Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-nzrtw Total loading time: 0.498 Render date: 2022-11-30T05:36:28.273Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

3 - Human prefrontal cortex: processes and representations

Published online by Cambridge University Press:  11 September 2009

Jarl Risberg
Affiliation:
Lunds Universitet, Sweden
Jordan Grafman
Affiliation:
National Institute of Health, Bethesda, MD, USA
Get access

Summary

Introduction

The purpose of this chapter is to familiarize you with a variety of contemporary approaches that place the function(s) of the prefrontal cortex in a cognitive context. Obviously, without a context, interpreting findings from single research studies can be difficult. In addition, without a context, it can be difficult to know whether a specific line of research is clearly verifying or rejecting a proposed prefrontal cortex (PFC) function. Finally, as with posterior cerebral cortex functions, it is much easier to see how a particular cognitive component functions within a system if you have an overall context to place that component in. The broad cognitive context that needs to be articulated is one that explains the cognitive commonality between, and the neural mechanisms shared by, higher cognitive functions. Through evolution, humans have acquired “higher” cognitive skills such as language, abstract reasoning, planning, and complex social behavior. Evidence from lesion and neuroimaging research indicates that the PFC mediates the key components composing these higher cognitive skills. A number of theories have been proposed for how the PFC might achieve this. Although many of these theories focus on the types of “processes” that the PFC carries out, an alternative point of view emphasizes the nature of long-term representations stored in the PFC. This chapter reviews both of these approaches although I place more weight on the representational approach, partly because it has been dominated by the process approach to date and partly because it is the view I espouse.

Type
Chapter
Information
The Frontal Lobes
Development, Function and Pathology
, pp. 69 - 91
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allain, P., Galle, D., Etcharry-Brouyx, F., Aubin, G. & Emile, J. (1999). Mental representation of knowledge following frontal-lobe lesion: Dissociations on tasks using scripts. Journal of Clinical and Experimental Neuropsychology, 21, 643–65.CrossRefGoogle ScholarPubMed
Andersson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. (1999 ). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature, 2, 1032–7.Google Scholar
Asaad, W. F., Rainer, G. & Miller, E. K. (2000). Task-specific neural activity in the primate prefrontal cortex. Journal of Neurophysiology, 84, 451–9.CrossRefGoogle ScholarPubMed
Averbeck, B. B., Chafee, M. V., Crowe, D. A. & Georgopoulos, A. P. (2002). Parallel processing of serial movements in prefrontal cortex. Proceedings of the National Academy of Science, 99, 13172–7.CrossRefGoogle ScholarPubMed
Baker, S. C., Rogers, R. D., Owen, A. M., et al. (1996). Neural systems engaged by planning: A PET study of the Tower of London Task. Neuropsychologia, 34, 515–26.CrossRefGoogle ScholarPubMed
Banyas, C. A. (1999). Evolution and phylogenetic history of the frontal lobes. In The Human Frontal Lobes: Functions and Disorders, ed. Miller, B. L. and Cummings, J. L.. pp. 83–106. New York: Guilford Press.Google Scholar
Barrash, J., Tranel, D. & Anderson, S. W. (2000). Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Developmental Neuropsychology, 18, 355–81.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H. & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–5.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215–25.CrossRefGoogle ScholarPubMed
Berthoz, S., Armony, J. L., Blair, R. J. & Dolan, R. J. (2002). An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain, 125, 1696–708.CrossRefGoogle ScholarPubMed
Bodner, M., Kroger, J. & Fuster, J. M. (1996). Auditory memory cells in dorsolateral prefrontal cortex. NeuroReport, 7, 1905–8.CrossRefGoogle ScholarPubMed
