Skip to main content Accessibility help
Hostname: page-component-797576ffbb-gvrqt Total loading time: 0 Render date: 2023-12-03T21:59:39.197Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false


Published online by Cambridge University Press:  21 April 2022

Alexander H. Barnett
Flatiron Institute
Charles L. Epstein
Flatiron Institute
Leslie Greengard
Courant Institute
Jeremy Magland
Flatiron Institute
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Geometry of the Phase Retrieval Problem
Graveyard of Algorithms
, pp. 300 - 304
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alaifari, R., Daubechies, I., Grohs, P., and Yin, R. 2019. Stable phase retrieval in infinite dimensions. Found. Comput. Math., 19, 896900. 10.1007%2Fs10208–018-9399-7CrossRefGoogle Scholar
Barmherzig, D. A., Sun, J., Candès, E. J., Lane, T. J., and Li, P.-N. 2019a. Dual-reference design for holographic phase retrieval. 13th International Conference on Sampling Theory and Applications (SampTA), pp. 14.Google Scholar
Barmherzig, D. A., Sun, J., Candès, E. J., Lane, T. J., and Li, P-N. 2019b. Holographic phase retrieval and optimal reference design. Inverse Probl., 35(9), 094001.CrossRefGoogle Scholar
Barnett, A., Epstein, C. L., Greengard, L., and Magland, J. 2020. Geometry of the Phase Retrieval Problem. Inverse Probl., 36(9), 094003.CrossRefGoogle Scholar
Bauschke, H. H. and Borwein, J. M. 1993. On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal., 1(2), 185212.CrossRefGoogle Scholar
Bauschke, H. H., and Borwein, J. M. 1996. On projection algorithms for solving convex feasibility problems. SIAM Rev., 38(3), 367426.CrossRefGoogle Scholar
Bauschke, H. H., Combettes, P. L., and Russell, L. D. 2002. Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization. J. Opt. Soc. Am. A, 19, 13341345.CrossRefGoogle ScholarPubMed
Beinert, R. 2017. Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem. Information and Inference: A Journal of the IMA, 6, 213224.Google Scholar
Borwein, J. M. 2012. Maximum entropy and feasibility methods for convex and nonconvex inverse problems. Optimization, 61(1), 133.CrossRefGoogle Scholar
Borwein, J. M., and Sims, B. 2011. The Douglas–Rachford algorithm in the absence of convexity. In Bauschke, H., Burachik, R., Combettes, P., et al. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93109. Springer Optimization and Its Applications, Vol. 49. New York: Springer.CrossRefGoogle Scholar
Bruck, Yu. M., and Sodin, L. G. 1979. On the ambiguity of the image reconstruction problem. Opt. Commun., 30, 304308.CrossRefGoogle Scholar
Cahill, J., Casazza, P. G., and Daubechies, I. 2016. Phase retrieval in infinite-dimensional Hilbert spaces. Trans. Amer. Math. Soc., Series B, 3, 6376.Google Scholar
Candès, E. J., Eldar, Y. C., Strohmer, T., and Voroninski, V. 2015a. Phase retrieval via matrix completion. SIAM Rev, 57, 225251.CrossRefGoogle Scholar
Candès, E. J., Li, X., and Soltanolkotabi, M. 2015b. Phase retrieval via Wirtinger flow. IEEE Trans. Information Theory, 61(4), 19852007.CrossRefGoogle Scholar
Chapman, H. N., Barty, A., Marchesini, S., et al. 2006. High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A, 23, 11791200.CrossRefGoogle ScholarPubMed
Conca, A., Edidin, D., Hering, M., and Vinzant, C. 2015. An algebraic characterization of injectivity in phase retrieval. Appl. Comput. Harmon. A., 38(2), 346356.CrossRefGoogle Scholar
