Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-nqqt6 Total loading time: 0.5 Render date: 2022-07-02T09:35:12.550Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

2 - Object Concepts and Action

Published online by Cambridge University Press:  22 July 2009

Anna M. Borghi
Affiliation:
University of Bologna, Bologna, Italy
Diane Pecher
Affiliation:
Erasmus Universiteit Rotterdam
Rolf A. Zwaan
Affiliation:
Florida State University
Get access

Summary

Successful interaction with objects in the environment is the precondition for our survival and for the success of our attempts to improve life by using artifacts and technologies to transform our environment. Our ability to interact appropriately with objects depends on the capacity, fundamental for human beings, for categorizing objects and storing information about them, thus forming concepts, and on the capacity to associate concepts with names. Concepts serve as a kind of “mental glue” that “ties our past experiences to our present interactions with the world” (Murphy, 2002). These concepts are the cognitive and mental aspects of categories (Barsalou, Simmons, Barbey, & Wilson, 2003).

The generally accepted view sees concepts as being made of propositional symbols related arbitrarily to their referents. This implies that there exists a process by which sensorimotor experience is translated into amodal symbols. By proposing that concepts are, rather, grounded in sensorimotor activity, many authors have shown the limitations of this view (Barsalou, 1999; Harnad, 1990; Thelen & Smith, 1994). According to Barsalou (1999), concepts are perceptual symbols – i.e., recordings of the neural activation that arises during perception – arranged as distributed systems or “simulators.” Once we have a simulator it is possible to activate simulations, which consist in the reenactment of a part of the content of the simulator.

This view presupposes a close relationship among perception, action, and cognition.