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–36.CrossRefGoogle ScholarPubMed
Braver, T. S. & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15, 523–36.CrossRefGoogle ScholarPubMed
Buckner, R. L., Kelley, W. M. & Petersen, S. E. (1999). Frontal cortex contributes to human memory formation. Nature Neuroscience, 2, 311–14.CrossRefGoogle ScholarPubMed
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, , , C. J. & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301–11.CrossRefGoogle ScholarPubMed
Burgess, P. W., Gilbert, S. J., Okuda, J. & Simons, J. S. (2006). Rostral prefrontal brain regions (area 10): A gateway between inner thought and the external world? In Disorders of Volition, ed. Sebanz, N.Prinz, W.. pp. 373–395. Cambridge, MA: MIT Press.Google Scholar
Burgess, P. W. & Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263–73.CrossRefGoogle ScholarPubMed
Burgess, P. W., Veitch, E., Lacy Costello, A. & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848–63.CrossRefGoogle ScholarPubMed
Burnod, Y. (1991). Organizational levels of the cerebral cortex: An integrated model. Acta Biotheoretica, 39, 351–61.CrossRefGoogle Scholar
Cabeza, R. & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.CrossRefGoogle ScholarPubMed
Casey, B. J., Thomas, K. M., Welsh, T. F., et al. (2000). Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Science, 97, 8728–33.CrossRefGoogle ScholarPubMed
Chang, J. Y., Chen, L., Lou, F., Shi, L. H. & Woodward, D. J. (2002). Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: Ensemble recording in freely moving rats. Experimental Brain Research, 142, 67–80.Google ScholarPubMed
Colvin, M. K., Dunbar, K. & Grafman, J. (2001). The effects of frontal lobe lesions on goal achievement in the water jug task. Journal of Cognitive Neuroscience, 13, 1129–47.CrossRefGoogle ScholarPubMed
Crofts, H. S., Dalley, J. W., Collins, P., et al. (2001). Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cerebral Cortex, 11, 1015–26.CrossRefGoogle ScholarPubMed
Crozier, S., Sirigu, A., Lehericy, S., et al. (1999). Distinct prefrontal activations in processing sequence at the sentence and script level: An fMRI study. Neuropsychologia, 37, 1469–76.CrossRefGoogle Scholar
Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In Structure and Functions of the Human Prefrontal Cortex, ed. Grafman, J., Holyoak, K. J. and Boller, F.. pp. 1–13. New York, NY: Academy of Sciences.Google Scholar
Damasio, A. R. (1995). On some functions of the human prefrontal cortex. In Structure and Functions of the Human Prefrontal Cortex, ed. Grafman, J., Holyoak, K. J. and Boller, F.. pp. 241–251. New York, NY: Academy of Sciences.Google Scholar
Damasio, A. R. (1998). The somatic marker hypothesis and the possible functions of the prefrontal cortex. In The Prefrontal Cortex: Executive and Cognitive Functions, ed. Roberts, A. C., Robbins, T. W. and Weiskrantz, L.. pp. 1413–1420. Oxford: Oxford University Press.CrossRefGoogle Scholar
Davidson, R. J. & Irwin, W. (2000). Functional MRI in the study of emotion. In Functional MRI, ed. Moonen, C. T. W. and Bandettini, P. A.. pp. 487–499. New York: Springer-Verlag.CrossRefGoogle Scholar
Dimitrov, M., Phipps, M., Zahn, T. & Grafman, J. (1999). A thoroughly modern Gage. Neurocase, 5, 345–54.CrossRefGoogle Scholar
Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820–9.CrossRefGoogle ScholarPubMed
Elliot, R. & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association with hypothesis testing and response selection. NeuroImage, 8, 17–29.CrossRefGoogle Scholar
Elston, G. N. (2000). Pyramidal cells of the frontal lobe: all the more spinous to think with. Journal of Neuroscience, 20, RC95 (1–4).CrossRefGoogle ScholarPubMed
Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–16.CrossRefGoogle ScholarPubMed
Frith, C. D., Friston, K., Liddle, P. F. & Frackowaik, R. S. J. (1991). Willed action and the prefrontal cortex in man: A study with PET. Proceedings of the Royal Society London, B, 244, 241–6.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1997). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Raven Press.Google Scholar
Fuster, J. M. & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173, 652–4.CrossRefGoogle ScholarPubMed
Fuster, J. M., Bodner, M. & Kroger, J. K. (2000). Cross-modal and cross-temporal association in neurons of frontal cortex. Nature, 405, 347–51.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefGoogle ScholarPubMed
Garavan, H., Ross, T. J. & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related fMRI study. Proceedings of the National Academy of Science USA, 96, 8301–6.CrossRefGoogle Scholar
Gehring, W. J. & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–20.CrossRefGoogle ScholarPubMed
Godbout, L. & Doyon, J. (1995). Mental representation of knowledge following frontal-lobe or postrolandic lesions. Neuropsychologia, 33, 1671–96.CrossRefGoogle ScholarPubMed
Godefroy, O. & Rousseaux, M. (1996). Divided and focused attention in patients with lesion of the prefrontal cortex. Brain and Cognition, 30, 155–74.CrossRefGoogle ScholarPubMed
Goel, V. & Grafman, J. (1995). Are the frontal lobes implicated in “planning” functions? Interpreting data from the Tower of Hanoi. Neuropsychologia, 33, 623–42.CrossRefGoogle ScholarPubMed
Goel, V. & Grafman, J. (2000). Role of the right prefrontal cortex in ill-structured planning. Cognitive Neuropsychology, 17, 415–36.CrossRefGoogle ScholarPubMed
Goel, V., Grafman, J., Tajik, J., Gana, S. & Danto, D. (1997). A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain, 120, 1805–22.CrossRefGoogle Scholar
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In Handbook of Physiology: A Critical Comprehensive Presentation of Physiological Knowledge and Concepts, ed. Geiger, S. R.. pp. 374–417. Bethesda, MD: American Physiological Society.Google Scholar
Goldman-Rakic, P. S. (1998). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. In The Prefrontal Cortex: Executive and Cognitive Functions, ed. Roberts, A. C., Robbins, T. W. and Weiskrantz, L.. pp. 87–102. Oxford: Oxford University Press.CrossRefGoogle Scholar
Grafman, J. (2002). The human prefrontal cortex has evolved to represent components of structured event complexes. In Handbook of Neuropsychology. 2nd edn, ed. Grafman, J.. Amsterdam: Elsevier.Google Scholar
Grafman, J., Schwab, K., Warden, D., et al. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology, 46, 1231–8.CrossRefGoogle ScholarPubMed
Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. (1996). Localization of grasp representations in humans by PET: II. Observation compared with imagination. Experimental Brain Research, 112, 103–11.Google Scholar
Guigon, E., Grandguillaum, P., Otto, I., Boutkhil, L. & Burnod, Y. (1994). Neural network models of cortical functions based on the computational properties of the cerebral cortex. Journal of Physiology, 88, 291–308.Google ScholarPubMed
Harrington, D. L., Rao, S. M., Haaland, K. Y., et al. (2000). Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience, 12, 56–77.CrossRefGoogle ScholarPubMed
Helmstaedter, C., Gleibner, U., Zentner, J. & Elger, C. E. (1998). Neuropsychological consequences of epilepsy surgery in frontal lobe epilepsy. Neuropsychologia, 36, 681–9.CrossRefGoogle ScholarPubMed
Jentsch, J. D., Olausson, P., Garza, R. & Taylor, J. R. (2002). Impairments of reversal learning and response perseveration after repeated intermittent cocaine administrations to monkeys. Neuropsychopharmacology, 26, 183–90.CrossRefGoogle ScholarPubMed
Kawasaki, H., Adolphs, R., Kaufman, O., et al. (2001). Single-neuron responses to emotional visual stimuli recorded in the human ventral prefrontal cortex. Nature Neuroscience, 4, 15–16.CrossRefGoogle ScholarPubMed
Klenberg, L., Korkman, M. & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3- to 12-year-old Finnish children. Developmental Neuropsychology, 20, 407–28.CrossRefGoogle ScholarPubMed
Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. (2000). Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proceedings of the National Academy of Science USA, 97, 7651–6.CrossRefGoogle ScholarPubMed
