Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-vmftn Total loading time: 1.875 Render date: 2023-01-30T02:45:41.367Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

18 - From Homeostasis to Allodynamic Regulation

from Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlan, A. M., Lip, G. Y., Paton, J. F., Kitas, G. D., & Fisher, J. P. (2014). Autonomic function and rheumatoid arthritis: a systematic review. Seminars in Arthritis and Rheumatism, 44: 283304.CrossRefGoogle ScholarPubMed
Anane, L. H., Edwards, K. M., Burns, V. E., Zanten, J. J., Drayson, M. T., & Bosch, J. A. (2010). Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain, Behavior, and Immunity, 24: 608614.CrossRefGoogle ScholarPubMed
Andersson, U. & Tracey, K. J. (2012). Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 209: 10571068.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R. J., & Shipley, M. T. (1996). Role of the locus coeruleus in emotional activation, Progress in Brain Research, 107: 379402.CrossRefGoogle ScholarPubMed
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host–bacterial mutualism in the human intestine. Science, 307: 19151920.CrossRefGoogle ScholarPubMed
Banks, W. A. & Farrell, C. L. (2003). Impaired transport of leptin across the blood–brain barrier in obesity is acquired and reversible. American Journal of Physiology: Endocrinology and Metabolism, 285: E10E15.Google ScholarPubMed
Bautista, D. M., Wilson, S. R., & Hoon, M. A. (2014). Why we scratch an itch: the molecules, cells and circuits of itch. Nature Neuroscience, 17: 175182.CrossRefGoogle ScholarPubMed
Bernard, C. (1878). Leçons sur les phénomènes de la vie communes aux animaux et aux végétaux. Paris: B. Baillière et Fils. Trans. Hoff, H. E., Guillemin, R., and Guillemin, L. as Lectures on the Phenomena of Life Common to Animals and Plants. Springfield, IL: Charles C. Thomas, 1974.Google Scholar
Berntson, G. G. (2006). Reasoning about brains. In Cacioppo, J. T., Visser, P. S., & Pickett, C. L. (eds.), Social Neuroscience: People Thinking about People (pp. 111). Cambridge, MA: MIT Press.Google Scholar
Berntson, G. G., Boysen, S. T., & Cacioppo, J. T. (1993a). Neurobehavioral organization and the cardinal principle of evaluative bivalence. Annals of the New York Academy of Sciences, 702: 75102.CrossRefGoogle ScholarPubMed
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Berntson, G. G., & Tassinary, L. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.CrossRefGoogle Scholar
Berntson, G. G. & Cacioppo, J. T. (2013). The functional neuroarchitecture of evaluative processes. In Elliot, A. J. (ed.), Handbook of Approach and Avoidance Motivation (pp. 307–21). New York: Psychology Press.Google Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994a). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1994b). Autonomic cardiac control: I. Estimation and validation from pharmacological blockades. Psychophysiology 31: 572585.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., Quigley, K. S., & Fabro, V. J. (1994c). Autonomic space and psychophysiological response. Psychophysiology, 31: 4461.CrossRefGoogle ScholarPubMed
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (1998). Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behavioural Brain Research, 94: 225248.CrossRefGoogle ScholarPubMed
Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18: 21032109.CrossRefGoogle ScholarPubMed
Berthoud, H. R., Bereiter, D. A., Trimble, E. R., Siegel, E. G., & Jeanrenaud, B. (1981). Cephalic phase, reflex insulin secretion. Neuroanatomical and Physiological Characterization. Diabetologia, 20: 393401.Google ScholarPubMed
Blascovich, J., Mendes, W. B., Hunter, S. B., & Salomon, K. (1999). Social “facilitation” as challenge and threat. Journal of Personality and Social Psychology, 77: 6877.CrossRefGoogle ScholarPubMed
Bohus, B., Benus, R. F., Fokkema, D. S., Koolhaas, J. M., Nyakas, G. A., van Oortmerssen, G. A., … & Steffens, A. B. (1988). Neuroendocrine states and behavioral and physiological stress responses. In Wiegant, M. & de Wied, D. (eds.), Progress in Brain Research, vol. 72 (pp. 5770). Amsterdam: Elsevier.Google Scholar
Bosch, J. A. (2014). The use of saliva markers in psychobiology: mechanisms and methods. Monographs in Oral Science, 24: 99108.CrossRefGoogle ScholarPubMed
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003a). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, and Immunity, 17: 251259.CrossRefGoogle ScholarPubMed
