versus residualized change as measures of cardiovascular reactivity to behavioral challenges. Psychophysiology, 28: 701711.CrossRefGoogle ScholarPubMed
Marcoulides, G. A. (1994). Selecting weighting schemes in multivariate generalizability studies. Educational and Psychological Measurement, 54: 37.CrossRefGoogle Scholar
Marcoulides, G. A. & Goldstein, Z. (1990). The optimization of generalizability studies with resource constraints. Educational and Psychological Measurement, 50: 761768.CrossRefGoogle Scholar
Marsh, H. W. & Grayson, D. (1995). Latent variable models of multitrait–multimethod data. In Hoyle, R. H. (ed.), Structural Equation Modeling: Concepts, Issues, and Applications (pp. 117198). Thousand Oaks, CA: Sage.Google Scholar
Maxwell, S. E. & Delaney, H. D. (2003). Designing Experiments and Analyzing Data: A Model Comparison Perspective, 2nd edn. New York: Routledge.Google Scholar
Messick, S. (1981). Constructs and their vicissitudes in educational and psychological measurement. Psychological Bulletin, 89: 575588.CrossRefGoogle Scholar
Messick, S. (1989). Validity. In Linn, R. L. (ed.), Educational Measurement, 3rd edn. (pp. 13103). New York: Macmillan.Google Scholar
Myers, J. E., Well, A. D., & Lorch, R. F. Jr. (2010). Research Design and Statistical Analysis, 3rd edn. New York: Routledge.Google Scholar
Nunnally, J. C. & Bernstein, I. H. (1994). Psychometric Theory, 3rd edn. New York: McGraw-Hill.Google Scholar
Nussbaum, A. (1984). Multivariate generalizability theory in educational measurement: an empirical study. Applied Psychological Measurement, 8: 219230.CrossRefGoogle Scholar
Pennebaker, J. W. (1982). The Psychology of Physical Symptoms. New York: Springer-Verlag.CrossRefGoogle Scholar
Pickering, T. G., Harshfield, G. A., Kleinert, H. D., Blank, S., & Laragh, J. H. (1982). Blood pressure during normal daily activities, sleep, and exercise. Journal of the American Medical Association, 247: 992996.CrossRefGoogle Scholar
Raykov, T. & Marcoulides, G. A. (2010). Introduction to Psychometric Theory. New York: Routledge.Google Scholar
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.CrossRefGoogle Scholar
Schmidt, F. L. & Hunter, J. E. (1996). Measurement error in psychological research: lessons from 26 research scenarios. Psychological Methods, 1: 199223.CrossRefGoogle Scholar
Schwerdtfeger, A. R., Schienle, A., Leutgeb, V., & Rathner, E. M. (2014). Does cardiac reactivity in the laboratory predict ambulatory heart rate? Baseline counts. Psychophysiology, 51: 565572.CrossRefGoogle Scholar
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2001). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston, MA: Houghton Mifflin.Google Scholar
Shavelson, R. J. & Webb, N. M. (1991). Generalizability Theory: A Primer. Newbury Park, CA: Sage.Google Scholar
Shavelson, R. J., Webb, N. M., & Rowley, G. L. (1989). Generalizability theory. American Psychologist, 44: 922932.CrossRefGoogle Scholar
Stevens, J. P. (2009). Applied Multivariate Statistics for the Social Sciences, 5th edn. New York: RoutledgeGoogle Scholar
Strube, M. J. (1989). Assessing subjects’ construal of the laboratory situation. In Schneiderman, N., Weiss, S. M., & Kaufman, P. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 527542). New York: Plenum Press.CrossRefGoogle Scholar
Thomas, M. L., Brown, G. G., Thompson, W. K., Voyvodic, J., Greve, D. N., Turner, J. A., … & Potkin, S. G. (2013). An application of item response theory to fMRI data: prospects and pitfalls. Psychiatry Research: Neuroimaging, 212: 167174.CrossRefGoogle ScholarPubMed
Thurston, R. C., Hernandez, J., Del Rio, J. M., & De La Torre, F. (2010). Support vector machines to improve physiologic hot flash measures: applications to the ambulatory setting. Psychophysiology, 48: 10151021.CrossRefGoogle Scholar
Torrents-Rodas, D., Fullana, M. A., Bonillo, A., Andion, O., Molinuevo, B., Caseras, X., & Torrubia, R. (2014). Testing the temporal stability of individual differences in the acquisition and generalization of fear. Psychophysiology, 51: 697705.CrossRefGoogle Scholar