Crimmins, T. R. and Fienup, J. R. 1983. Uniqueness of phase retrieval for functions with sufficiently disconnected support. J. Opt. Soc. Am., 73, 218221.CrossRefGoogle Scholar
Deutsch, F. 1985. Rate of convergence of the method of alternating projections. In Brosowski, B. and Deutsch, F. (eds) Parametric Optimization and Approximation (Oberwolfach, 1983), pp. 96107. Internat. Schriftenreihe Numer. Math., Vol. 72. Basel: Birkhäuser.Google Scholar
Dierolf, M., Menzel, A., Thibault, P., et al. 2010. Ptychographic X-ray computed tomography at the nanoscale. Nature, 467, 436439.CrossRefGoogle ScholarPubMed
Elser, V. 2003. Phase retrieval by iterated projections. JOSA A, 20(1), 4055.CrossRefGoogle ScholarPubMed
Elser, V., Lan, , T-Y., and Bendory, T. 2018. Benchmark problems for phase retrieval. SIAM J. Imaging Sci., 11(4), 24292455.CrossRefGoogle Scholar
Elser, V., Rankenburg, I., and Thibault, P. 2007. Searching with iterated maps. P. Natl. Acad. Sci. USA, 104(2), 418423.CrossRefGoogle ScholarPubMed
Epstein, C. L. 2005. How well does the finite Fourier transform approximate the Fourier transform? Comm. Pure and App. Math., 58, 14211435.CrossRefGoogle Scholar
Epstein, C. L. and Schotland, J. 2008. The bad truth about Laplace’s transform. SIAM Review, 50(3), 504520.CrossRefGoogle Scholar
Fienup, J. R. 1978. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett., 3, 2729.CrossRefGoogle ScholarPubMed
Fienup, J. R. 1982. Phase retrieval algorithms: A comparison. Appl. Opt., 21, 27582769.CrossRefGoogle ScholarPubMed
Fienup, J. R. 1987. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A, 4, 118123.CrossRefGoogle Scholar
Fienup, J. R. and Kowalczyk, A. M. 1990. Phase retrieval for a complex-valued object by using a low-resolution image. J. Opt. Soc. Am. A, 7(3), 450458.CrossRefGoogle Scholar
Fienup, J. R. and Wackerman, C. C. 1986. Phase-retrieval stagnation problems and solutions. J. Opt. Soc. Am. A, 3, 18971907.CrossRefGoogle Scholar
Fienup, J. R., Crimmins, T. R. and Holsztynski, W. 1982. Reconstruction of the support of an object from the support of its autocorrelation. J. Opt. Soc. Am., 72, 610624.CrossRefGoogle Scholar
Fienup, J. R., Crimmins, T. R. and Thelen, B. J. 1990. Improved bounds on object support from autocorrelation support and application to phase retrieval. J. Opt. Soc. Am. A, 7(1), 313.Google Scholar
Gerchberg, R. W. and Saxton, W. O. 1972. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik, 35(2), 237246.Google Scholar
Gonsalves, R. A. 1976. Phase retrieval from modulus data. J. Opt. Soc. Am., 66(9), 961964.CrossRefGoogle Scholar
Gravel, S. and Elser, V. 2008. Divide and concur: A general approach to constraint satisfaction. Phys. Rev. E, 78(3), 036706–5.CrossRefGoogle ScholarPubMed
Griffiths, P. and Harris, J. 1978. Principles of Algebraic Geometry. New York: Wiley-Interscience.Google Scholar
Guizar-Sicairos, M. and Fienup, J. R. 2007. Holography with extended reference by autocorrelation linear differential operation. Opt. Express, 15(26), 1759217612.CrossRefGoogle ScholarPubMed
Guizar-Sicairos, M. and Fienup, J. R. 2008. Direct image reconstruction from a Fourier intensity pattern using HERALDO. Opt. Lett., 33(22), 26682670.CrossRefGoogle ScholarPubMed
Guizar-Sicairos, M., Johnson, I., Diaz, A., et al. 2014. High-throughput ptychography using Eiger: Scanning X-ray nano-imaging of extended regions. Opt. Express, 22(12), 1485914870.CrossRefGoogle ScholarPubMed