Type
Chapter
Information
Grounding Cognition
The Role of Perception and Action in Memory, Language, and Thinking
, pp. 8 - 34
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allport, D. A. (1985). Distributed memory, modular subsystems, and dysphasia. In S. K. Newman, R. Epstein (Eds.), Current Perspectives in Dysphasia (pp. 32–60). Edinburgh: Churchill Livingstone
Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition 73, 247–264CrossRefGoogle ScholarPubMed
Barsalou, L. W. (1987). The instability of graded structure, implications for the nature of concepts. In U. Neisser (Ed.), Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization (pp. 101–140). Cambridge, UK: Cambridge University Press
Barsalou L. W. (1991). Deriving categories to achieve goals. In G. H. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (vol. 27, pp. 1–64). San Diego, CA: Academic PressCrossRef
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral & Brain Sciences 22, 577–609Google ScholarPubMed
Barsalou, L. W. (2003). Situated Simulation in the Human Conceptual System. Language and Cognitive Processes, 18, 513–562CrossRefGoogle Scholar
Barsalou, L. W., & Borghi, A. M. (2004). The MEW theory of knowledge: Evidence from concepts for settings, events, and situations
Barsalou, L. W., Simmons, W. K., Barbey, A. K. & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Science 7, 84–91CrossRefGoogle ScholarPubMed
Bekkering, H., & Neggers, S. W. (2002). Visual search is modulated by action intentions. Psychological Science 13, 370–374CrossRefGoogle ScholarPubMed
Berthoz, A. (1997). Le sens du movement. Paris: Odile Jacob
Borghi, A. M. (2004). Objects, concepts, and action: Extracting affordances from objects' parts. Acta Psychologica 115, 1, 69–96CrossRefGoogle Scholar
Borghi, A. M., & Barsalou, L. W. (2002). Perspectives in the conceptualization of categories
Borghi, A. M., & Caramelli, N. (2001). Taxonomic relations and cognitive economy in conceptual organization. In J. D. Moore & K. Stenning (Eds.), Proceedings of the 23rd Meeting of the Cognitive Science Society (pp. 98–103). London: Erlbaum
Borghi, A. M., & Caramelli, N. (2003). Situation bounded conceptual organization in children: From action to spatial relations. Cognitive Development 18, 1, 49–60Google Scholar
Borghi, A. M., Caramelli, N., & Setti, A. (2004). Conceptual information on objects' location
Borghi, A. M., Di Ferdinando, A., & Parisi, D. (2002). The role of perception and action in object categorization. In J. A. Bullinaria & W. Lowe (Eds.), Connectionist Models of Cognition and Perception (pp. 40–50). Singapore: World ScientificCrossRef
Borghi, A. M., Glenberg, A. M., & Kaschak, M. P. (in press). Putting words in perspective. Memory & Cognition
Boroditsky, L., & Ramscar, M. (2002). The roles of body and mind in abstract thought. Psychological Science 13, 185–189CrossRefGoogle ScholarPubMed
Bub, D. N., Masson, M. E. J., & Bukach, C. M. (2003). Gesturing and naming: The use of functional knowledge in object identification. Psychological Science 14, 467–472CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Schwartz, M. F., & Carew, T. G. (1997). The role of semantic memory in object use. Cognitive Neuropsychology 14, 219–254CrossRefGoogle Scholar
Buxbaum, L. J., Sirigu, A., Schwartz, M. F., & Klatzky, R. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia 41, 1091–1113CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Veramonti, T., & Schwartz, M. F. (2000). Function and manipulation tool knowledge in apraxia: Knowing “what for” but not “how.”Neurocase 6, 83–97Google Scholar
Chaigneau, S. E., & Barsalou, L. W. (in press). The role of function in categories. Theoria et Historia Scientiarum
Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Filip, H., & Carlson, G. N. (2002). Circumscribing referential domains during real-time language comprehension. Journal of Memory and Language 47, 30–49CrossRefGoogle Scholar
Clark, A. (1997). Being There. Cambridge, MA: MIT
Craighero, L., Fadiga, L., Rizzolatti, G., & Umilta, C. (1999). Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance 25, 1673–1692Google ScholarPubMed
Creem, S. H., & Proffitt, D. R. (2001). Grasping objects by their handles: A necessary interaction between perception and action. Journal of Experimental Psychology: Human Perception and Performance 27, 1, 218–228Google Scholar
Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research 77, 45–52CrossRefGoogle ScholarPubMed
Duncker, K. (1945). On problem solving. Psychological Monographs 58, 5, 270Google Scholar
Ellis, R., & Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology 91, 451–471CrossRefGoogle ScholarPubMed
Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. (2000). Visuomotor neurons: Ambiguity of the discharge or “motor” perception?International Journal of Psychophysiology 35, 165–177CrossRefGoogle ScholarPubMed
Farne, A., & Ladavas, E. (2000). Dynamic size-change of hand peripersonal space following tool use. Neuroreport 11, 1–5Google ScholarPubMed
Gerlach, C., Law, I., & Paulson, O. B. (2002). When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects. Journal of Cognitive Neuroscience 14, 1230–1239CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin
Glenberg, A. M. (1997). What memory is for. Behavioral & Brain Sciences 20, 1–55Google ScholarPubMed
Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review 9, 558–565CrossRefGoogle ScholarPubMed
Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: a comparison of high dimensional and embodied theories of meaning. Journal of Memory and Language 43, 379–401CrossRefGoogle Scholar
Harnad, S. (1990). The symbol grounding problem. Physica D 42, 335–346CrossRefGoogle Scholar
Hirose, N. (2001). An ecological approach to embodiment and cognition. Cognitive Systems Research 3, 289–299Google Scholar
Iachini, T., & Borghi, A. M. (2004). Conceptualization and sensorimotor interaction with objects
Jeannerod, M. (1994). Object oriented action: Insights into the reach grasp movement. In K. M. B. Bennet & U. Castiello (Eds.), Insights into the Reach to Grasp Movement (pp. 3–15). Amsterdam: Elsevier
Jeannerod, M. (1997). The cognitive neuroscience of action. Cambridge, MA: Blackwell
Jeannerod, M., & Frak, V. (1999). Mental imaging of motor activity in humans. Current Opinion in Neurobiology 9, 735–739CrossRefGoogle ScholarPubMed
Keil, F. (1989). Concepts, Kinds, and Cognitive Development. Cambridge, MA: MIT
Kellenbach, M. L., Brett, M., & Patterson, K. (2003). The importance of manipulability and action in tool representation. Journal of Cognitive Neuroscience 15, 30–46CrossRefGoogle ScholarPubMed
Klatzky, R. L., McCloskey, B. P., Doherty, S. & Pellegrino, J. W. (1987). Knowledge about hand shaping and knowledge about objects. Journal of Motor Behavior 19, 187–213CrossRefGoogle ScholarPubMed
Klatzky, R. L., Pellegrino, J. W., McCloskey, B. P. & Doherty, S. (1989). Can you squeeze a tomato? The role of motor representations in semantic sensibility judgments. Journal of Memory and Language 28, 56–77CrossRefGoogle Scholar
Landau, B., Smith, L., & Jones, S. (1998). Object shape, object function, and object name. Journal of Memory and Language 38, 1–27Google Scholar
Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults' concepts. Journal of Experimental Psychology: General 130, 1, 3–28CrossRefGoogle Scholar
Magniè, M. N., Ferreira, C. T., Giuliano, B., & Poncet, M. (1999). Category specificity in object agnosia: Preservation of sensorimotor experiences related to object. Neuropsychologia 37, 67–74Google Scholar
Mahon, B. Z., & Caramazza, A. (in press). The organization of conceptual knowledge in the brain: Living kinds and artifacts. In E. Margolis & S. Laurence (Eds.), Creations of the mind: Essays on artifacts and their representation. Oxford: Oxford University Press
Mandler, J. M. (1992). How to build a baby, II: Conceptual primitives. Psychological Review 99, 587–604CrossRefGoogle ScholarPubMed
Mareschal, D., & Johnson, M. H. (2003). The “what” and “where” of object representations in infancy. Cognition 88, 259–276CrossRefGoogle Scholar
Martin, A., Ungerleider, L. G. & Haxby, J. V. (2001). Category Specificity and the brain: The sensory-motor model of semantic representations of objects. In M. S. Gazzaniga M. S. (Ed.), The Cognitive Neurosciences, 2nd edition. Cambridge, MA: MIT
Martin, A., Wiggs, C. L, Ungerleider, L. G., & Haxby, G. V. (1996). Neural correlates of category specific knowledge. Nature 379, 649–652CrossRefGoogle ScholarPubMed
Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press
Murphy, G. L. (2002). The Big Book of Concepts. Cambridge, MA: MIT
Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2003). Verifying conceptual properties in different modalities produces switching costs. Psychological Science 14, 119–124CrossRefGoogle ScholarPubMed
Phillips, J. A., Humphreys, G. W., Noppeney, U., & Price, K. J. (2002). The neural substrates of action retrieval: An examination of semantic and visual routes to action. Visual Cognition 9, 662–684CrossRefGoogle Scholar
Phillips, J. C., & Ward, R. (2002). S-R correspondence effects of irrelevant visual affordance: Time course and specificity of response activation. Visual cognition 9, 540–558CrossRefGoogle Scholar
Pulvermüller, F. (1999). Words in the brain's language. Behavioral and Brain Sciences, 22, 253–336CrossRefGoogle ScholarPubMed
Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences 22, 341–423Google ScholarPubMed
Riddoch, J. M., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsychological evidence for action-based effects on object selection. Nature Neuroscience 6, 82–89CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron 31, 889–901CrossRefGoogle ScholarPubMed
Rumiati, R. I., & Humphreys, G. W. (1998). Recognition by action: Dissociating visual and semantic routes to action in normal observer. Journal of Experimental Psychology: Human Perception and Performance 24, 631–647Google Scholar
Setti, A., & Borghi, A. M. (2003). Information about motion in concepts of different ontological kinds. In F. Schmalhofer, R. M. Young, & F. Katz (Eds.), Proceedings of the First Meeting of the European Society of Cognitive Science, Osnabrück 2003 (p. 438). London: Erlbaum
Simmons, W. K., Pecher, D., Hamann, S. B., Zeelenberg, R. & Barsalou, L. W. (2003). fMRI evidence for modality-specific processing of conceptual knowledge on six modalities. Meeting of the Society for Cognitive Neuroscience, New York
Sirigu, A., Duhamel, J. R., & Poncet, M. (1991). The role of sensorimotor experience in object recognition. A case of multimodal agnosia. Brain 114, 2555–2573CrossRefGoogle ScholarPubMed
Sloman, S. A., Love, B. C., & Ahn, W. (1998). Feature centrality and conceptual coherence. Cognitive Science 22, 189–228CrossRefGoogle Scholar
Smith, L. B., & Samuelson, L. L. (1997). Perceiving and Remembering: Category Stability, Variability, and Development. In K. Lamberts & D. Shanks (Eds.), Knowledge, Concepts, and Categories (pp. 161–195). Hove, UK: Psychology Press
Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research 65, 235–241CrossRefGoogle ScholarPubMed
Sternberg, S. (1969). The discovery of processing stages: Extensions of Doder's method. In W. G. Koster (Ed.), Attention and Performance II. Amsterdam: North-Holland Publishing Company
Thelen, E., & Smith, L. B. (1994). A Dynamic Systems Approach to the Development of Cognition and Action. Cambridge, MA: MIT
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance 24 3, 830–846Google ScholarPubMed
Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition 8, 769–800CrossRefGoogle Scholar
Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General 113, 169–193CrossRefGoogle ScholarPubMed
Vogt, S., Taylor, P., & Hopkins, B. (2003). Visuomotor priming by pictures of hand pictures: Perspective matters. Neuropsychologia 41, 941–951CrossRefGoogle ScholarPubMed
Ward, R. (2002). Independence and integration of perception and action: An introduction. Visual Cognition 9, 385–391CrossRefGoogle Scholar
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review 9, 625–636CrossRefGoogle ScholarPubMed
Wing, A. M., Turton, A., & Fraser, C. (1986). Grasp size and accuracy of approach in reaching. Journal of Motor Behaviour 18, 245–260CrossRefGoogle ScholarPubMed
Wu, L. L. & Barsalou, L. W. (2001). Grounding concepts in perceptual simulation: I: Evidence from property generation
Zwaan, R., Stanfield, R. A., & Yaxley, R. H. (2002). Do language comprehenders routinely represent the shapes of objects?Psychological Science 13, 168–171CrossRefGoogle Scholar
Zwaan, R. A., & Yaxley, R. H. (2003). Spatial iconicity affects semantic-relatedness judgments. Psychonomic Bulletin and Review, 10, 954–958CrossRefGoogle ScholarPubMed
29
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×