Vanleeuwen, D. M. & Mandabach, K. H. (2002). A note on the reliability of ranked items. Sociological Methods & Research, 31: 87105.CrossRefGoogle Scholar
Webb, N. M. & Shavelson, R. J. (1981). Multivariate generalizability of general educational development ratings. Journal of Educational Measurement, 18: 1322.CrossRefGoogle Scholar
Westen, D. & Rosenthal, R. (2003). Quantifying construct validity: two simple measures. Journal of Personality and Social Psychology, 84: 608618.CrossRefGoogle ScholarPubMed
Whitley, B. E. Jr. & Kite, M. E. (2012). Principles of Research in Behavioral Science, 3rd edn. New York: Routledge.CrossRefGoogle Scholar
Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical Principles in Experimental Design, 3rd edn. New York: McGraw-Hill.Google Scholar
Wohlgemuth, W. K., Edinger, J. D., Fins, A. I., & Sullivan, R. J. Jr. (1999). How many nights are enough? The short-term stability of sleep parameters in elderly insomniacs and normal sleepers. Psychophysiology, 36: 233244.CrossRefGoogle ScholarPubMed
Wothke, W. (1996). Models for multitrait-multimethod matrix analysis. In Marcoulides, G. A. & Schumacker, R. E. (eds.), Advanced Structural Equation Modeling: Issues and Techniques (pp. 756). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Youngstrom, E. A. & De Los Reyes, A. (2015). Commentary. Moving toward cost-effectiveness in using psychophysiological measures in clinical assessment: validity, decision making, and adding value. Journal of Clinical Child & Adolescent Psychology, 44: 352361.CrossRefGoogle ScholarPubMed
Zillmann, D. (1978). Attribution and misattribution of excitatory reactions. In Harvey, J. H., Ickes, W., & Kidd, R. F. (eds.), New Directions in Attribution Research, vol. 2 (pp. 335368). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar

References

Barrett, G., Shibasaki, H., & Neshige, R. (1986). Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man. Electroencephalography & Clinical Neurophysiology, 63: 327339.CrossRefGoogle ScholarPubMed
Basar, E., Basar-Eroglu, C., Karakas, S., & Schurmann, M. (1999). Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neuroscience Letters, 259: 165168.CrossRefGoogle ScholarPubMed
Ben-Shakhar, G. (1985). Standardization within individuals: a simple method to neutralize individual differences in skin conductance. Psychophysiology, 22: 292299.CrossRefGoogle ScholarPubMed
Bradley, M. M., Cuthbert, B. N., & Lang, P. J. (1991). Startle and emotion: lateral acoustic probes and the bilateral blink. Psychophysiology, 28: 285295.CrossRefGoogle ScholarPubMed
Bullmore, E. & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10: 186198.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Dorfman, D. D. (1987). Waveform moment analysis in psychophysiological research. Psychological Bulletin, 102: 421438.CrossRefGoogle ScholarPubMed
Catani, M. & de Schotten, M. T. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44: 11051132.CrossRefGoogle ScholarPubMed
Chauveau, N., Franceries, X., Doyon, B., Rigaud, B., Morucci, J. P., & Celsis, P. (2004). Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model. Human Brain Mapping, 21: 8697.CrossRefGoogle ScholarPubMed
Cherry, S. R. & Phelps, M. E. (1996). Imaging brain function with positron emission tomography. In Toga, A. W. & Mazziotta, J. C. (eds.), Brain Mapping: The Methods (pp. 191222). San Diego, CA: Academic Press.Google Scholar
Chiarelli, A. M., Maclin, E. L., Low, K. A., Fabiani, M., & Gratton, G. (2015). A comparison of procedures for coregistering scalp-recording locations to anatomical MRI images. Journal of Biomedical Optics, 20: 016009.CrossRefGoogle Scholar
Cohen, M. S. (1996). Rapid MRI and functional applications. In Toga, A. W. & Mazziotta, J. C. (eds.), Brain Mapping: The Methods (pp. 223258). San Diego, CA: Academic Press.Google Scholar
Cook, E. W. & Miller, G. A. (1992). Digital filtering: background and tutorial for psychophysiologists. Psychophysiology, 29: 350367.CrossRefGoogle ScholarPubMed
De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43: 4458.CrossRefGoogle ScholarPubMed
Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5: 303305.CrossRefGoogle Scholar
Demiralp, T., Yordanova, J., Kolev, V., Ademoglu, A., Devrim, M., & Samr, V. J. (1999). Time-frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain and Language, 66: 129145.CrossRefGoogle ScholarPubMed
Donchin, E. (1969). Discriminant analysis in average evoked response studies: the study of single trial data. Electroencephalography & Clinical Neurophysiology, 27: 311314.CrossRefGoogle Scholar
Donchin, E. & Heffley, E. (1978). Multivariate analysis of event-related potential data: a tutorial review. In Otto, D. (ed.), Multidisciplinary Perspectives in Event-Related Brain Potential Research (EPA-600/9-77-043) (pp. 555572). Washington, DC: US Government Printing Office.Google Scholar
Donchin, E. & Herning, R. I. (1975). A simulation study of the efficacy of stepwise discriminant analysis in the detection and comparison of event related potentials. Electroencephalography & Clinical Neurophysiology, 38: 5168.CrossRefGoogle ScholarPubMed
Dorfman, D. D. & Cacioppo, J. T. (1990). Waveform moment analysis: topographical analysis of nonrhythmic waveforms. In Tassinary, L. G. & Cacioppo, J. T. (eds.), Principles of Psychophysiology (pp. 661707). Cambridge University Press.Google Scholar
Elui, R. (1969). Gaussian behavior of the EEG: changes during performance of mental tasks. Science, 164: 328331.CrossRefGoogle Scholar
Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological Bulletin, 53: 133140.CrossRefGoogle ScholarPubMed
Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (pp. 18131817). Piscataway, NJ: IEEE.Google Scholar
Evans, A. C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., … & Bub, D. (1992). Anatomical mapping of functional activation in stereotactic coordinate space. NeuroImage, 1: 4353.CrossRefGoogle ScholarPubMed
Fabiani, M., Gordon, B. A., Maclin, E. L., Pearson, M., Brumback, C. R., Low, K. A., … & Gratton, G. (2014). Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. NeuroImage, 1: 592607.CrossRefGoogle Scholar
Fabiani, M., Gratton, G., Corballis, P., Cheng, J., & Friedman, D. (1998). Bootstrap assessment of the reliability of maxima in surface maps of brain activity of individual subjects derived with electrophysiological and optical methods. Behavior Research Methods, Instruments, & Computers, 30: 7886.CrossRefGoogle Scholar
Fabiani, M., Gratton, G., Karis, D., & Donchin, E. (1987). Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential. In Ackles, P. K., Jennings, J. R., & Coles, M. G. (eds.), Advances in Psychophysiology, vol. 2 (pp. 178). Greenwich, CT: JAI Press.Google Scholar
Farwell, L. A., Martinerie, J. M., Bashore, T. R., Rapp, P. E., & Goddard, P. H. (1993). Optimal digital filters for long-latency components of the event-related brain potential. Psychophysiology, 30: 306315.CrossRefGoogle ScholarPubMed
Fischl, B. (2012). FreeSurfer. NeuroImage, 62: 774781.CrossRefGoogle ScholarPubMed
Fortgens, C. & de Bruin, M. P. (1983). Removal of eye movement and ECG artifacts from the non-cephalic reference EEG. Electroencephalography & Clinical Neurophysiology, 56: 9096.CrossRefGoogle ScholarPubMed
Fox, P. T. & Raichle, M. E. (1984). Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. Journal of Neurophysiology, 51: 11091120.CrossRefGoogle ScholarPubMed
Friston, K. J. (1996). Statistical parametric mapping and other analyses of functional imaging data. In Toga, A. W. & Mazziotta, J. C. (eds.), Brain Mapping: The Methods (pp. 363388). San Diego, CA: Academic Press.Google Scholar
Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1: 1336.CrossRefGoogle ScholarPubMed
Gordon, B. A., Tse, C.-H., Gratton, G., & Fabiani, M. (2014). Spread of activation and spread of inhibition: does age matter? Frontiers in Aging Neuroscience, 6: 288.CrossRefGoogle Scholar
Gratton, G. (1997). Attention and probability effects in the human occipital cortex: an optical imaging study. NeuroReport, 8: 17491753.CrossRefGoogle Scholar
Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for offline removal of ocular artifact. Electroencephalography & Clinical Neurophysiology, 55: 468484.CrossRefGoogle Scholar
Gratton, G., Coles, M. G., & Donchin, E. (1989a). A procedure for using multi-electrode information in the analysis of components of the event-related potential: vector filter. Psychophysiology, 26: 222232.CrossRefGoogle ScholarPubMed
Gratton, G., Kramer, A. F., Coles, M. G., & Donchin, E. (1989b). Simulation studies of latency measures of components of the event-related brain potential. Psychophysiology, 26: 233248.CrossRefGoogle ScholarPubMed
Gratton, C., Sreenivasan, K. K., Silver, M. A., & D’Esposito, M. (2013). Attention selectively modifies the representation of individual faces in the human brain. Journal of Neuroscience, 33: 69796989.CrossRefGoogle ScholarPubMed
Hackley, S. A. & Johnson, L. N. (1996). Distinct early and late subcomponents of the photic blink reflex: response characteristics in patients with retrogeniculate lesions. Psychophysiology, 33: 239251.CrossRefGoogle ScholarPubMed
Herrmann, C. S., Rach, S., Vosskuhl, J., & Strüber, D. (2014). Time-frequency analysis of event-related potentials: a brief tutorial. Brain Topography, 27: 438450.CrossRefGoogle ScholarPubMed
Himberg, J., Hyvarinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22: 12141222.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195: 215243.CrossRefGoogle ScholarPubMed
Huberty, C. J. & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analyses. Psychological Bulletin, 105: 302308.CrossRefGoogle Scholar
Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M., & Johnson, P. (1992). Alternate cardiovascular baseline assessment techniques: vanilla or resting baseline. Psychophysiology, 29: 742750.CrossRefGoogle ScholarPubMed
Jennings, J. R., van der Molen, M. W., Somsen, R. J., & Ridderinkhof, K. R. (1991). Graphical and statistical techniques for cardiac cycle time (phase) dependent changes in interbeat interval. Psychophysiology, 28: 596606.CrossRefGoogle ScholarPubMed
Jennings, J. R. & Wood, C. C. (1976). Letter. The epsilon-adjustment procedure for repeated-measures analyses of variance. Psychophysiology, 13: 277278.CrossRefGoogle ScholarPubMed
Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111: 17451758.CrossRefGoogle ScholarPubMed
Karis, D., Fabiani, M., & Donchin, E. (1984). “P300” and memory: individual differences in the von Restorff effect. Cognitive Psychology, 16: 177216.CrossRefGoogle Scholar
Karniski, W., Blair, R. C., & Snider, A. D. (1994). An exact statistical method for comparing topographic maps, with any number of subjects and electrodes. Brain Topography, 6: 203210.CrossRefGoogle ScholarPubMed
Kennedy, J. J. (1983). Analyzing Qualitative Data: Introductory Log-Linear Analysis for Behavioral Research. New York: Praeger.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of the Emotions in Man (pp. 161196). New York: International Universities Press.Google Scholar
Lachaux, J.-P., Lutz, A., Rudrauf, D., Cosmelli, D., Le Van Quyen, M., Martinerie, J., & Varela, F. J. (2002). Estimating the time-course of coherence between single-trial brain signal: an introduction to wavelet coherence. Clinical Neurophysiology, 32: 157174.CrossRefGoogle ScholarPubMed
Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8: 194208.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Lamothe, R. & Stroink, G. (1991). Orthogonal expansions: their applicability to signal extraction in electrophysiological mapping data. Medical & Biological Engineering & Computing, 29: 522528.CrossRefGoogle ScholarPubMed
Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13: 534546.CrossRefGoogle ScholarPubMed
Maier, J., Dagnelie, G., Spekreijse, H., & van Dijk, B. W. (1987). Principal components analysis for source localization of VEPs in man. Vision Research, 27: 165177.CrossRefGoogle ScholarPubMed
Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., & Sejnowski, T. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences of the USA, 94: 1097910984.CrossRefGoogle ScholarPubMed
Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295: 690694.CrossRefGoogle ScholarPubMed
Mathewson, K., Beck, D., Ro, T., Maclin, E. L., Low, K. A., Fabiani, M., & Gratton, G. (2014). Dynamics of alpha control: fronto-parietal modulators of preparatory alpha oscillations revealed with combined EEG and event-related optical signals (EROS). Journal of Cognitive Neuroscience, 26: 24002415.CrossRefGoogle Scholar
Mathewson, K., Gratton, G., Fabiani, M., Beck, D., & Ro, A. (2009). To see or not to see: pre-stimulus alpha phase predicts visual awareness. Journal of Neuroscience, 29: 27252732.CrossRefGoogle ScholarPubMed
Mattout, J., Phillip, C., Penny, W. D., Rugg, M. D., & Friston, K. J. (2006). MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage, 30: 753767.CrossRefGoogle ScholarPubMed
McCallum, W. C. & Curry, S. H. (1984). A comparison of early event-related potentials in two target detection tasks. Annals of the New York Academy of Sciences, 425: 242249.CrossRefGoogle ScholarPubMed
McCarthy, G. & Wood, C. C. (1985). Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. Electroencephalography & Clinical Neurophysiology, 62: 203208.CrossRefGoogle ScholarPubMed
Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35: 99115.CrossRefGoogle ScholarPubMed
Möcks, J. (1986). The influence of latency jitter in principal component analysis of event-related potentials. Psychophysiology, 23: 480484.CrossRefGoogle ScholarPubMed
Möcks, J. (1988). Decomposing event-related potentials: a new topographic components model. Biological Psychology, 26: 199215.CrossRefGoogle ScholarPubMed
Möcks, J., Köhler, W., Gasser, T., & Pham, D. T. (1988). Novel approaches to the problem of latency jitter. Psychophysiology, 25: 217226.CrossRefGoogle ScholarPubMed
Möcks, J. & Verleger, R. (1985). Nuisance sources of variance in principal components analysis of event-related potentials. Psychophysiology, 22: 674688.CrossRefGoogle ScholarPubMed
Monk, T. H. (1987). Parameters of the circadian temperature rhythm using sparse and irregular sampling. Psychophysiology, 24: 236242.CrossRefGoogle ScholarPubMed
Monk, T. H. & Fookson, J. E. (1986). Circadian temperature rhythm power spectra: is equal sampling necessary? Psychophysiology, 23: 472479.CrossRefGoogle ScholarPubMed
Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527: 633639.CrossRefGoogle ScholarPubMed
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10: 424430.CrossRefGoogle ScholarPubMed
Parks, N. A., Maclin, E. L., Low, K. A., Beck, D. M., Fabiani, M., & Gratton, G. (2012). Examining cortical dynamics and connectivity with concurrent simultaneous single-pulse transcranial magnetic stimulation and fast optical imaging. NeuroImage, 59: 25042510.CrossRefGoogle ScholarPubMed
Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117: 847858.CrossRefGoogle ScholarPubMed
Pascual-Marqui, R. D., Esslen, M., Kochi, K., & Lehmann, D. (2002). Functional imaging with low resolution brain electromagnetic tomography (LORETA): review, new comparisons, and new validation. Japanese Journal of Clinical Neurophysiology, 30: 8194.Google Scholar
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18: 4965.CrossRefGoogle Scholar
Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial review. NeuroImage, 45: S199S209.CrossRefGoogle Scholar
Perrin, F., Pernier, J., Bertrand, O., Giard, M. H., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography & Clinical Neurophysiology, 66: 7581.CrossRefGoogle ScholarPubMed
Pfurtscheller, G. & Neuper, C. (1992). Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. NeuroReport, 3: 10571060.CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … & Petersen, S. E. (2011). Functional organization of the human brain. Neuron, 72: 665678.CrossRefGoogle ScholarPubMed
Quigley, K. S. & Berntson, G. G. (1996). Autonomic interactions and chronotropic control of the heart: heart period versus heart rate. Psychophysiology, 33: 605611.CrossRefGoogle ScholarPubMed
Roach, B. J. & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia Bulletin, 34: 907926.CrossRefGoogle Scholar
Ruchkin, D. S., Sutton, S., & Stega, M. (1980). Emitted P300 and slow wave event-related potentials in guessing and detection tasks. Electroencephalography & Clinical Neurophysiology, 49: 114.CrossRefGoogle ScholarPubMed
Rykhlevskaia, E., Fabiani, M., & Gratton, G. (2006). Lagged covariance structure models for studying functional connectivity in the brain. NeuroImage, 30: 12031218.CrossRef