Hayes, M. H. 1982. The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform. IEEE Trans. on Acoustics, Speech and Sig. Proc., 30, 140153.Google Scholar
Hesse, R. and Luke, D. R. 2013. Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optimiz., 23(4), 23972419.CrossRefGoogle Scholar
Huang, K., and Eldar, Y. C. 2017. Phase retrieval using a conjugate symmetric reference. International Conference on Sampling Theory and Applications (SampTA), Vol. 134, pp. 331335CrossRefGoogle Scholar
Huang, K., Eldar, Y. C., and Sidiropoulos, N. D. 2016. Phase retrieval from 1D Fourier measurements: Convexity, uniqueness, and algorithms. IEEE T. Signal Proces., 64(23), 61056117.CrossRefGoogle Scholar
Jacobsen, C. 2019. X-ray Microscopy, 1st ed. Advances in Microscopy and Microanalysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
John, F. 1960. Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Commun. Pur. App. Math., 13(4), 551585.CrossRefGoogle Scholar
Katznelson, Y. 1968. An Introduction to Harmonic Analysis. New York-London-Sydney: John Wiley & Sons.Google Scholar
Lane, R. G. 1991. Phase retrieval using conjugate gradient minimization. J. Mod. Optic., 38(9), 17971813.CrossRefGoogle Scholar
Lee, J. M. 2018. Introduction to Riemannian Manifolds, 2nd ed. Graduate Texts in Mathematics, Vol. 176. New York: Springer.CrossRefGoogle Scholar
Leshem, B., Raz, O., Jaffe, A., and Nadler, B. 2018. The discrete sign problem: Uniqueness, recovery algorithms and phase retrieval applications. Appl. Comput. Harmon. A., 45(3), 463485.CrossRefGoogle Scholar
Levin, E. and Bendory, T. 2019. A note on Douglas-Rachford, subgradients, and phase retrieval. arXiv: abs/1911.13179Google Scholar
Li, G. and Pong, T. K. 2016. Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program., 159(1), 371401.CrossRefGoogle Scholar
Lindstrom, S. B. and Sims, B. 2021. Survey: Sixty years of Douglas–Rachford. J. Aust. Math. Soc., 110(3), 333370.CrossRefGoogle Scholar
Luke, D. R. 2005. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl., 21(1), 3750.CrossRefGoogle Scholar
Luke, D. R. and Martins, A. L. 2020. Convergence analysis of iterative algorithms for phase retrieval. In Salditt, T., Egner, A., and Luke, D. R. (eds.) Nanoscale Photonic Imaging 583–601. Topics in Applied Physics, Vol. 134. Cham: Springer.Google Scholar
Marchesini, S. 2007. Phase retrieval and saddle-point optimization. J. Opt. Soc. Am. A, 24(10), 32893296.CrossRefGoogle ScholarPubMed
Marchesini, S., Tu, Y.-C., and Wu, H.-T. 2016. Alternating projection, ptychographic imaging and phase synchronization. Appl. Comput. Harmon. A., 41(3), 815851.CrossRefGoogle Scholar
Maretzke, S. and Hohage, T. 2016. Pinhole-CDI: Unique and Deterministic Phase Retrieval via Beam-Confinement. coherence 2016-06 smaretzke.pdf.Google Scholar
Maretzke, S. and Hohage, T. 2017. Stability estimates for linearized near-field phase retrieval in X-ray phase constrast imaging. SIAM J. Appl. Math., 77, 384408.CrossRefGoogle Scholar
Milnor, J. 1963. Morse Theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Nakajima, N. 1995. Phase Retrieval Using the Properties of Entire Functions. Advances in Imaging and Electron Physics, Vol. 93. New York: Elsevier.Google Scholar
Nakajima, N. and Asakura, T. 1985. A new approach to two-dimensional phase retrieval. Optica Acta: International Journal of Optics, 32(6), 647658.CrossRefGoogle Scholar