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., & Marucha, P. T. (2005). Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosomatic Medicine, 67: 366375.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Carroll, D., Goedhart, A. D., Anane, L. A., van Zanten, J. J., … & Edwards, K. M. (2009). A general enhancement of autonomic and cortisol responses during social evaluative threat. Psychosomatic Medicine, 71: 877885.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Ligtenberg, T. J., Nazmi, K., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2000). Salivary MUC5B-mediated adherence (ex vivo) of Helicobacter pylori during acute stress. Psychosomatic Medicine, 62: 4049.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003b). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.CrossRefGoogle ScholarPubMed
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.CrossRefGoogle ScholarPubMed
Boychuk, C. R., Gyarmati, P., Xu, H., & Smith, B. N. (2015). Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. Journal of Neurophysiology, 114: 9991007.CrossRefGoogle ScholarPubMed
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45: 602607.CrossRefGoogle ScholarPubMed
Bradley, P. B. & Elkes, J. (1953). The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat. Journal of Physiology, 120: 1415.Google ScholarPubMed
Brody, S., Keller, U., Degen, L., Cox, D. J., & Schächinger, H. (2004). Selective processing of food words during insulin-induced hypoglycemia in healthy humans. Psychopharmacology, 173: 217220.CrossRefGoogle ScholarPubMed
Brydon, L. (2011). Adiposity, leptin and stress reactivity in humans. Biological Psychology, 86: 114120.CrossRefGoogle ScholarPubMed
Burdakov, D., Luckman, S. M., & Verkhratsky, A. (2005). Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360: 22272235.CrossRefGoogle ScholarPubMed
Butler, J. E. (2007). Drive to the human respiratory muscles. Respiratory Physiology & Neurobiology, 159: 115126.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.CrossRefGoogle Scholar
Cacioppo, J. T., Berntson, G. G., & Klein, D. J. (1992). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral “illusions.” Review of Personality and Social Psychology, 14: 6398.Google Scholar
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multi-level integrative analyses of human behavior: the complementing nature of social and biological approaches. Psychological Bulletin, 126: 829843.CrossRefGoogle Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., Berntson, G. G., & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Sandman, C. A. (1978). Physiological differentiation of sensory and cognitive tasks as a function of warning, processing demands, and reported unpleasantness. Biological Psychology, 6: 181192.CrossRefGoogle ScholarPubMed
Cacioppo, J. T. & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. American Psychologist, 45: 1628.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., Stonebraker, T. B., & Petty, R. E. (1987). Self-report and cardiovascular measures of arousal: fractionation during residual arousal. Biological Psychology, 25: 135151.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1914). The interrelations of emotions as suggested by recent physiological researches. American Journal of Psychology, 25: 256282.CrossRefGoogle Scholar
Cannon, W. B. (1928). The mechanism of emotional disturbance of bodily functions. New England Journal of Medicine, 198: 877884.CrossRefGoogle Scholar
Cannon, W. B. (1929a). Bodily Changes in Pain, Hunger, Fear, and Rage. Boston, MA: Charles T. Brandford Company.CrossRefGoogle Scholar
Cannon, W. B. (1929b). Organization for physiological homeostasis. Physiological Reviews, 9: 399431.CrossRefGoogle Scholar
Cannon, W. B. (1939). The Wisdom of the Body, 2nd edn. London: Kegan Paul, Trench, Trubner & Co.CrossRefGoogle Scholar
Cannon, W. B. (1942). Voodoo death. American Anthropologist, 44: 169181.CrossRefGoogle Scholar
Carroll, D. (2011). A brief commentary on cardiovascular reactivity at a crossroads. Biological Psychology, 86: 149151.CrossRefGoogle Scholar
Carruthers, M. & Taggart, P. (1973). Vagotonicity of violence: biochemical and cardiac responses to violent films and television programmes. British Medical Journal, 3: 384389.CrossRefGoogle ScholarPubMed
Chida, Y, & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55: 10261032.CrossRefGoogle ScholarPubMed
Christian, L. M., Galley, J. D., Hade, E. M., Schoppe-Sullivan, S., Kamp Dush, C., & Bailey, M. T. (2015). Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 45: 118127.CrossRefGoogle ScholarPubMed
Cofer, C. N. & Appley, M. H. (1964). Motivation: Theory and Research. New York: John Wiley.Google Scholar
Cohen, S. & Herbert, T. B. (1996). Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annual Review of Psychology, 47: 113142.CrossRefGoogle ScholarPubMed
Contrada, R. J. (2011). Stress, adaptation, and health. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 19). New York: Springer.Google Scholar
Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3: 655666.CrossRefGoogle Scholar
Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current Opinion in Neurobiology, 13: 500505.CrossRefGoogle Scholar
Craig, A. D. (2014). How Do You Feel? An Interoceptive Moment with Your Neurobiological Self. Princeton University Press.CrossRefGoogle Scholar
Critchley, H. D. & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77: 624638.CrossRefGoogle ScholarPubMed
Cryan, J. F. & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13: 701712.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26: 8386.CrossRefGoogle ScholarPubMed
Damasio, A. R. (2010). Self Comes to Mind: Contructing the Conscious Brain. New York: Heinemann.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9: 4656.CrossRefGoogle Scholar
Davis, M., Falls, W. A., Campeau, S., & Kim, M. (1993). Fear-potentiated startle: a neural and pharmacological analysis. Behavioural Brain Research, 58: 175198.CrossRefGoogle ScholarPubMed
de Lecea, L., Carter, M. E., & Adamantidis, A. (2012). Shining light on wakefulness and arousal. Biological Psychiatry, 71: 10461052.CrossRefGoogle ScholarPubMed
de Wit, L., Luppino, F., van Straten, A., Penninx, B., Zitman, F., & Cuijpers, P. (2010). Depression and obesity: a meta-analysis of community-based studies. Psychiatry Research, 178: 230235.CrossRefGoogle ScholarPubMed
Dhabhar, F. S. (2014). Effects of stress on immune function: the good, the bad, and the beautiful. Immunology Research, 58: 193210.CrossRefGoogle ScholarPubMed
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.CrossRefGoogle ScholarPubMed
Dienstbier, R. A. (1989). Arousal and physiological toughness: implications for mental and physical health. Psychological Review, 96: 84100.CrossRefGoogle ScholarPubMed
DiGirolamo, D. J., Clemens, T. L., & Kousteni, S. (2012). The skeleton as an endocrine organ. Nature Reviews Rheumatology, 8: 674683.CrossRefGoogle ScholarPubMed
Dinan, T. G. & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37: 13691378.CrossRefGoogle ScholarPubMed
Dror, O. E. (2014). The Cannon–Bard thalamic theory of emotions: a brief genealogy and reappraisal. Emotion Review, 6: 1320.CrossRefGoogle Scholar
Duffy, E. (1962). Activation and Behavior. New York: John Wiley.Google Scholar
Dworkin, B. R. (1993). Learning and Physiological Regulation. University of Chicago Press.Google Scholar
Dworkin, B. R. & Dworkin, S. (1999). Heterotopic and homotopic classical conditioning of the baroreflex. Integrative Physiology and Behavioral Scinece, 34: 158176.CrossRefGoogle ScholarPubMed
Dworkin, B. R., Elbert, T., Rau, H., Birbaumer, N., Pauli, P., Droste, C., & Brunia, C. H. (1994). Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perceptions. Proceedings of the National Academy of Sciences of the USA, 91: 63296333.CrossRefGoogle Scholar
Edwards, K. M., Bosch, J. A., Engeland, C. G., Cacioppo, J. T., & Marucha, P. T. (2010). Elevated macrophage migration inhibitory factor (MIF) is associated with depressive symptoms, blunted cortisol reactivity to acute stress, and lowered morning cortisol. Brain, Behavior, and Immunity, 24: 12021208.CrossRefGoogle ScholarPubMed
Edwards, L., McIntyre, D., Carroll, D., Ring, C., & Martin, U. (2002). The human nociceptive flexion reflex threshold is higher during systole than diastole. Psychophysiology, 39: 678681.CrossRefGoogle ScholarPubMed
Engel, G. L. (1977). Emotional stress and sudden death. Psychology Today, 11: 114118.Google Scholar
Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., … & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18: 965977.CrossRefGoogle ScholarPubMed
Farr, O. M., Tsoukas, M. A., & Mantzoros, C. S. (2015). Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism, 64: 114130.CrossRefGoogle ScholarPubMed
Feldman, S. M. & Waller, H. J. (1962). Dissociation of electrocortical activation and behavioral arousal. Nature, 196: 13201322.CrossRefGoogle Scholar
Ferguson, A. V. (2014). Circumventricular organs: integrators of circulating signals controlling hydration, energy balance, and immune function. In De Luca, L. A., Menani, J. V., & Johnson, A. K. (eds.), Neurobiology of Body Fluid Homeostasis: Transduction and Integration (pp. 2336). Boca Raton, FL: CRC Press.Google Scholar
Field, B. C., Chaudhri, O. B., & Bloom, S. R. (2010). Bowels control brain: gut hormones and obesity. Nature Reviews Endocrinology, 6: 444453.CrossRefGoogle ScholarPubMed
Fisher, L. (1990). Stress and cardiovascular physiology in animals. In Brown, M., Koob, G., & Rivier, C. (eds.), Stress: Neurobiology and Neuroendocrinology (pp. 463474). New York: Marcel Dekker.Google Scholar
Folkow, B. (2000). Perspectives on the integrative functions of the “sympatho-adrenomedullary system.” Autonomic Neuroscience, 83: 101115.CrossRefGoogle Scholar
Frankenhaeuser, M. (1982). Challenge–control interaction as reflected in sympathetic-adrenal and pituitary-adrenal activity: comparison between the sexes. Scandinavian Journal of Psychology, Supp. 1: 158164.CrossRefGoogle ScholarPubMed
Friedman, B. H. & Kreibig, S. D. (2010). The biopsychology of emotion: current theoretical, empirical, and methodological perspectives. Biological Psychology, 84: 381382.CrossRefGoogle ScholarPubMed
Galley, J. D. & Bailey, M. T. (2014). Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes, 5: 390396.CrossRefGoogle ScholarPubMed
Gerin, W. (2011). Acute stress responses in the psychophysiological laboratory. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 501514). New York: Springer.Google Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.CrossRefGoogle ScholarPubMed
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.CrossRefGoogle ScholarPubMed
Goldstein, D. S. & Kopin, I. J. (2007). Evolution of concepts of stress. Stress, 10: 109120.CrossRefGoogle ScholarPubMed
Gray, J. A. & McNaughton, N. (1996). The neuropsychology of anxiety: reprise. Nebraska Symposium on Motivation, 43: 61134.Google ScholarPubMed
Gray, T. S. & Bingaman, E. W. (1996). The amygdala: corticotropin-releasing factor, steroids, and stress. Critical Reviews in Neurobiology, 10: 155168.CrossRefGoogle Scholar
Gregg, M. E., Matyas, T. A., & James, J. E. (2002). A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology, 39: 6472.CrossRefGoogle ScholarPubMed
Guyton, A. C. (1991). Blood-pressure control: special role of the kidneys and body fluids. Science, 252: 18131816.CrossRefGoogle ScholarPubMed
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49: 206215.CrossRefGoogle ScholarPubMed
Hagenaars, M. A., Oitzl, M., & Roelofs, K. (2014). Updating freeze: aligning animal and human research. Neuroscience & Biobehavioral Reviews, 47: 165176.CrossRefGoogle ScholarPubMed
Hanlin, L., Price, J., Zhang, G., Assaf, N., Mitchell, J., & Rohleder, N. (2015). Fasting modulates interleukin-6 and cortisol reactivity to the Trier Social Stress Test. Psychoneuroendocrinology, 61: 69.CrossRefGoogle Scholar
Harrison, N. A., Brydon, L., Walker, C., Gray, M. A., Steptoe, A., & Critchley, H. D. (2009). Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biological Psychiatry, 66: 407414.CrossRefGoogle ScholarPubMed
Harrison, N. A., Cooper, E., Voon, V., Miles, K., & Critchley, H. D. (2013). Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain, Behavior, and Immunity, 31: 189196.CrossRefGoogle ScholarPubMed
Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. Journal of Neuroscience, 30: 1287812884.CrossRefGoogle Scholar
Harshaw, C. (2015). Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychological Bulletin, 141: 311363.CrossRefGoogle ScholarPubMed
Heany, S. J., van Honk, J., Stein, D. J., & Brooks, S. J. (2016). A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain. Metabolic Brain Disease, 31: 157167.CrossRefGoogle ScholarPubMed
Henry, J. P. (1986). Neuroendocrine patterns of emotional response. In Plutchick, R. & Kellerman, H. (eds.), Emotion: Theory, Research and Experiences (pp. 3760). San Diego, CA: Academic Press.Google Scholar
Hofer, P., Lanzenberger, R., & Kasper, S. (2013). Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology. European Neuropsychopharmacology, 23: 7988.CrossRefGoogle ScholarPubMed
Howren, M. B., Lamkin, D. M., & Suls, J. (2009). Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine, 71: 171186.CrossRefGoogle ScholarPubMed
Inagaki, T. K., Muscatell, K. A., Irwin, M. R., Cole, S. W., & Eisenberger, N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage, 59: 32223226.CrossRefGoogle ScholarPubMed
Iriki, M. & Simon, E. (2012). Differential control of efferent sympathetic activity revisited. Journal of Physiological Science, 62: 275298.CrossRefGoogle ScholarPubMed
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.CrossRefGoogle ScholarPubMed
James, W. (1884). What is an emotion? Mind, 9: 188205.CrossRefGoogle Scholar
Joels, M. & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10: 459466.CrossRefGoogle ScholarPubMed
Jones, B. E. (2003). Arousal systems. Frontiers in Bioscience, 8: S438S451.CrossRefGoogle ScholarPubMed
Karsenty, G. & Ferron, M. (2012). The contribution of bone to whole-organism physiology. Nature, 481: 314320.CrossRefGoogle ScholarPubMed
Kataoka, N., Hioki, H., Kaneko, T., & Nakamura, K. (2014). Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metabolism, 20: 346358.CrossRefGoogle ScholarPubMed
Kawai, M. & Rosen, C. J. (2010). Minireview: a skeleton in serotonin’s closet? Endocrinology, 151: 41034108.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Gonzalez Bono, E., Rohleder, N., Gessner, C., Pirke, K. M., Salvador, A., & Hellhammer, D. H. (1997). Effects of fasting and glucose load on free cortisol responses to stress and nicotine. Journal of Clinical Endocrinology and Metabolism, 82: 11011105.Google ScholarPubMed
Knox, D., Sarter, M., & Berntson, G. G. (2004). Visceral afferent bias on cortical processing: role of adrenergic afferents to the basal forebrain cholinergic system. Behavioral Neuroscience, 118: 14551459.CrossRefGoogle ScholarPubMed
Kohler, O., Benros, M. E., Nordentoft, M., Farkouh, M. E., Iyengar, R. L., Mors, O., & Krogh, J. (2014). Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 71: 13811391.CrossRefGoogle ScholarPubMed
Koizumi, K. & Kollai, M. (1981). Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions, Journal of the Autonomic Nervous System, 3: 483501.CrossRefGoogle ScholarPubMed
Koizumi, K. & Kollai, M. (1992). Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present, Journal of the Autonomic Nervous System, 41: 1930.CrossRefGoogle ScholarPubMed
Kopin, I. J. (1995). Definitions of stress and sympathetic neuronal responses. Annals of the New York Academy of Sciences, 771: 1930.CrossRefGoogle ScholarPubMed
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biological Psychology, 84: 394421.CrossRefGoogle ScholarPubMed
Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubinstein, E. A. & Parloff, M. B. (eds.), Research in Psychotherapy (pp. 160208). Washington: APA.CrossRefGoogle Scholar
Lacey, J. I. (1967). Somatic response patterning and stress: some revisions of activation theory. In Appley, M. H. & Trumbull, R. (eds.), Psychological Stress: Issues in Research (pp. 444). New York: Appleton-Century-Crofts.Google Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. H. (ed.), Expression of Emotions in Man (pp. 161196). New York: International University Press.Google Scholar
Lacourt, T. E., Houtveen, J. H., Veldhuijzen van Zanten, J. J., Bosch, J. A., Drayson, M. T., & Van Doornen, L. J. (2015). Negative affectivity predicts decreased pain tolerance during low-grade inflammation in healthy women. Brain, Behavior, and Immunity, 44: 3236.CrossRefGoogle ScholarPubMed
Ladwig, K. H., Marten-Mittag, B., Lowel, H., Doring, A., & Koenig, W. (2003). Influence of depressive mood on the association of CRP and obesity in 3205 middle aged healthy men. Brain, Behavior, and Immunity, 17: 268275.CrossRefGoogle ScholarPubMed
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1998). Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biological Psychiatry, 44: 12481263.CrossRefGoogle ScholarPubMed
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6: 100112.CrossRefGoogle Scholar
Licht, C. M., Vreeburg, S. A., van Reedt Dortland, A. K., Giltay, E. J., Hoogendijk, W. J., DeRijk, R. H., … & Penninx, B. W. (2010). Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. Journal of Clinical Endocrinology and Metabolism, 95: 24582466.CrossRefGoogle ScholarPubMed
Light, K. C. & Obrist, P. A. (1980). Cardiovascular response to stress: effects of opportunity to avoid, shock experience, and performance feedback. Psychophysiology, 17: 243252.CrossRefGoogle ScholarPubMed
Loewy, A. D. (1990). Autonomic control of the eye. In Loewy, A. D. & Spyer, K. M. (eds.), Central Regulation of Autonomic Function (pp. 268285). Oxford University Press.Google Scholar
Lucini, D., Norbiato, G., Clerici, M., & Pagani, M. (2002). Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension, 39: 184188.CrossRefGoogle ScholarPubMed
Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67: 220229.CrossRefGoogle ScholarPubMed
Magoun, H. W. (1963). The Waking Brain. Springfield, IL: Charles C. Thomas.Google Scholar
Malliani, A. (2005). Heart rate variability: from bench to bedside. European Journal of Internal Medicine, 16: 1220.CrossRefGoogle ScholarPubMed
Mason, J. W. (1975a). A historical view of the stress field: part 1. Journal of Human Stress, 1: 612.CrossRefGoogle Scholar
Mason, J. W. (1975b). A historical view of the stress field: part 2. Journal of Human Stress, 1: 2236.CrossRefGoogle Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 34: 1549015496.CrossRefGoogle ScholarPubMed
McCabe, P. M. & Schneiderman, P. (1985). Psychophysiologic reactions to stress. In Schneiderman, N. & Tapp, J. T. (eds.), Behavioral Medicine: The Biopsychosocial Approach (pp. 99131). London: Lawrence Erlbaum Associates.Google Scholar
McCusker, R. H. & Kelley, K. W. (2013). Immune–neural connections: how the immune system’s response to infectious agents influences behavior. Journal of Experimental Biology, 216: 8498.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338: 171179.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews, 87: 873904.CrossRefGoogle Scholar
McEwen, B. S. & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186: 190222.CrossRefGoogle ScholarPubMed
McEwen, B. S. & Wingfield, J. C. (2010). What is in a name? Integrating homeostasis, allostasis and stress. Hormones and Behavior, 57: 105111.CrossRefGoogle Scholar
McInnis, C. M., Thoma, M. V., Gianferante, D., Hanlin, L., Chen, X., Breines, J. G., … & Rohleder, N. (2014). Measures of adiposity predict interleukin-6 responses to repeated psychosocial stress. Brain, Behavior, and Immunity, 42: 3340.CrossRefGoogle ScholarPubMed
Miller, G. E., Freedland, K. E., Carney, R. M., Stetler, C. A., & Banks, W. A. (2003). Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain, Behavior, and Immunity, 17: 276285.CrossRefGoogle ScholarPubMed
Moieni, M., Irwin, M. R., Jevtic, I., Breen, E. C., & Eisenberger, N. I. (2015). Inflammation impairs social cognitive processing: a randomized controlled trial of endotoxin. Brain, Behavior, and Immunity, 48: 132138.CrossRefGoogle ScholarPubMed
Nagy, T., van Lien, R., Willemsen, G., Proctor, G., Efting, M., Fulop, M., … & Bosch, J. A. (2015). A fluid response: alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate. Biological Psychology, 109: 111119.CrossRefGoogle ScholarPubMed
Nater, U. M., Ditzen, B., Strahler, J., & Ehlert, U. (2013). Effects of orthostasis on endocrine responses to psychosocial stress. International Journal of Psychophysiology, 90: 341346.CrossRefGoogle ScholarPubMed
Neumann, I. D. & Slattery, D. A. (2016). Oxytocin in general anxiety and social fear: a translational approach. Biological Psychiatry, 79: 213221.CrossRefGoogle ScholarPubMed
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.CrossRefGoogle Scholar
Norman, G. J., Cacioppo, J. T., Morris, J. S., Malarkey, W. B., Berntson, G. G., & DeVries, A. C. (2011a). Oxytocin increases autonomic cardiac control: moderation by loneliness. Biological Psychology, 86(3): 174180.CrossRefGoogle ScholarPubMed
Norman, G. J., DeVries, A. C., Cacioppo, J. T., & Berntson, G. G. (2011b). Multilevel analyses of stress. In Contrada, R. J. & Baum, A. (eds.), The Handbook of Stress Science: Biology, Psychology, and Health (pp. 619634). New York: Springer.Google Scholar
Norman, G. J., Hawkley, L. C., Cole, S. W., Berntson, G. G., & Cacioppo, J. T. (2012). Social neuroscience: the social brain, oxytocin, and health. Social Neuroscience, 7: 1829.CrossRefGoogle ScholarPubMed
Obrist, P. A. (1981). Cardiovascular Psychophysiology: A Perspective. New York: Plenum Press.CrossRefGoogle Scholar
Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E., & Weiss, R. (2006). Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology, 43: 4656.CrossRefGoogle ScholarPubMed
Pacak, K. & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22: 502548.CrossRefGoogle ScholarPubMed
Packard, M. G. & Goodman, J. (2012). Emotional arousal and multiple memory systems in the mammalian brain. Frontiers in Behavioral Neuroscience, 6: 14.CrossRefGoogle ScholarPubMed
Paine, N. J., Bosch, J. A., & Van Zanten, J. J. (2012). Inflammation and vascular responses to acute mental stress: implications for the triggering of myocardial infarction. Current Pharmaceutical Design, 18: 14941501.CrossRefGoogle ScholarPubMed
Paine, N. J., Ring, C., Bosch, J. A., Drayson, M. T., Aldred, S., & Veldhuijzen van Zanten, J. J. (2014). Vaccine-induced inflammation attenuates the vascular responses to mental stress. International Journal of Psychophysiology, 93: 340348.CrossRefGoogle ScholarPubMed
Pape, H. C., Jungling, K., Seidenbecher, T., Lesting, J., & Reinscheid, R. K. (2010). Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology, 58: 2934.CrossRefGoogle ScholarPubMed
Parvizi, J. & Damasio, A. (2001). Consciousness and the brainstem. Cognition, 79: 135160.CrossRefGoogle ScholarPubMed
Pedersen, B. K. & Febbraio, M. A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8: 457465.CrossRefGoogle ScholarPubMed
Pfaff, D. W., Kieffer, B. L., & Swanson, L. W. (2008). Mechanisms for the regulation of state changes in the central nervous system: an introduction. Annals of the New York Academy of Sciences, 1129: 17.CrossRefGoogle Scholar
Qureshi, I. A. & Mehler, M. F. (2013). Towards a “systems”-level understanding of the nervous system and its disorders. Trends in Neurosciences, 36: 674684.CrossRefGoogle ScholarPubMed
Raison, C. L. & Miller, A. H. (2013). Role of inflammation in depression: implications for phenomenology, pathophysiology and treatment. Modern Trends in Pharmacopsychiatry, 28: 3348.CrossRefGoogle ScholarPubMed
Ramsay, D. S. & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychological Review, 121: 225247.CrossRefGoogle ScholarPubMed
Reagan, L. P. (2007). Insulin signaling effects on memory and mood. Current Opinion in Pharmacology, 7: 633637.CrossRefGoogle Scholar
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … & Trivedi, M. H. (2013). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18: 11191124.CrossRefGoogle ScholarPubMed
Riddell, N. E., Burns, V. E., Wallace, G. R., Edwards, K. M., Drayson, M., Redwine, L. S., … & Bosch, J. A. (2015). Progenitor cells are mobilized by acute psychological stress but not beta-adrenergic receptor agonist infusion. Brain, Behavior, and Immunity, 49: 4953.CrossRefGoogle Scholar
Ring, C., Burns, V. E., & Carroll, D. (2002). Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology, 39: 585590.CrossRefGoogle ScholarPubMed
Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention: implications for drug abuse. Annals of the New York Academy of Sciences, 846: 222237.CrossRefGoogle ScholarPubMed
Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. Circulation Research, 14: 400411.CrossRefGoogle Scholar
Rohleder, N., Wolf, J. M., Maldonado, E. F., & Kirschbaum, C. (2006). The psychosocial stress-induced increase in salivary alpha-amylase is independent of saliva flow rate. Psychophysiology, 43: 645652.CrossRefGoogle ScholarPubMed
Romanovsky, A. A. (2004). Do fever and anapyrexia exist? Analysis of set point-based definitions. American Journal of Physiology: Regulatory and Integrative Comparative Physiology, 287: R992R995.Google ScholarPubMed
Roosterman, D., Goerge, T., Schneider, S. W., Bunnett, N. W., & Steinhoff, M. (2006). Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiological Reviews, 86: 13091379.CrossRefGoogle ScholarPubMed
Rosen, C. J. (2009). Bone: serotonin, leptin and the central control of bone remodeling. Nature Reviews Rheumatology, 5: 657658.CrossRefGoogle ScholarPubMed
Sacco, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., … & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension (Greenwich), 15: 600605.CrossRefGoogle ScholarPubMed
Santisteban, M. M., Ahmari, N., Carvajal, J. M., Zingler, M. B., Qi, Y., Kim, S., … & Zubcevic, J. (2015). Involvement of bone marrow cells and neuroinflammation in hypertension. Circulation Research, 117: 178191.CrossRefGoogle ScholarPubMed
Saper, C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annual Review of Neuroscience, 25: 433469.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21: 5589.Google ScholarPubMed
Sarter, M., Berntson, G. G., & Cacioppo, J. T. (1996). Brain imaging and cognitive neuroscience: toward strong inference in attributing function to structure. American Psychologist, 51: 1321.CrossRefGoogle Scholar
Sarter, M., Bruno, J. P., & Berntson, G. G. (2003). Reticular activating system. In Nadel, L. (ed.), Encyclopedia of Cognitive Science, vol. 3 (pp. 963967). London: Nature Publishing Group.Google Scholar
Satpute, A. B., Wager, T. D., Cohen-Adad, J., Bianciardi, M., Choi, J. K., Buhle, J. T., … & Feldman Barrett, L. (2013). Identification of discrete functional subregions of the human periaqueductal gray. Proceedings of the National Academy of Sciences of the USA, 110: 1710117106.CrossRefGoogle ScholarPubMed
Schaible, H. G. (2014). Nociceptive neurons detect cytokines in arthritis. Arthritis Research & Therapy, 16: 470.CrossRefGoogle ScholarPubMed
Schellekens, H., Finger, B. C., Dinan, T. G., & Cryan, J. F. (2012). Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacology & Therapeutics, 135: 316326.CrossRefGoogle ScholarPubMed
Schneiderman, N., Ironson, G., & Siegel, S. D. (2005). Stress and health: psychological, behavioral, and biological determinants. Annual Review of Clinical Psychology, 1: 607628.CrossRefGoogle ScholarPubMed
Schneiderman, N. & McCabe, P. M. (1989). Psychophysiologic strategies in laboratory research. In Schneiderman, N., Weiss, S. M., & Kaufman, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 349364). New York: Plenum Press.CrossRefGoogle Scholar
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus–pituitary–adrenal axis and the sympathetic–adrenal–medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65: 450460.CrossRefGoogle ScholarPubMed
Schroeder, J. P. & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17: 14821488.CrossRefGoogle ScholarPubMed
Schulkin, J. (ed.) (2004). Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge University Press.CrossRefGoogle Scholar
Schulkin, J. (2011). Social allostasis: anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2: 111.CrossRefGoogle ScholarPubMed
Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: an update and integration. Neuroscience & Biobehavioral Reviews, 36: 17401749.CrossRefGoogle Scholar
Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1: 13831392.CrossRefGoogle ScholarPubMed
Selye, H. (1956). The Stress of Life. New York: McGraw-Hill.Google Scholar
Selye, H. (1973). Homeostasis and heterostasis. Perspectives in Biology and Medicine, 16: 441445.CrossRefGoogle ScholarPubMed
Selye, H. (1975). Confusion and controversy in the stress field. Journal of Human Stress, 1: 3744.CrossRefGoogle ScholarPubMed
Selye, H. (1976). Stress in Health and Disease. Boston, MA: Butterworths.Google Scholar
Shelton, R. C. & Miller, A. H. (2011). Inflammation in depression: is adiposity a cause? Dialogues in Clinical Neuroscience, 13: 4153.Google ScholarPubMed
Shih, C. D., Chan, S. H., & Chan, J. Y. (1995). Participation of hypothalamic paraventricular nucleus in locus ceruleus-induced baroreflex suppression in rats. American Journal of Physiology, 269: H4652.Google ScholarPubMed
Slominski, A. T., Zmijewski, M. A., Skobowiat, C., Zbytek, B., Slominski, R. M., & Steketee, J. D. (2012). Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Advances in Anatomy, Embryology, and Cell Biology, 212: v, vii, 1115.Google ScholarPubMed
Sokolov, E. N. (1963). Perception and the Conditioned Reflex. New York: Macmillan.Google Scholar
Spencer, S. J., Emmerzaal, T. L., Kozicz, T., & Andrews, Z. B. (2015). Ghrelin’s role in the hypothalamic–pituitary–adrenal axis stress response: implications for mood disorders. Biological Psychiatry, 78: 1927.CrossRefGoogle ScholarPubMed
Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48: 258264.CrossRefGoogle ScholarPubMed
Steinberg, B. E., Tracey, K. J., & Slutsky, A. S. (2014). Bacteria and the neural code. New England Journal of Medicine, 371: 21312133.CrossRefGoogle ScholarPubMed
Sterling, P. (2004). Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In Schulkin, J. (ed.), Allostasis, Homeostasis, and the Costs of Physiological Adaptation (pp. 1764). Cambridge University Press.CrossRefGoogle Scholar
Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 515.CrossRefGoogle ScholarPubMed
Sterling, P. & Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (eds.), Handbook of Life Stress, Cognition and Health (pp. 629649). New York: John Wiley.Google Scholar
Stern, R. M. & Sison, C. E. E. (1990). Response patterning. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social, and Inferential Elements (pp. 193216). Cambridge University Press.Google Scholar
Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A., & Cleare, A. J. (2015). Inflammation and clinical response to treatment in depression: a meta-analysis. European Neuropsychopharmacology, 25: 15321543.CrossRefGoogle ScholarPubMed
Sved, A. F., Cano, G., & Card, J. P. (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clinical and Experimental Pharmacology & Physiology, 28: 115119.CrossRefGoogle ScholarPubMed
Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107: 411429.CrossRefGoogle Scholar
Thayer, J. F. & Fischer, J. E. (2009). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. Journal of Internal Medicine, 265: 439447.CrossRefGoogle ScholarPubMed
Uchino, B. N., Cacioppo, J. T., & Kiecolt-Glaser, J. K. (1996). The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychological Bulletin, 119: 488531.CrossRefGoogle Scholar
Ulrich-Lai, Y. M. & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10: 397409.CrossRefGoogle ScholarPubMed
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.CrossRefGoogle ScholarPubMed
Van Roon, A. M., Mulder, L. J. M., Veldman, J. B. P., & Mulder, G. (1995). Beat-to-beat blood-pressure measurements applied in studies on mental workload. Homeostasis in Health and Disease, 36: 316324.Google Scholar
Vingerhoets, A. J. (1985). The role of the parasympathetic division of the autonomic nervous system in stress and the emotions. International Journal of Psychosomatics, 32: 2834.Google ScholarPubMed
Vingerhoets, A. J., Ratliff-Crain, J., Jabaaij, L., Menges, L. J., & Baum, A. (1996). Self-reported stressors, symptom complaints and psychobiological functioning: I. Cardiovascular stress reactivity. Journal of Psychosomatic Research, 40: 177190.CrossRefGoogle ScholarPubMed
Vrijkotte, T. G., van den Born, B. J., Hoekstra, C. M., Gademan, M. G., van Eijsden, M., de Rooij, S. R., & Twickler, M. (2015). Cardiac autonomic nervous system activation and metabolic profile in young children: the ABCD study. PLoS One, 10: e0138302.CrossRefGoogle ScholarPubMed
Watson, D. & Pennebaker, J. W. (1989). Health complaints, stress, and distress: exploring the central role of negative affectivity. Psychological Review, 96: 234254.CrossRefGoogle ScholarPubMed
Weiner, H. (1992). Perturbing the Organism: The Biology of Stressful Experience. University of Chicago Press.Google Scholar
Wenger, M. A. (1941). The measurement of individual differences in autonomic balance. Psychosomatic Medicine, 3: 427434.CrossRefGoogle Scholar
Werner, J. (1988). Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. Pharmacology & Therapeutics, 37: 123.CrossRefGoogle ScholarPubMed
Wheaton, B. & Montazer, S. (2009). Stressors, stress, and distress. In Scheid, T. L. & Brown, T. N. (eds.), A Handbook for the Study of Mental Health: Social Contexts, Theories, and Systems, 2nd edn. (pp. 171199). Cambridge University Press.CrossRefGoogle Scholar
Winsky-Sommerer, R., Boutrel, B., & de Lecea, L. (2005). Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Molecular Neurobiology, 32: 285294.CrossRefGoogle ScholarPubMed
Wirtz, P. H., Ehlert, U., Emini, L., & Suter, T. (2008). Higher body mass index (BMI) is associated with reduced glucocorticoid inhibition of inflammatory cytokine production following acute psychosocial stress in men. Psychoneuroendocrinology, 33: 11021110.CrossRefGoogle ScholarPubMed
Zigman, J. M., Bouret, S. G., & Andrews, Z. B. (2016). Obesity impairs the action of the neuroendocrine Ghrelin system. Trends in Endocrinology and Metabolism, 27: 5463.CrossRefGoogle ScholarPubMed
2
Cited by