Koechlin, E., Danek, A., Burnod, Y. & Grafman, J. (2002). Medial prefrontal and subcortical mechanisms underlying the acquisition of motor and cognitive action sequences. Neuron, 35, 371–81.CrossRefGoogle ScholarPubMed
Konishi, S., Nakajima, K., Uchida, I., et al. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1, 80–4.CrossRefGoogle ScholarPubMed
Konishi, S., Nakajima, K., Uchida, I., et al. (1999). Common inhibitory mechanisms in the human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 22, 981–91.CrossRefGoogle Scholar
Koski, L. & Petrides, M. (2002). Distractibility after unilateral resections from the frontal and anterior cingulate cortex in humans. Neuropsychologia, 40, 1059–72.CrossRefGoogle ScholarPubMed
Kurata, K. (1994). Information processing for motor control in primate premotor cortex. Behavioural Brain Research, 61, 135–42.CrossRefGoogle ScholarPubMed
Lee, S. S., Wild, K., Hollnagel, C. & Grafman, J. (1999). Selective visual attention in patients with frontal lobe lesions or Parkinson's disease. Neuropsychologia, 37, 595–604.CrossRefGoogle ScholarPubMed
Leung, H. C., Skudlarski, P., Gatenby, J. C., Peterson, B. S. & Gore, J. C. (2000). An event-related functional MRI study of the Stroop color word interference task. Cerebral Cortex, 10, 552–60.CrossRefGoogle ScholarPubMed
Levy, R. & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. Experimental Brain Research, 133, 23–32.CrossRefGoogle ScholarPubMed
Macdonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–8.CrossRefGoogle ScholarPubMed
Masterman, D. L. & Cummings, J. L. (1997). Frontal-subcortical circuits: The anatomic basis of executive, social and motivated behaviors. Journal of Psychopharmacology, 11, 107–14.CrossRefGoogle ScholarPubMed
Menon, V., Adleman, N. E., White, C. D., Glover, G. H. & Reiss, A. L. (2001). Error-related brain activation during a go/nogo response inhibition task. Human Brain Mapping, 12, 131–43.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Moll, J., Oliveira-Souza, R., Bramati, I. E. & Grafman, J. (2002). Functional networks in emotional moral and nonmoral social judgments. NeuroImage, 16, 696–703.CrossRefGoogle ScholarPubMed
Murray, E. A., Bussey, T. J. & Wise, S. P. (2000). Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Experimental Brain Research, 133, 114–29.CrossRefGoogle Scholar
Nichelli, P., Grafman, J., Pietrini, P., et al. (1995). Where the brain appreciates the moral of a story. NeuroReport, 6, 2309–13.CrossRefGoogle Scholar
Norman, D. A. & Shallice, T. (1986). Attention to action. In Consciousness and Self-Regulation, ed. Davidson, R. J., Schwartz, G. E. and Shapiro, D.. pp. 1–18. New York: Plenum Press.CrossRefGoogle Scholar
Northoff, G., Richter, A., Gessner, M., et al. (2000). Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: A combined fMRI/MEG study. Cerebral Cortex, 10, 93–107.CrossRefGoogle ScholarPubMed
O'Scalaidhe, S. P., Wilson, F. A. & Goldman-Rakic, P. S. (1997). Areal segmentation of face-processing neurons in prefrontal cortex. Science, 278, 1135–8.CrossRefGoogle Scholar
Partiot, A., Grafman, J., Sadato, N., Flitman, S. & Wild, K. (1996). Brain activation during script event processing. NeuroReport, 7, 761–6.CrossRefGoogle ScholarPubMed
Partiot, A., Grafman, J., Sadato, N., Wachs, J. & Hallett, M. (1995). Brain activation during the generation of non-emotional and emotional plans. NeuroReport, 6, 1397–400.CrossRefGoogle ScholarPubMed
Paulus, M. P., Hozack, N., Zauscher, B., et al. (2001). Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. NeuroImage, 13, 91–100.CrossRefGoogle Scholar
Rainer, G., Asaad, W. F. & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 277–579.CrossRefGoogle ScholarPubMed
Ramus, S. J. & Eichenbaum, H. (2000). Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. Journal of Neuroscience, 20, 8199–208.CrossRefGoogle ScholarPubMed
Rao, S. C., Rainer, G. & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–4.CrossRefGoogle ScholarPubMed
Rilling, J. K. & Insel, T. R. (1999). The primate neocortex in comparative perpective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223.CrossRefGoogle Scholar
Roberts, A. C. & Wallis, J. D. (2000). Inhibitory control and affective processing in the prefrontal cortex: Neuropsychological studies in the common marmoset. Cerebral Cortex, 10, 252–62.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1996). The orbitofrontal cortex. Philosophical Transactions of the Royal Society of London B, 351, 1433–44.CrossRefGoogle ScholarPubMed
Rubinsztein, J. S., Fletcher, P. C., Rogers, R. D., et al. (2001). Decision-making in mania: A PET study. Brain, 124, 2550–63.CrossRefGoogle ScholarPubMed
Ruchkin, D., Grafman, J., Cameron, K. & Berndt, R. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Sciences, 26, 709–77.CrossRefGoogle ScholarPubMed
Rueckert, L. & Grafman, J. (1996). Sustained attention deficits in patients with right frontal lesions. Neuropsychologia, 34, 953–63.CrossRefGoogle ScholarPubMed
Rugg, M. D. & Wilding, E. L. (2000). Retrieval processing and episodic memory. Trends in Cognitive Sciences, 4, 108–15.CrossRefGoogle ScholarPubMed
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. & Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: a comparative study of area 10. American Journal of Physical Anthropology, 114, 224–41.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Semendeferi, K., Lu, A., Schenker, N. & Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–6.CrossRefGoogle Scholar
Shallice, T. & Burgess, P. (1998). The domain of supervisory processes and the temporal organization of behaviour. In The Prefrontal Cortex: Executive and Cognitive Functions, ed. Roberts, A. C., Robbins, T. W. and Weiskrantz, L.. Oxford: Oxford University Press.CrossRefGoogle Scholar
Sirigu, A., Zalla, T., Pillon, B., et al. (1996). Encoding of sequence and boundaries of scripts following prefrontal lesions. Cortex, 32, 297–310.CrossRefGoogle ScholarPubMed
Stone, V. E., Baron-Cohen, S. & Knight, R. T. (1998). Frontal contributions to theory of mind. Journal of Cognitive Neuroscience, 10, 640–56.CrossRefGoogle ScholarPubMed
Strange, B. A., Henson, R. N. A., Friston, K. J. & Dolan, R. J. (2001). Anterior prefrontal cortex mediates rule learning in humans. Cerebral Cortex, 11, 1040–6.CrossRefGoogle ScholarPubMed
Stuss, D. T., Toth, J. P., Franchi, D., et al. (1999). Dissociation of attentional processes in patients with focal frontal and posterior lesions. Neuropsychologia, 37, 1005–27.CrossRefGoogle ScholarPubMed
Toni, I., Thoennissen, D. & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14, S110–117.CrossRefGoogle ScholarPubMed
Wagner, A. D., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1998). Prefrontal cortex and recognition memory: Functional-MRI evidence for context-dependent retriveval processes. Brain, 121, 1985–2002.CrossRefGoogle ScholarPubMed
Wallis, J. D., Dias, R., Robbins, T. W. & Roberts, A. C. (2001). Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. European Journal of Neuroscience, 13, 1797–808.CrossRefGoogle ScholarPubMed
Williams, J. H. G., Whiten, A., Suddendorf, T. & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25, 287–95.CrossRefGoogle ScholarPubMed
Wilson, F. A. W., O'Scalaidhe, S. P. & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–8.CrossRefGoogle ScholarPubMed
Wood, J. N. & Grafman, J. (2003). Human prefrontal cortex: processing and representational perspectives. Nature Reviews Neuroscience, 4, 139–47.CrossRefGoogle ScholarPubMed
Wood, J. N., Knutson, K. M., & Grafman, J. (2005). Cerebral Cortex. Psychological Structure and Neural Correlates of Event Knowledge, 15(8), 1155–61.Google Scholar
Wood, J. N., Romero, S. G., Makale, M. & Grafman, J. (2003). Category-specific representations of social and nonsocial knowledge in the human prefrontal cortex. Journal of Cognitive Neuroscience, 15, 236–48.CrossRefGoogle ScholarPubMed
Zalla, T., Plassiarti, C., Pillon, B., Grafman, J. & Sirigu, A. (2001). Action planning in a virtual context after prefrontal cortex damage. Neuropsychologia, 39, 759–70.CrossRefGoogle Scholar
Zalla, T., Sirigu, A., Pillon, B., et al. (2000). How patients with Parkinson's disease retrieve and manage cognitive event knowledge. Cortex, 36, 163–79.CrossRefGoogle ScholarPubMed
2
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×