Nakajima, N. and Asakura, T. 1986. Two-dimensional phase retrieval using the logarithmic Hilbert transform and the estimation technique of zero information. J. Phys. D: Appl. Phys., 19(3), 319331.CrossRefGoogle Scholar
Osherovich, E. 2011. Numerical methods for phase retrieval. arXiv:1203.4756v1 [physics.optics]. PhD Thesis, Technion.Google Scholar
Pfeiffer, F. 2018. X-ray ptychography. Nat. Photonics, 12, 917.CrossRefGoogle Scholar
Pham, M., Yin, P., Rana, A., Osher, S., and Miao, J. 2019. Generalized proximal smoothing for phase retrieval. Microsc. Microanal., 25(S2), 118119.CrossRefGoogle Scholar
Phan, H. M. 2016. Linear convergence of the Douglas-Rachford method for two closed sets. Optimization, 65(2), 369385.CrossRefGoogle Scholar
Podorov, S. G., Pavlov, K. M., and Paganin, D. M. 2007. A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. Opt. Express, 15(16), 99549962.CrossRefGoogle ScholarPubMed
Rodenburg, J. M., Hurst, A. C., Cullis, A. G., et al. 2007. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett., 98(Jan), 034801.CrossRefGoogle ScholarPubMed
Sanz, J. L. C. 1985. Mathematical considerations for the problem of Fourier transform phase retrieval from magnitude. SIAM J. Appl. Math., 45, 651664.CrossRefGoogle Scholar
Seldin, J. H. and Fienup, J. R. 1990. Numerical investigation of the uniqueness of phase retrieval. J. Opt. Soc. Am. A, 7(3), 412427.CrossRefGoogle Scholar
Shechtman, Y., Eldar, Y. C., Szameit, A., and Segev, M. 2011. Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing. Opt. Express, 19(16), 1480714822.CrossRefGoogle ScholarPubMed
Sidorenko, P., Kfir, O., Shechtman, Y., et al. 2015. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects. Nat. Commun., 6(1), 8209.CrossRefGoogle ScholarPubMed
Spivak, M. 1965. Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus. New York and Amsterdam: W. A. Benjamin, Inc.Google Scholar
Spivak, M. 1979. A Comprehensive Introduction to Differential Geometry. Vol. I. 2nd ed. Wilmington, CA: Publish or Perish, Inc.Google Scholar
Stein, E. M. and Shakarchi, R. 2003a. Complex Analysis. Princeton Lectures in Analysis, Vol. 2. Princeton, NJ: Princeton University Press.Google Scholar
Stein, E. M. and Shakarchi, R. 2003b. Fourier Analysis. Princeton Lectures in Analysis, Vol. 1. Princeton, NJ: Princeton University Press.Google Scholar
Taylor, M. E. 1996. Partial Differential Equations. II. Applied Mathematical Sciences, Vol. 116. New York: Springer-Verlag.CrossRefGoogle Scholar
Thibault, P., Dierolf, M., Menzel, A., et al. 2008. High-resolution scanning X-ray diffraction microscopy. Science, 321, 379382.CrossRefGoogle ScholarPubMed
von Neumann, J. 1950. Functional Operators, Vol. II. Reprint of 1933 lecture notes. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Watson, G. N. 1922. A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press.Google Scholar
Weinberger, S. 2004. On the topological social choice model. J. Econom. Theory, 115(2), 377384.CrossRefGoogle Scholar
Wu, S.-P., Boyd, S. P., and Vandenberghe, L. 1996. FIR filter design via semidefinite programming and spectral factorization. IEEE Conference on Decision and Control, 1, 271276.Google Scholar
Yasir, P. A. A. and Ivan, J. S. 2016. Phase estimation using phase gradients obtained through Hilbert transform. J. Opt. Soc. Am. A, 33(10), 20102019.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats