Fetal Therapy
Buy print or eBook
[Opens in a new window] Scientific Basis and Critical Appraisal of Clinical Benefits
Section 2: - Fetal Disease: Pathogenesis and Treatment
Published online by Cambridge University Press: 21 October 2019
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Chapter
- Information
- Fetal TherapyScientific Basis and Critical Appraisal of Clinical Benefits, pp. 91 - 560Publisher: Cambridge University PressPrint publication year: 2020
References
References
Bowman, JM, Pollock, JM, Penston, LE. Fetomaternal transplacental hemorrhage during pregnancy and after delivery. Vox Sang. 1986; 51: 117–21.CrossRefGoogle ScholarPubMed
Nederlandse Vereniging voor Obstetrie & Gynaecologie (NVOG) (2009). Erytrocytenimmunisatie en zwangerschap: Versie 2.1. https://www.nvog.nl/wp-content/uploads/2018/03/Erytrocytenimmunisatie-en-zwangerschap_.pdfGoogle Scholar
Committee on Practice Bulletins-Obstetrics. Practice Bulletin No. 181: Prevention of Rh D Alloimmunization. Obstet Gynecol. 2017; 130: e57–70.Google Scholar
Qureshi, H, Massey, E, Kirwan, D, Davies, T, Robson, S, White, J, Jones, J, Allard, S, British Society for Haematology. BCSH guideline for the use of anti-D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. Transfus Med. 2014; 24: 8–20.Google Scholar
Levine, P. Serological factors as possible causes in spontaneous abortions. J Hered. 1943; 34: 71–80.Google Scholar
Zwiers, C, Koelewijn, JM, Vermij, L, van Sambeeck, J, Oepkes, D, de Haas, M, van der Schoot, CE. ABO incompatibility and RhIG immunoprophylaxis protect against non-D alloimmunization by pregnancy. Transfusion. 2018; 58: 1611–17.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists (2014). Green-top Guideline 65: The Management of Women with Red Cell Antibodies during Pregnancy. https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg65Google Scholar
ACOG. Practice Bulletin No. 192: Management of alloimmunization during pregnancy. Obstet Gynecol. 2018; 131: e82–90.Google Scholar
Rijksinstituut voor Volksgezondheid en Milieu (RIVM) (2018). Draaiboek prenatale screening infectieziekten en erytrocytenimmunisatie: Versie 6.0. https://www.rivm.nl/documenten/draaiboek-prenatale-screening-infectieziekten-en-erytrocytenimmunisatieGoogle Scholar
National Blood Authority Australia (2015). Patient Blood Management Guidelines: Module 5 Obstetrics and Maternity. https://www.blood.gov.au/pbm-module-5Google Scholar
Centraal Begeleidingsorgaan (2011). Richtlijn Bloedtransfusie. http://nvb-trip-symposium.nl/wp-content/uploads/2017/08/Richtlijnbloedtransfusie2011.pdfGoogle Scholar
Koelewijn, JM, de Haas, M, Vrijkotte, TG, Bonsel, GJ, van der Schoot, CE. One single dose of 200 microg of antenatal RhIG halves the risk of anti-D immunization and hemolytic disease of the fetus and newborn in the next pregnancy. Transfusion. 2008; 48: 1721–9.Google Scholar
Mayne, S, Parker, JH, Harden, TA, Dodds, SD, Beale, JA. Rate of RhD sensitisation before and after implementation of a community based antenatal prophylaxis programme. BMJ. 1997; 315: 1588.CrossRefGoogle ScholarPubMed
van der Ploeg, CPB, Schönbeck, Y, Oomen, P, Vos, K. Prenatale Screening Infectieziekten en Erytrocytenimmunisatie (PSIE) Procesmonitor 2015. Bilthoven: RIVM, TNO, 2017.Google Scholar
Hendrickson, JE, Delaney, M. Hemolytic Disease of the fetus and newborn: modern practice and future Investigations. Transfus Med Rev. 2016; 30: 159–64.Google Scholar
Scheffer, PG, van der Schoot, CE, Page-Christiaens, GC, de Haas, M. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year clinical experience. BJOG. 2011; 118: 1340–8.Google Scholar
Slootweg, YM, Lindenburg, IT, Koelewijn, JM, van Kamp, IL, Oepkes, D, de Haas, M. Predicting anti-Kell-mediated hemolytic disease of the fetus and newborn: diagnostic accuracy of laboratory management. Am J Obstet Gynecol. 2018; 219: 393.e1–393.e8.Google Scholar
van Dijk, BA, Dooren, MC, Overbeeke, MA. Red cell antibodies in pregnancy: there is no ‘critical titre’. Transfus Med. 1995; 5: 199–202.CrossRefGoogle ScholarPubMed
Oepkes, D, van Kamp, IL, Simon, MJ, Mesman, J, Overbeeke, MA, Kanhai, HH. Clinical value of an antibody-dependent cell-mediated cytotoxicity assay in the management of Rh D alloimmunization. Am J Obstet Gynecol. 2001; 184: 1015–20.Google Scholar
Zwiers, C, van Kamp, I, Oepkes, D, Lopriore, E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn – review on current management and outcome. Expert Rev Hematol. 2017; 10: 337–44.Google Scholar
Mari, G, Deter, RL, Carpenter, RL, Rahman, F, Zimmerman, R, Moise, KJ Jr., et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative group for Doppler assessment of the blood velocity in anemic fetuses. N Engl J Med. 2000; 342: 9–14.Google Scholar
Zimmerman, R, Carpenter, RJ Jr., Durig, P, Mari, G. Longitudinal measurement of peak systolic velocity in the fetal middle cerebral artery for monitoring pregnancies complicated by red cell alloimmunisation: a prospective multicentre trial with intention-to-treat. BJOG. 2002; 109: 746–52.Google ScholarPubMed
Oepkes, D, Brand, R, Vandenbussche, FP, Meerman, RH, Kanhai, HH. The use of ultrasonography and Doppler in the prediction of fetal haemolytic anaemia: a multivariate analysis. Br J Obstet Gynaecol. 1994; 101: 680–4.Google Scholar
Chitkara, U, Wilkins, I, Lynch, L, Mehalek, K, Berkowitz, RL. The role of sonography in assessing severity of fetal anemia in Rh- and Kell-isoimmunized pregnancies. Obstet Gynecol. 1988; 71: 393–8.Google ScholarPubMed
Dukler, D, Oepkes, D, Seaward, G, Windrim, R, Ryan, G. Noninvasive tests to predict fetal anemia: a study comparing Doppler and ultrasound parameters. Am J Obstet Gynecol. 2003; 188: 1310–14.Google Scholar
Oepkes, D, Seaward, PG, Vandenbussche, FP, Windrim, R, Kingdom, J, Beyene, J, Kanhai, HH, Ohlsson, A, Ryan, G, DIAMOND Study Group. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med. 2006; 355: 156–64.Google Scholar
Bang, J, Bock, JE, Trolle, D. Ultrasound-guided fetal intravenous transfusion for severe rhesus haemolytic disease. BMJ (Clin Res Ed). 1982; 284: 373–4.Google Scholar
Moise, KJ Jr. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol. 2008; 112: 164–76.Google Scholar
Nicolaides, KH, Soothill, PW, Clewell, WH, Rodeck, CH, Mibashan, RS, Campbell, S. Fetal haemoglobin measurement in the assessment of red cell isoimmunisation. Lancet. 1988; 1: 1073–5.Google Scholar
Society for Maternal-Fetal Medicine, Mari, G, Norton, ME, Stone, J, Berghella, V, Sciscione, AC, Tate, D, Schenone, MH. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #8: the fetus at risk for anemia – diagnosis and management. Am J Obstet Gynecol. 2015; 212: 697–710.Google Scholar
Adama van Scheltema, PN, Borkent, S, Sikkel, E, Oepkes, D, Vandenbussche, FP. Fetal brain hemodynamic changes in intrauterine transfusion: influence of needle puncture site. Fetal Diagn Ther. 2009; 26: 131–3.CrossRefGoogle ScholarPubMed
Moise, KJ Jr., Carpenter, RJ Jr., Kirshon, B, Deter, RL, Sala, JD, Cano, LE. Comparison of four types of intrauterine transfusion: effect on fetal hematocrit. Fetal Ther. 1989; 4: 126–37.CrossRefGoogle ScholarPubMed
Zwiers, C, Lindenburg, ITM, Klumper, FJ, de Haas, M, Oepkes, D, Van Kamp, IL. Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures. Ultrasound Obstet Gynecol. 2017; 50: 180–6.Google Scholar
Detti, L, Oz, U, Guney, I, Ferguson, JE, Bahado-Singh, RO, Mari, G. Doppler ultrasound velocimetry for timing the second intrauterine transfusion in fetuses with anemia from red cell alloimmunization. Am J Obstet Gynecol. 2001; 185: 1048–51.Google Scholar
Weiner, CP, Williamson, RA, Wenstrom, KD, Sipes, SL, Widness, JA, Grant, SS, Estle, L. Management of fetal hemolytic disease by cordocentesis. II. Outcome of treatment. Am J Obstet Gynecol. 1991; 165: 1302–7.Google Scholar
Scheier, M, Hernandez-Andrade, E, Fonseca, EB, Nicolaides, KH. Prediction of severe fetal anemia in red blood cell alloimmunization after previous intrauterine transfusions. Am J Obstet Gynecol. 2006; 195: 1550–6.CrossRefGoogle ScholarPubMed
Tiblad, E, Kublickas, M, Ajne, G, Bui, TH, Ek, S, Karlsson, A, Wikman, A, Westgren, M. Procedure-related complications and perinatal outcome after intrauterine transfusions in red cell alloimmunization in Stockholm. Fetal Diagn Ther. 2011; 30: 266–73.Google Scholar
Pasman, SA, Claes, L, Lewi, L, Van Schoubroeck, D, Debeer, A, Emonds, M, Geuten, E, De Catte, L, Devlieger, R. Intrauterine transfusion for fetal anemia due to red blood cell alloimmunization: 14 years experience in Leuven. Facts Views Vis Obgyn. 2015; 7: 129–36.Google Scholar
Sainio, S, Nupponen, I, Kuosmanen, M, Aitokallio-Tallberg, A, Ekholm, E, Halmesmäki, E, Orden, MR, Palo, P, Raudaskoski, T, Tekay, A, Tuimala, J, Uotila, J, Stefanovic, V. Diagnosis and treatment of severe hemolytic disease of the fetus and newborn: a 10-year nationwide retrospective study. Acta Obstet Gynecol Scand. 2015; 94: 383–90.CrossRefGoogle Scholar
Lindenburg, IT, Wolterbeek, R, Oepkes, D, Klumper, FJ, Vandenbussche, FP, van Kamp, IL. Quality control for intravascular intrauterine transfusion using cumulative sum (CUSUM) analysis for the monitoring of individual performance. Fetal Diagn Ther. 2011; 29: 307–14.Google Scholar
Zwiers, C, Oepkes, D, Lopriore, E, Klumper, FJ, De Haas, M, van Kamp, IL. The near disappearance of fetal immune hydrops in relation to current state‐of‐the‐art management of red cell alloimmunization. Prenat Diagn. 2018; 38: 943–50.Google Scholar
van Kamp, IL, Klumper, FJ, Bakkum, RS, Oepkes, D, Meerman, RH, Scherjon, SA, Kanhai, HH. The severity of immune fetal hydrops is predictive of fetal outcome after intrauterine treatment. Am J Obstet Gynecol. 2001; 185: 668–73.Google Scholar
Ree, IMC, Smits-Wintjens, V, van der Bom, JG, van Klink, JMM, Oepkes, D, Lopriore, E. Neonatal management and outcome in alloimmune hemolytic disease. Expert Rev Hematol. 2017; 10: 607–16.Google Scholar
Lindenburg, IT, Smits-Wintjens, VE, van Klink, JM, Verduin, E, van Kamp, IL, Walther, FJ, et al. Long-term neurodevelopmental outcome after intrauterine transfusion for hemolytic disease of the fetus/newborn: the LOTUS study. Am J Obstet Gynecol. 2012; 206: 141. e1–8.CrossRefGoogle ScholarPubMed
Zwiers, C, van der Bom, JG, van Kamp, IL, van Geloven, N, Lopriore, E, Smoleniec, J, et al. Postponing Early Intrauterine Transfusion with Intravenous immunoglobulin Treatment; the PETIT study on severe hemolytic disease of the fetus and newborn. Am J Obstet Gynecol. 2018; 219: e1–291. e9.Google Scholar
Bowman, JM. Antenatal suppression of Rh alloimmunization. Clin Obstet Gynecol. 1991; 34: 296–303.Google Scholar
Giannina, G, Moise, KJ Jr., Dorman, K. A simple method to estimate volume for fetal intravascular transfusions. Fetal Diagn Ther. 1998; 13: 94–7.Google Scholar
References
Dreyfus, M, Kaplan, C, Verdy, E, Schlegel, N, Durand-Zaleski, I, Tchernia, G. Frequency of immune thrombocytopenia in newborns: a prospective study. Immune Thrombocytopenia Working Group. Blood. 1997; 89: 4402–6.Google Scholar
Sola-Visner, M, Saxonhouse, MA, Brown, RE. Neonatal thrombocytopenia: what we do and don’t know. Early Hum Dev. 2008; 84: 499–506.Google Scholar
Winkelhorst, D, Kamphuis, MM, de Kloet, LC, Zwaginga, JJ, Oepkes, D, Lopriore, E. Severe bleeding complications other than intracranial hemorrhage in neonatal alloimmune thrombocytopenia: a case series and review of the literature. Transfusion. 2016; 56: 1230–5.Google Scholar
Tiller, H, Kamphuis, MM, Flodmark, O, Papadogiannakis, N, David, AL, Sainio, S, et al. Fetal intracranial haemorrhages caused by fetal and neonatal alloimmune thrombocytopenia: an observational cohort study of 43 cases from an international multicentre registry. BMJ Open. 2013; 3: e002490.Google Scholar
Campbell, S, Swann, HR, Seif, MW, Kimber, SJ, Aplin, JD. Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod. 1995; 10: 1571–8.CrossRefGoogle ScholarPubMed
Ohto, H, Miura, S, Ariga, H, Ishii, T, Fujimori, K, Morita, S. The natural history of maternal immunization against foetal platelet alloantigens. Transfus Med. 2004; 14: 399–408.Google Scholar
Kunishima, S, Hayakawa, A, Fujita, K, Saito, H. Transient macrothrombocytopenia associated with maternal-neonatal HPA-21bw incompatibility. Thromb Res. 2013; 131: e286–8.CrossRefGoogle ScholarPubMed
Shivdasani, RA, Rosenblatt, MF, Zucker-Franklin, D, Jackson, CW, Hunt, P, Saris, CJ, Orkin, SH. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995; 81: 695–704.Google Scholar
van Gils, JM, Stutterheim, J, van Duijn, TJ, Zwaginga, JJ, Porcelijn, L, de Haas, M, Hordijk, PL. HPA-1a alloantibodies reduce endothelial cell spreading and monolayer integrity. Mol Immunol. 2009; 46: 406–15.Google Scholar
Yougbaré, I, Lang, S, Yang, H, Chen, P, Zhao, X, Tai, WS, et al. Maternal anti-platelet beta3 integrins impair angiogenesis and cause intracranial hemorrhage. J Clin Invest. 2015; 125: 1545–56.Google Scholar
Santoso, S, Wihadmadyatami, H, Bakchoul, T, Werth, S, Al-Fakhri, N, Bein, G, et al. Antiendothelial alphavbeta3 antibodies are a major cause of intracranial bleeding in fetal/neonatal alloimmune thrombocytopenia. Arterioscler Thromb Vasc Biol. 2016; 36: 1517–24.Google Scholar
Tiller, H, Killie, MK, Husebekk, A, Skogen, B, Ni, H, Kjeldsen-Kragh, J, Øian, P. Platelet antibodies and fetal growth: maternal antibodies against fetal platelet antigen 1a are strongly associated with reduced birthweight in boys. Acta Obstet Gynecol Scand. 2012; 91: 79–86.Google Scholar
Murphy, MF, Hambley, H, Nicolaides, K, Waters, AH. Severe fetomaternal alloimmune thrombocytopenia presenting with fetal hydrocephalus. Prenat Diagn. 1996; 16: 1152–5.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Althaus, J, Weir, EG, Askin, F, Kickler, TS, Blakemore, K. Chronic villitis in untreated neonatal alloimmune thrombocytopenia: an etiology for severe early intrauterine growth restriction and the effect of intravenous immunoglobulin therapy. Am J Obstet Gynecol. 2005; 193: 1100–4.Google Scholar
Pereira, J, Cretney, C, Aster, RH. Variation of class I HLA antigen expression among platelet density cohorts: a possible index of platelet age? Blood. 1988; 71: 516–19.CrossRefGoogle ScholarPubMed
Masson, E, Vidal, C, Deschamps, M, Bongain, S, Thevenin, C, Dupont, I, et al. Incidence and risk factors of anti-HLA immunization after pregnancy. Hum Immunol. 2013; 74: 946–51.CrossRefGoogle Scholar
Sharon, R, Amar, A. Maternal anit-HLA antibodies and neonatal thrombocytopenia. Lancet. 1981; 1: 1313.Google Scholar
Vilches, M, Nieto, A. Analysis of Pregnancy-Induced Anti-HLA Antibodies Using Luminex Platform. Transplant Proc. 2015; 47: 2608–10.Google Scholar
Chow, MP, Sun, KJ, Yung, CH, Hu, HY, Tzeng, JL, Lee, TD. Neonatal alloimmune thrombocytopenia due to HLA-A2 antibody. Acta Haematol. 1992; 87: 153–5.CrossRefGoogle ScholarPubMed
De Tar, MW, Klohe, E, Grosset, A, Rau, T. Neonatal alloimmune thrombocytopenia with HLA alloimmunization: case report with immunohematologic and placental findings. Pediatr Dev Pathol. 2002; 5: 200–5.Google ScholarPubMed
del Rosario, ML, Fox, ER, Kickler, TS, Kao, KJ. Neonatal alloimmune thrombocytopenia associated with maternal anti-HLA antibody: a case report. J Pediatr Hematol Oncol. 1998; 20: 252–6.Google Scholar
Gramatges, MM, Fani, P, Nadeau, K, Pereira, S, Jeng, MR. Neonatal alloimmune thrombocytopenia and neutropenia associated with maternal human leukocyte antigen antibodies. Pediatr Blood Cancer. 2009; 53: 97–9.Google Scholar
Hutchinson, AL, Dennington, PM, Holdsworth, R, Downe, L. Recurrent HLA-B56 mediated neonatal alloimmune thrombocytopenia with fatal outcomes. Transfus Apher Sci. 2015; 52: 311–13.CrossRefGoogle ScholarPubMed
Moncharmont, P, Dubois, V, Obegi, C, Vignal, M, Mérieux, Y, Gebuhrer, L, Rigal, D. HLA antibodies and neonatal alloimmune thrombocytopenia. Acta Haematol. 2004; 111: 215–20.Google Scholar
Onishi, S, Okubo, S, Matsuzaki, T, Ishida, T, Yasunaga, K. [Report of two cases of neonatal alloimmune thrombocytopenia caused by anti-HLA antibody, and their screening using umbilical cord blood]. Rinsho Ketsueki. 1992; 33: 42–7.Google Scholar
Saito, S, Ota, M, Komatsu, Y, Ota, S, Aoki, S, Koike, K, et al. Serologic analysis of three cases of neonatal alloimmune thrombocytopenia associated with HLA antibodies. Transfusion. 2003; 43: 908–17.CrossRefGoogle ScholarPubMed
Sasaki, M, Yagihashi, A, Kobayashi, D, Watanabe, N, Fujikawa, T, Chiba, S, et al. Neonatal alloimmune thrombocytopenia due to anti-human leukocyte antigen antibody: a case report. Pediatr Hematol Oncol. 2001; 18: 519–24.Google Scholar
Thude, H, Schorner, U, Helfricht, C, Loth, M, Maak, B, Barz, D. Neonatal alloimmune thrombocytopenia caused by human leucocyte antigen-B27 antibody. Transfus Med. 2006; 16: 143–9.Google Scholar
Starcevic, M, Tomicic, M, Malenica, M, Zah-Matakovic, V. Neonatal alloimmune thrombocytopenia caused by anti-HLA-A24 alloantibodies. Acta Paediatr. 2010; 99: 630–2.Google Scholar
Winkelhorst, D, Porcelijn, L, van de Weerd, JME, Huiskes, E, Muizelaar, E, Lardy, NM, et al. HLA class I antibodies in FNAIT. (Poster). 14th European Symposium on Platelet and Granulocyte Immunobiology. Stockholm, 2016.Google Scholar
Wu, S, Maslanka, K, Gorski, J. An integrin polymorphism that defines reactivity with alloantibodies generates an anchor for MHC class II peptide binding: a model for unidirectional alloimmune responses. J Immunol. 1997; 158: 3221–6.CrossRefGoogle Scholar
Burrows, RF, Kelton, JG. Fetal thrombocytopenia and its relation to maternal thrombocytopenia. New Engl J Med. 1993; 329: 1463–6.Google Scholar
Kamphuis, MM, Paridaans, NP, Porcelijn, L, Lopriore, E, Oepkes, D. Incidence and consequences of neonatal alloimmune thrombocytopenia: a systematic review. Pediatrics. 2014; 133: 715–21.CrossRefGoogle ScholarPubMed
Kamphuis, MM, Paridaans, N, Porcelijn, L, De Haas, M, Van Der Schoot, CE, Brand, A, Bonsel, GJ, Oepkes, D. Screening in pregnancy for fetal or neonatal alloimmune thrombocytopenia: systematic review. BJOG. 2010; 117: 1335–43.Google Scholar
Davoren, A, McParland, P, Barnes, CA, Murphy, WG. Neonatal alloimmune thrombocytopenia in the Irish population: a discrepancy between observed and expected cases. J Clin Pathol. 2002; 55: 289–92.Google Scholar
Spencer, JA, Burrows, RF. Feto-maternal alloimmune thrombocytopenia: a literature review and statistical analysis. Aust N Z J Obstet Gynaecol. 2001; 41: 45–55.Google Scholar
Kiefel, V, Santoso, S, Weisheit, M, Mueller-Eckhardt, C. Monoclonal antibody--specific immobilization of platelet antigens (MAIPA): a new tool for the identification of platelet-reactive antibodies. Blood. 1987; 70: 1722–6.Google Scholar
Scheffer, PG, Ait Soussan, A, Verhagen, OJ, Page-Christiaens, GC, Oepkes, D, de Haas, M, Van Der Schoot, CE. Noninvasive fetal genotyping of human platelet antigen-1a. BJOG. 2011; 118: 1392–5.Google Scholar
Wienzek-Lischka, S, Krautwurst, A, Fröhner, V, Hackstein, H, Gattenlöhner, S, Bräuninger, A, et al. Noninvasive fetal genotyping of human platelet antigen-1a using targeted massively parallel sequencing. Transfusion. 2015; 55: 1538–44.Google Scholar
Bessos, H, Turner, M, Urbaniak, SJ. Is there a relationship between anti-HPA-1a concentration and severity of neonatal alloimmune thrombocytopenia? Immunohematology. 2005; 21: 102–9.Google Scholar
Sonneveld, ME, Natunen, S, Sainio, S, Koeleman, CA, Holst, S, Dekkers, G, et al. Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia. Br J Haematol. 2016; 174: 310–20.CrossRefGoogle ScholarPubMed
Radder, CM, Brand, A, Kanhai, HH. Will it ever be possible to balance the risk of intracranial haemorrhage in fetal or neonatal alloimmune thrombocytopenia against the risk of treatment strategies to prevent it? Vox Sang. 2003; 84: 318–25.Google Scholar
Winkelhorst, D, Murphy, MF, Greinacher, A, Shehata, N, Bakchoul, T, Massey, E, et al. Antenatal management in fetal and neonatal alloimmune thrombocytopenia: a systematic review. Blood. 2017; 129: 1538–47.Google Scholar
Bussel, JB, Berkowitz, RL, McFarland, JG, Lynch, L, Chitkara, U. Antenatal treatment of neonatal alloimmune thrombocytopenia. New Engl J Med. 1988; 319: 1374–8.Google Scholar
Daffos, F, Forestier, F, Muller, JY, Reznikoff-Etievant, M, Habibi, B, Capella-Pavlovsky, M, et al. Prenatal treatment of alloimmune thrombocytopenia. Lancet. 1984; 2: 632.Google Scholar
Sainio, S, Teramo, K, Kekomaki, R. Prenatal treatment of severe fetomaternal alloimmune thrombocytopenia. Transfus Med. 1999; 9: 321–30.Google Scholar
Kamphuis, M, Paridaans, N, Winkelhorst, D, Wikman, A, Tiblad, E, Lopriore, E, et al. Lower-dose intravenous immunoglobulins for the treatment of fetal and neonatal alloimmune thrombocytopenia: a cohort study. Transfusion. 2016; 56: 2308–13.Google Scholar
Bussel, JB, Berkowitz, RL, Hung, C, Kolb, EA, Wissert, M, Primiani, A, et al. Intracranial hemorrhage in alloimmune thrombocytopenia: stratified management to prevent recurrence in the subsequent affected fetus. Am J Obstet Gynecol. 2010; 203: 135.e1–14.Google Scholar
Berkowitz, RL, Lesser, ML, McFarland, JG, Wissert, M, Primiani, A, Hung, C, Bussel, JB. Antepartum treatment without early cordocentesis for standard-risk alloimmune thrombocytopenia: a randomized controlled trial. Obstet Gynecol. 2007; 110: 249–55.CrossRefGoogle ScholarPubMed
Radder, CM, de Haan, MJ, Brand, A, Stoelhorst, GM, Veen, S, Kanhai, HH. Follow up of children after antenatal treatment for alloimmune thrombocytopenia. Early Hum Dev. 2004; 80: 65–76.Google Scholar
Kaplan, C, Murphy, MF, Kroll, H, Waters, AH. Feto-maternal alloimmune thrombocytopenia: antenatal therapy with IvIgG and steroids – more questions than answers. European Working Group on FMAIT. Br J Haematol. 1998; 100: 62–5.Google Scholar
Bertrand, G, Drame, M, Martageix, C, Kaplan, C. Prediction of the fetal status in noninvasive management of alloimmune thrombocytopenia. Blood. 2011; 117: 3209–13.Google Scholar
Berkowitz, RL, Kolb, EA, McFarland, JG, Wissert, M, Primani, A, Lesser, M, Bussel, JB. Parallel randomized trials of risk-based therapy for fetal alloimmune thrombocytopenia. Obstet Gynecol. 2006; 107: 91–6.Google Scholar
Bussel, JB, Berkowitz, RL, Lynch, L, Lesser, ML, Paidas, MJ, Huang, CL, McFarland, JG. Antenatal management of alloimmune thrombocytopenia with intravenous gamma-globulin: a randomized trial of the addition of low-dose steroid to intravenous gamma-globulin. Am J Obstet Gynecol. 1996; 174: 1414–23.Google Scholar
Wenstrom, KD, Weiner, CP, Williamson, RA. Antenatal treatment of fetal alloimmune thrombocytopenia. Obstet Gynecol. 1992; 80: 433–5.Google Scholar
Lynch, L, Bussel, JB, McFarland, JG, Chitkara, U, Berkowitz, RL. Antenatal treatment of alloimmune thrombocytopenia. Obstet Gynecol. 1992; 80: 67–71.Google Scholar
de Haas, M, Thurik, FF, Koelewijn, JM, van der Schoot, CE. Haemolytic disease of the fetus and newborn. Vox Sang. 2015; 109: 99–113.Google Scholar
Zwiers, C, Lindenburg, ITM, Klumper, FJ, de Haas, M, Oepkes, D, Van Kamp, IL. Complications of intrauterine intravascular blood transfusion: lessons learned after 1678 procedures. Ultrasound Obstet Gynecol. 2017; 50: 180–6.Google Scholar
Tiller, H, Killie, MK, Chen, P, Eksteen, M, Husebekk, A, Skogen, B, Kjeldsen-Kragh, J, Ni, H. Toward a prophylaxis against fetal and neonatal alloimmune thrombocytopenia: induction of antibody-mediated immune suppression and prevention of severe clinical complications in a murine model. Transfusion. 2012; 52: 1446–57.Google Scholar
Ghevaert, C, Wilcox, DA, Fang, J, Armour, KL, Clark, MR, Ouwehand, WH, Williamson, LM. Developing recombinant HPA-1a-specific antibodies with abrogated Fcgamma receptor binding for the treatment of fetomaternal alloimmune thrombocytopenia. J Clin Invest. 2008; 118: 2929–38.Google Scholar
Ghevaert, C, Herbert, N, Hawkins, L, Grehan, N, Cookson, P, Garner, SF, et al. Recombinant HPA-1a antibody therapy for treatment of fetomaternal alloimmune thrombocytopenia: proof of principle in human volunteers. Blood. 2013; 122: 313–20.Google Scholar
Kjeldsen-Kragh, J, Killie, MK, Tomter, G, Golebiowska, E, Randen, I, Hauge, R, et al. A screening and intervention program aimed to reduce mortality and serious morbidity associated with severe neonatal alloimmune thrombocytopenia. Blood. 2007; 110: 833–9.Google Scholar
van den Akker, ESA, Oepkes, D, Brand, A, Kanhai, HHH. Vaginal delivery for fetuses at risk of alloimmune thrombocytopenia? BJOG. 2006; 113: 781–3.Google Scholar
Roberts, I, Murray, NA. Neonatal thrombocytopenia: causes and management. Arch Dis Child Fetal Neonatal Ed. 2003; 88: F359–64.Google Scholar
Gunnink, SF, Vlug, R, Fijnvandraat, K, van der Bom, JG, Stanworth, SJ, Lopriore, E. Neonatal thrombocytopenia: etiology, management and outcome. Expert Rev Hematol. 2014; 7: 387–95.Google Scholar
Ghevaert, C, Campbell, K, Walton, J, Smith, GA, Allen, D, Williamson, LM, et al. Management and outcome of 200 cases of fetomaternal alloimmune thrombocytopenia. Transfusion. 2007; 47: 901–10.Google Scholar
Inder, TE, Perlman, M, Volpe, JJ. Intracranial Hemorrhage: Subdural, Subarachnoid, Intraventricular (Term Infant), Miscellaneous. In Volpe, JJ, Neurology of the Newborn. 6th Edition ed. Philadelphia: Elsevier, 2018.Google Scholar
Vinekar, A, Hegde, K, Gilbert, C, Braganza, S, Pradeep, M, Shetty, R, Shetty, KB. Do platelets have a role in the pathogenesis of aggressive posterior retinopathy of prematurity? Retina. 2010; 30: S20–3.Google Scholar
Stanworth, SJ, Clarke, P, Watts, T, Ballard, S, Choo, L, Morris, T, Murphy, MF, Roberts, I, Platelets and Neonatal Transfusion Study Group. Prospective, observational study of outcomes in neonates with severe thrombocytopenia. Pediatrics. 2009; 124: e826–34.CrossRefGoogle ScholarPubMed
Murray, NA, Roberts, IA. Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm neonates. Pediatr Res. 1996; 40: 112–19.Google Scholar
Blajchman, MA, Ali, AM, Richardson, HL. Bacterial contamination of cellular blood components. Vox Sang. 1994; 67 (Suppl. 3): 25–33.Google Scholar
Murphy, MF, Williamson, LM. Antenatal screening for fetomaternal alloimmune thrombocytopenia: an evaluation using the criteria of the UK National Screening Committee. Br J Haematol. 2000; 111: 726–32.Google Scholar
Kiefel, V, Bassler, D, Kroll, H, Paes, B, Giers, G, Ditomasso, J, et al. Antigen-positive platelet transfusion in neonatal alloimmune thrombocytopenia (NAIT). Blood. 2006; 107: 3761–3.Google Scholar
Chen, P, Li, C, Lang, S, Zhu, G, Reheman, A, Spring, CM, Freedman, J, Ni, H. Animal model of fetal and neonatal immune thrombocytopenia: role of neonatal Fc receptor in the pathogenesis and therapy. Blood. 2010; 116: 3660–8.Google Scholar
Sidiropoulos, D, Straume, B. The treatment of neonatal isoimmune thrombocytopenia with intravenous immunoglobin (IgG i.v.). Blut. 1984; 48: 383–6.Google Scholar
Derycke, M, Dreyfus, M, Ropert, JC, Tchernia, G. Intravenous immunoglobulin for neonatal isoimmune thrombocytopenia. Arch Dis Child. 1985; 60: 667–9.Google Scholar
Winkelhorst, D, Kamphuis, MM, Steggerda, SJ, Rijken, M, Oepkes, D, Lopriore, E, van Klink, JMM. Perinatal outcome and long-term neurodevelopment after intracranial haemorrhage due to fetal and neonatal alloimmune thrombocytopenia. Fetal Diagn Ther. 2019; 45: 184–91.Google Scholar
Winkelhorst, D, Oostweegel, M, Porcelijn, L, Middelburg, RA, Zwaginga, JJ, Oepkes, D, et al. Treatment and outcomes of fetal/neonatal alloimmune thrombocytopenia: a nationwide cohort study in newly detected cases. Br J Haematol. 2019; 184: 1026–9.Google Scholar
References
Poelmann, RE, Gittenberger-de Groot, AC, Biermans, MWM, Dolfing, AI, Jagessar, A, van Hattum, S, et al. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. Evodevo; 2017; 8: 9.CrossRefGoogle ScholarPubMed
DeRuiter, MC, Poelmann, RE, VanderPlas-de Vries, I, Mentink, MM, Gittenberger-de Groot, AC. The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol (Berl). 1992; 185: 461–73.Google Scholar
Buckingham, M, Meilhac, S, Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6: 826–35.Google Scholar
Cai, CL, Liang, X, Shi, Y, Chu, PH, Pfaff, SL, Chen, J, Evans, S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003; 5: 877–89.Google Scholar
de la Cruz, M, Sanchez-Gomez, C, Palomino, MA. The primitive cardiac regions in the straight tube heart (Stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick heart. J Anat. 1989; 165: 121–31.Google Scholar
Miquerol, L, Kelly, RG. Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol. 2013; 2: 17–29.Google Scholar
Kirby, ML, Gale, TF, Stewart, DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983; 220: 1059–61.Google Scholar
Bergwerff, M, Verberne, ME, DeRuiter, MC, Poelmann, RE, Gittenberger-de Groot, AC. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res. 1998; 82: 221–31.Google Scholar
Farrell, MJ, Burch, JL, Wallis, K, Rowley, L, Kumiski, D, Stadt, H, Godt, RE, Creazzo, TL, Kirby, ML. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation. J Clin Invest. 2001; 107: 1509–17.Google Scholar
Lindsay, EA, Vitelli, F, Su, H, Morishima, M, Huynh, T, Pramparo, T, Jurecic, V, Ogunrinu, G, Sutherland, HF, Scambler, PJ, Bradley, A, Baldini, A. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001; 410: 97–101.Google Scholar
Poelmann, RE, Mikawa, T, Gittenberger-de Groot, AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn. 1998; 212: 373–84.Google Scholar
Poelmann, RE, Gittenberger-de Groot, AC. A dual pathway to the heart links neural crest to in- and outflow tract septation and to differentiation of the conduction system. Anat Embryol. 2000; 231–5.Google Scholar
Gurjarpadhye, A, Hewett, KW, Justus, C, Wen, X, Stadt, H, Kirby, ML, Sedmera, D, Gourdie, RG. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol. 2007; 292: H1291–300.Google Scholar
Bax, NA, Bleyl, SB, Gallini, R, Wisse, LJ, Hunter, J, van Oorschot, AAM, Mahtab, EAF, Lie-Venema, H, Goumans, M-J, Betsholtz, C, Gittenberger-de Groot, AC. Cardiac malformations in Pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn. 2010; 239: 2307–17.Google Scholar
Kruithof, BP, van Wijk, B, Somi, S, Kruithof-de Julio, M, Pérez Pomares, JM, Weesie, F, Wessels, A, Moorman, AF, van den Hoff, MJ. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006; 295: 507–22.Google Scholar
Pérez-Pomares, JM, Phelps, A, Sedmerova, M, Carmona, R, González-Iriarte, M, Muñoz-Chápuli, R, Wessels, A. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol. 2002; 247: 307–26.Google Scholar
Gittenberger-de Groot, AC, Winter, EM, Bartelings, MM, Goumans, MJ, DeRuiter, MC, Poelmann, RE. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012 ; 84: 41–53.Google Scholar
Gittenberger-de Groot, AC, Vrancken Peeters, MP, Mentink, MM, Gourdie, RG, Poelmann, RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82: 1043–52.Google Scholar
Lie-Venema, H, van den Akker, NM, Bax, NA, Winter, EM, Maas, S, Kekarainen, T, Hoeben, RC, deRuiter, MC, Poelmann, RE, Gittenberger-de Groot, AC. Origin, fate, and function of epicardium-derived cells (EPCDs) in normal and abnormal cardiac development. ScientificWorldJournal. 2007; 7: 1777–98.Google Scholar
Red-Horse, K, Ueno, H, Weissman, IL, Krasnow, MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010; 464: 549–53.Google Scholar
Palmquist-Gomes, P, Guadix, JA, Pérez-Pomares, JM. Avian embryonic coronary arterio-venous patterning involves the contribution of different endothelial and endocardial cell populations. Dev Dyn. 2018; 247: 686–98.Google Scholar
Tian, X, Hu, T, He, L, Zhang, H, Huang, X, Poelmann, RE, Liu, W, Yang, Z, Yan, Y, Pu, WT, Zhou, B. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS One. 2013; 8: e80857.Google Scholar
Zhou, B, Ma, Q, Rajagopal, S, Wu, SM, Domian, I, Rivera-Feliciano, J, Jiang, D, von Gise, A, Ikeda, S, Chien, KR, Pu, WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109–13.Google Scholar
Gittenberger-de Groot, AC, Winter, EM, Poelmann, RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010; 14: 1056–60.Google Scholar
Goumans, MJ, de Boer, TP, Smits, AM, van Laake, LW, van Vliet, P, Metz, CH, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 2007; 1: 138–49.Google Scholar
Winter, EM, Van Oorschot, AA, Hogers, B, van der Graaf, LM, Doevendans, PA, Poelmann, RE, Atsma, DE, Gittenberger-de Groot, AC, Goumans, MJ. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail. 2009; 2: 643–53.Google Scholar
van Vliet, P, Smits, AM, de Boer, TP, Korfage, TH, Metz, CH, Roccio, M, van der Heyden, MA, van Veen, TA, Sluijter, JP, Doevendans, PA, Goumans, MJ. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med. 2010; 14: 861–70.Google Scholar
Poelmann, RE, Jongbloed, MR, Gittenberger-de Groot, AC. Pitx2: a challenging teenager. Circ Res. 2008; 102: 749–51.Google Scholar
Franco, D, Campione, M. The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003; 13: 157–63.CrossRefGoogle ScholarPubMed
Manasek, FJ, Monroe, RG. Early cardiac morphogenesis is independent of function. Dev Biol. 1972; 27: 584–8.Google Scholar
Bouman, HG, Broekhuizen, ML, Baasten, AM, Gittenberger-de Groot, AC, Wenink, AC. Spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec. 1995; 243: 101–8.Google Scholar
Blom, NA, Gittenberger-de Groot, AC, DeRuiter, MC, Poelmann, RE, Mentink, MM, Ottenkamp, J. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. Circulation. 1999; 99: 800–6.Google Scholar
Gittenberger-de Groot, AC, Calkoen, EE, Poelmann, RE, Bartelings, MM, Jongbloed, MR. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med. 2014; 46: 640–52.Google Scholar
Scherptong, RW, Jongbloed, MR, Wisse, LJ, Vicente-Steijn, R, Bartelings, MM, Poelmann, RE, Schalij, MJ, Gittenberger-de Groot, AC. Morphogenesis of outflow tract rotation during cardiac development: the pulmonary push concept. Dev Dyn. 2012; 241: 1413–22.Google Scholar
Bartelings, MM, Gittenberger-de Groot, AC, Wenink, ACG, et al. The morphogenesis of common arterial trunk reconsidered. Recent and classical views. Cardia Selectief. 1992; 5: 10-10.Google Scholar
Conway, SJ, Bundy, J, Chen, J, Dickman, E, Rogers, R, Will, BM. Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant. Cardiovasc Res. 2000; 47: 314–28.Google Scholar
Kirby, ML, Waldo, KL. Role of neural crest in congenital heart disease. Circulation. 1990; 82: 332–40.Google Scholar
Baardman, ME, Zwier, MV, Wisse, LJ, Gittenberger-de Groot, AC, Kerstjens-Frederikse, WS, Hofstra, RM, et al. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech. 2016; 9: 413–25.Google Scholar
Bogers, AJ, Bartelings, MM, Bökenkamp, R, Stijnen, T, van Suylen, RJ, Poelmann, RE, Gittenberger-de Groot, AC. Common arterial trunk, uncommon coronary arterial anatomy. J Thorac Cardiovasc Surg. 1993; 106: 1133–7.Google Scholar
Gittenberger-de Groot, AC, Bartelings, MM, Bogers, AJJC, Boot, MJ, Poelmann, RE. The embryology of the common arterial trunk. Progr Pediatr Cardiol. 2002; 15: 1–8.Google Scholar
Van Den Akker, NM, Molin, DG, Peters, PP, Maas, S, Wisse, LJ, van Brempt, R, et al. Tetralogy of Fallot and alterations in vascular endothelial growth factor-A signaling and notch signaling in mouse embryos solely expressing the VEGF120 isoform. Circ Res. 2007; 100: 842–9.Google Scholar
Molin, DG, Roest, PA, Nordstrand, H, Wisse, LJ, Poelmann, RE, Eriksson, UJ, Gittenberger-de Groot, AC. Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats. Birth Defects Res A Clin Mol Teratol. 2004; 70: 927–38.Google Scholar
Bartram, U, Molin, DG, Wisse, LJ, Mohamad, A, Sanford, LP, Doetschman, T, Speer, CP, Poelmann, RE, Gittenberger-de Groot, AC. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGFß2-knockout mice. Circulation. 2001; 103: 2745–52.Google Scholar
Jenkins, SJ, Hutson, DR, Kubalak, SW. Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium. Dev Dyn. 2005; 233: 1091–101.Google Scholar
Hogers, B, DeRuiter, MC, Gittenberger-de Groot, AC, Poelmann, RE. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997; 80: 473–81.Google Scholar
Van Loo, PF, Mahtab, EA, Wisse, LJ, Hou, J, Grosveld, F, Suske, G, Philipsen, S, Gittenberger-de Groot, AC. Transcription Factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol. 2007; 27: 8571–82.Google Scholar
Gittenberger-de Groot, AC, Vrancken Peeters, MP, Bergwerff, M, Mentink, MM, Poelmann, RE. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87: 969–71.Google Scholar
Nakajima, Y, Morishima, M, Nakazawa, M, Momma, K. Inhibition of outflow cushion mesenchyme formation in retinoic acid-induced complete transposition of the great arteries. Cardiovasc Res. 1996; 31: E77–85.CrossRefGoogle ScholarPubMed
Moazzen, H, Lu, X, Ma, NL, Velenosi, TJ, Urquhart, BL, Wisse, LJ, Gittenberger-de Groot, AC, Feng, Q. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol. 2014; 18: 13–46.Google Scholar
Blom, NA, Ottenkamp, J, Jongeneel, TH, DeRuiter, MC, Gittenberger-de Groot, AC. Morphogenetic differences of secundum atrial septal defects. Pediatr Cardiol. 2005; 26: 338–43.Google Scholar
Benson, DW, Silberbach, GM, Kavanaugh-McHugh, A, Cottrill, C, Zhang, Y, Riggs, S, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999; 104: 1567–73.Google Scholar
Moskowitz, IP, Kim, JB, Moore, ML, Wolf, CM, Peterson, MA, Shendure, J, Nobrega, MA, Yokota, Y, Berul, C, Izumo, S, Seidman, JG, Seidman, CE. A molecular pathway including Id2, Tbx5, and Nkx2–5 required for cardiac conduction system development. Cell. 2007; 129: 1365–76.Google Scholar
Blaschke, RJ, Hahurij, ND, Kuijper, S, Just, S, Wisse, LJ, Deissler, K, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 2007; 115: 1830–8.Google Scholar
Barlow, GM, Chen, X-N, Shi, ZY, Lyons, GE, Kurnit, DM, Celle, L, et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med. 2001; 3: 91–101.Google Scholar
Blom, NA, Ottenkamp, J, Wenink, AG, Gittenberger-de Groot, AC. Deficiency of the vestibular spine in atrioventricular septal defects in human fetuses with down syndrome. Am J Cardiol. 2003; 91: 180–4.Google Scholar
Mahtab, EA, Wijffels, MC, van den Akker, NM, Hahurij, ND, Lie-Venema, H, Wisse, LJ, et al. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn. 2008; 237: 847–57.Google Scholar
Steimle, JD, Moskowitz, IP. TBX5: A Key Regulator of Heart Development. Curr Top Dev Biol. 2017; 122: 195–221.Google Scholar
Hinton, RB Jr., Martin, LJ, Tabangin, ME, Mazwi, ML, Cripe, LH, Benson, DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007; 50: 1590–5.Google Scholar
Wenink, AC, Gittenberger-de Groot, AC, Brom, AG. Developmental considerations of mitral valve anomalies. Int J Cardiol. 1986; 11: 85–98.Google Scholar
Elzenga, N, Gittenberger-de Groot, AC. Coarctation and related aortic arch anomalies in hypoplastic left heart syndrome. Int J Cardiol. 1985; 8: 379–89.Google Scholar
Sedmera, D, Pexieder, T, Rychterova, V, Hu, N, Clark, EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec. 1999; 254: 238–52.Google Scholar
Sizarov, A, Boudjemline, Y. Valve Interventions in utero: understanding the timing, indications, and approaches. Can J Cardiol. 2017; 33: 1150–8.Google Scholar
Bartram, U, Bartelings, MM, Kramer, HH, Gittenberger-de Groot, AC. Congenital polyvalvular disease: a review. Pediatr Cardiol. 2001; 22: 93–101.CrossRefGoogle ScholarPubMed
Garg, V, Muth, AN, Ransom, JF, Schluterman, MK, Barnes, R, King, IN, Grossfeld, PD, Srivastava, D. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437: 270–4.Google Scholar
Grewal, N, DeRuiter, MC, Jongbloed, MR, Goumans, MJ, Klautz, RJ, Poelmann, RE, Gittenberger-de Groot, AC. Normal and abnormal development of the aortic wall and valve: correlation with clinical entities. Neth Heart J. 2014; 22: 363–9.Google Scholar
Fernández, B, Durán, AC, Fernández-Gallego, T, Fernández, MC, Such, M, Arqué, JM, Sans-Coma, V. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009; 54: 2312–18.Google Scholar
Gittenberger-de Groot, AC, Tennstedt, C, Chaoui, R, Lie-Venema, H, Sauer, U, Poelmann, RE. Ventriculo coronary arterial communications (VCAC) and myocardial sinusoids in hearts with pulmonary artresia with intact ventricular septum: two different diseases. Progr Pediatr Cardiol. 2001; 13: 157–64.Google Scholar
Chaoui, R, Tennstedt, C, Göldner, B, Bollmann, R. Prenatal diagnosis of ventriculo-coronary communications in a second-trimester fetus using transvaginal and transabdominal color Doppler sonography. Ultrasound Obstet Gynecol. 1997; 9: 194–7.Google Scholar
Oosthoek, PW, Wenink, ACG, Macedo, AJ, Gittenberger-de Groot, AC. The parachute-like asymmetric mitral valve and its two papillary muscles. J Thorac Cardiovasc Surg. 1997; 114: 9–15.Google Scholar
Wu, B, Wang, Y, Lui, W, Langworthy, M, Tompkins, KL, Hatzopoulos, AK, Baldwin, HS, Zhou, B. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res. 2011; 109: 183–92.Google Scholar
Lie-Venema, H, Eralp, I, Markwald, RR, van den Akker, NM, Wijffels, MC, Kolditz, DP, et al. Periostin expression by epicardium-derived cells (EPDCs) is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differentiation. 2008; 76: 809–19.Google Scholar
Jongbloed, MR, Vicente Steijn, R, Hahurij, ND, Kelder, TP, Schalij, MJ, Gittenberger-de Groot, AC, Blom, NA. Normal and abnormal development of the cardiac conduction system; implications for conduction and rhythm disorders in the child and adult. Differentiation. 2012; 84: 131–48.Google Scholar
Haïssaguerre, M, Jaïs, P, Shah, DC, Takahashi, A, Hocini, M, Quiniou, G, Garrigue, S, Le Mouroux, A, Le Métayer, P, Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New Engl J Med. 1998; 339: 659–66.Google Scholar
Syeda, F, Kirchhof, P, Fabritz, L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol. 2017; 595: 4019–26.Google Scholar
References
van der Linde, D, Konings, EE, Slager, MA, Witsenburg, M, Helbing, WA, Takkenberg, JJ, Roos-Hesselink, JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58: 2241–7.Google Scholar
Ransom, J, Srivastava, D. The genetics of cardiac birth defects. Semin Cell Dev Biol. 2007; 18: 132–9.Google Scholar
Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39: 1890–900.Google Scholar
Triedman, JK, Newburger, JW. Trends in Congenital Heart Disease, the next decade. Circulation. 2016; 133: 2716–33.Google Scholar
Huang, JB, Liu, YL, Sun, PW, Lv, XD, Du, M, Fan, XM. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2010; 19: e183–93.Google Scholar
Cai, GJ, Sun, XX, Zhang, L, Hong, Q. Association between maternal body mass index and congenital heart defects in offspring: a systematic review. Am J Obstet Gynecol. 2014; 211: 91–117.Google Scholar
Botto, LD, Panichello, JD, Brown, ML, Krikov, S, Feldkamp, ML, Lammer, E, et al. Congenital heart defects after maternal fever. Am J Obstet Gynecol. 2014; 210: e1–359. e11.Google Scholar
Jenkins, KJ, Correa, A, Feinstein, JA, Botto, L, Britt, AE, Daniels, SR, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007; 115: 2995–3014.Google Scholar
Zhu, H, Kartiko, S, Finnell, RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009; 75: 409–23.Google Scholar
Nora, JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction. Circulation. 1968; 38: 604–17.Google Scholar
Schott, JJ, Benson, DW, Basson, CT, Pease, W, Silberbach, GM, Moak, JP, et al. Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science. 1998; 281: 108–11.Google Scholar
Gebbia, M, Ferrero, GB, Pilia, G, Bassi, MT, Aylsworth, A, Penman-Splitt, M, et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet. 1997; 17: 305–8.Google Scholar
Gong, W, Gottlieb, S, Collins, J, Blescia, A, Dietz, H, Goldmuntz, E, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet. 2001; 38: E45.Google Scholar
Garg, V, Kathiriya, IS, Barnes, R, Schluterman, MK, King, IN, Butler, CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424: 443–7.Google Scholar
Pizzuti, A, Sarkozy, A, Newton, AL, Conti, E, Flex, E, Digilio, MC, et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat. 2003; 22: 372–7.Google Scholar
Sperling, S, Grimm, CH, Dunkel, I, Mebus, S, Sperling, HP, Ebner, A, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005; 26: 575–82.Google Scholar
Reamon-Buettner, SM, Ciribilli, Y, Inga, A, Borlak, J. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet. 2008; 17: 1397–405.Google Scholar
Wang, B, Yan, J, Peng, Z, Wang, J, Liu, S, Xie, X, Ma, X. Teratocarcinoma-derived growth factor 1 (TDGF1) sequence variants in patients with congenital heart defect. Int J Cardiol. 2011; 146: 225–7.CrossRefGoogle ScholarPubMed
Kosaki, R, Gebbia, M, Kosaki, K, Lewin, M, Bowers, P, Towbin, JA, Casey, B. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 1999; 82: 70–6.Google Scholar
Kosaki, K, Bassi, MT, Kosaki, R, Lewin, M, Belmont, J, Schauer, G, Casey, B. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999; 64: 712–21.Google Scholar
Bamford, RN, Roessler, E, Burdine, RD, Saplakoğlu, U, dela Cruz, J, Splitt, M, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000; 26: 365–9.Google Scholar
Garg, V, Muth, AN, Ransom, JF, Schluterman, MK, Barnes, R, King, IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437: 270–4.Google Scholar
Robinson, SW, Morris, CD, Goldmuntz, E, Reller, MD, Jones, MA, Steiner, RD, Maslen, CL. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003; 72: 1047–52.Google Scholar
Karkera, JD, Lee, JS, Roessler, E, Banerjee-Basu, S, Ouspenskaia, MV, Mez, J, et al. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet. 2007; 81: 987–94.Google Scholar
Mohapatra, B, Casey, B, Li, H, Ho-Dawson, T, Smith, L, Fernbach, SD, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009; 18: 861–71.Google Scholar
Britz-Cunningham, SH, Shah, MM, Zuppan, CW, Fletcher, WH. Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med. 1995; 332: 1323–9.Google Scholar
Li, DY, Toland, AE, Boak, BB, Atkinson, DL, Ensing, GJ, Morris, CA, Keating, MT. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet. 1997; 6: 1021–8.Google Scholar
Muncke, N, Jung, C, Rüdiger, H, Ulmer, H, Roeth, R, Hubert, A, et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation. 2003; 108: 2843–50.Google Scholar
Thienpont, B, Zhang, L, Postma, AV, Breckpot, J, Tranchevent, LC, Van Loo, P, et al. Haploinsufficiency of TAB2 causes congenital heart defects in humans. Am J Hum Genet. 2010; 86: 839–49.Google Scholar
Burn, J, Brennan, P, Little, J, Holloway, S, Coffey, R, Somerville, J, et al. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet. 1998; 351: 311–16.Google Scholar
Grobman, W, Pergament, E. Isolated hypoplastic left heart syndrome in three siblings. Obstet Gynecol. 1996; 88: 673–5.Google Scholar
Pease, WE, Nordenberg, A, Ladda, RL. Familial atrial septal defect with prolonged atrioventricular conduction. Circulation. 1976; 53: 759–62.Google Scholar
Ferencz, C, Boughman, JA, Neill, CA, Brenner, JI, Perry, LW. Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol. 1989; 14: 756–63.Google Scholar
Corone, P, Bonaiti, C, Feingold, J, Fromont, S, Berthet-Bondet, D. Familial congenital heart disease: how are the various types related? Am J Cardiol. 1983; 51: 942–5.Google Scholar
Wessels, MW, Berger, RM, Frohn-Mulder, IM, Roos-Hesselink, JW, Hoogeboom, JJ, Mancini, GS, et al. Autosomal dominant inheritance of left ventricular outflow tract obstruction. Am J Med Genet A. 2005; 134A: 171–9.Google Scholar
Musewe, NN, Alexander, DJ, Teshima, I, Smallhorn, JF, Freedom, RM. Echocardiographic evaluation of the spectrum of cardiac anomalies associated with Trisomy 13 and Trisomy 18. J Am Coll Cardiol. 1990; 15: 673–7.Google Scholar
van Egmond, H, Orye, E, Praet, M, Coppens, M, Devloo-Blancquaert, A. Hypoplastic left heart syndrome and 45X karyotype. Br Heart J. 1988; 60: 69–71.Google Scholar
van Bon, BW, Mefford, HC, Menten, B, Koolen, DA, Sharp, AJ, Nillesen, WM, et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009; 46: 511–23.Google Scholar
Tartaglia, M, Mehler, EL, Goldberg, R, Zampino, G, Brunner, HG, Kremer, H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001; 29: 465–8.Google Scholar
Zhao, Y, Ransom, JF, Li, A, Vedantham, V, von Drehle, M, Muth, AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129: 303–17.Google Scholar
Hearn, T, Renforth, GL, Spalluto, C, Hanley, NA, Piper, K, Brickwood, S, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet. 2002; 31: 79–83.Google Scholar
Oda, T, Elkahloun, AG, Pike, BL, Okajima, K, Krantz, ID, Genin, A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997; 16: 235–42.Google Scholar
Newbury-Ecob, RA, Leanage, R, Raeburn, JA, Young, ID. Holt-Oram syndrome: a clinical genetic study. J Med Genet. 1996; 33: 300–7.Google Scholar
Brassington, AM, Sung, SS, Toydemir, RM, Le, T, Roeder, AD, Rutherford, AE, et al. Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet. 2003; 73: 74–85.Google Scholar
McElhinney, DB, Geiger, E, Blinder, J, Benson, DW, Goldmuntz, E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003; 42: 1650–5.Google Scholar
Carey, AH, Kelly, D, Halford, S, Wadey, R, Wilson, D, Goodship, J, et al. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet. 1992; 51: 964–70.Google Scholar
Mefford, HC, Sharp, AJ, Baker, C, Itsara, A, Jiang, Z, Buysse, K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008; 359: 1685–99.Google Scholar
Hillman, K, DeVita, M, Bellomo, R, Chen, J. Meta-analysis for rapid response teams. Arch Intern Med. 2010; 170: 996–7; author reply 997.Google Scholar
D’Amours, G, Kibar, Z, Mathonnet, G, Fetni, R, Tihy, F, Désilets, V, et al. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet. 2011; 81: 128–41.Google Scholar
Lazier, J, Fruitman, D, Lauzon, J, Bernier, F, Argiropoulos, B, Chernos, J, et al. Prenatal Array Comparative Genomic Hybridization in Fetuses With Structural Cardiac Anomalies. J Obstet Gynaecol Can. 2016; 38: 619–26.Google Scholar
Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, et al. Initial sequencing and analysis of the human genome. Nature. 2001; 409: 860–921.Google Scholar
Snyder, M, Du, J, Gerstein, M. Personal genome sequencing: current approaches and challenges. Genes Dev. 2010; 24: 423–31.Google Scholar
References
McGovern, E, Sands, AJ. Perinatal management of major congenital heart disease. Ulster Med J. 2014; 83: 135–9.Google Scholar
Jorgensen, M, McPherson, E, Zaleski, C, Shivaram, P, Cold, C. Stillbirth: the heart of the matter. Am J Med Genet A. 2014; 164A: 691–9.Google Scholar
Dolk, H, Loane, M, Garne, E, European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011; 123: 841–9.Google Scholar
Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39: 1890–900.Google Scholar
Chaix, MA, Andelfinger, G, Khairy, P. Genetic testing in congenital heart disease: a clinical approach. World J Cardiol. 2016; 8: 180–91.Google Scholar
Russell, MW, Chung, WK, Kaltman, JR, Miller, TA. Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes. J Am Heart Assoc. 2018; 7: e006906.Google Scholar
Weissberg, P (ed.). Children and Young People Statistics 2013. London: British Heart Foundation, 2013.Google Scholar
Fahed, AC, Nemer, GM. Genetic Causes of Syndromic and Non-syndromic Congenital Heart Disease. In Cooper, D and Chen, J-M, eds., Mutations in Human Genetic Disease. London: IntechOpen, 2012.Google Scholar
Fahed, AC, Gelb, BD, Seidman, JG, Seidman, CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013; 112: 707–20.Google Scholar
Leatherbury, L, Berul, CI. Genetics of congenital heart disease: is the glass now half-full? Circ Cardiovasc Genet. 2017; 10: e001746.Google Scholar
Waardenberg, AJ, Ramialison, M, Bouveret, R, Harvey, RP. Genetic networks governing heart development. Cold Spring Harb Perspect Med. 2014; 4: a013839.Google Scholar
Moon, A. Mouse models of congenital cardiovascular disease. Curr Top Dev Biol. 2008; 84: 171–248.Google Scholar
Dickinson, ME, Flenniken, AM, Ji, X, Teboul, L, Wong, MD, White, JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016; 537: 508–514.Google Scholar
Wilson, R, Geyer, SH, Reissig, L, Rose, J, Szumska, D, Hardman, E, et al. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res. 2016; 1: 1.Google Scholar
Bellmann, K, Perrot, A, Rickert-Sperling, S. Human Genetics of Ventricular Septal Defect. In Rickert-Sperling, S, Kelly, R, Driscoll, D, eds., Congenital Heart Diseases: The Broken Heart. Vienna: Springer, 2016.Google Scholar
Schoenwolf, GC, Bleyl, S, Brauer, P, Francis-West, P. Larsen’s Human Embryology, 5th edn. Philadelphia: Churchill-Livingstone, 2014.Google Scholar
Geyer, SH, Reissig, L, Rose, J, Wilson, R, Prin, F, Szumska, D, et al. A staging system for correct phenotype interpretation of mouse embryos harvested on embryonic day 14 (E14.5). J Anat. 2017; 230: 710–19.Google Scholar
Geyer, SH, Reissig, LF, Hüsemann, M, Höfle, C, Wilson, R, Prin, F, et al. Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat. 2017; 231: 600–614.Google Scholar
Webb, G, Gatzoulis, MA. Atrial septal defects in the adult: recent progress and overview. Circulation. 2006; 114: 1645–53.Google Scholar
Khan, R, Jay, PY. Human Genetics of Atrial Septal Defect. In Rickert-Sperling, S, Kelly, R, Driscoll, D, eds., Congenital Heart Diseases: The Broken Heart. Vienna: Springer, 2016.Google Scholar
Lin, CJ, Lin, CY, Chen, CH, Zhou, B, Chang, CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development. 2012; 139: 3277–99.Google Scholar
Anderson, RH, Webb, S, Brown, NA, Lamers, W, Moorman, A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003; 89: 1110–18.Google Scholar
Shaheen, R, Rahbeeni, Z, Alhashem, A, Faqeih, E, Zhao, Q, Xiong, Y, et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 2014; 94: 898–904.Google Scholar
Acuna-Hidalgo, R, Schanze, D, Kariminejad, A, Nordgren, A, Kariminejad, MH, Conner, P, et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014; 95: 285–93.Google Scholar
Martin, PS, Kloesel, B, Norris, RA, Lindsay, M, Milan, D, Body, SC. Embryonic Development of the Bicuspid Aortic Valve. J Cardiovasc Dev Dis. 2015; 2: 248–72.Google Scholar
Mathieu, P, Bossé, Y, Huggins, GS, Della Corte, A, Pibarot, P, Michelena, HI, et al. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. J Pathol Clin Res. 2015; 1: 195–206.Google Scholar
Combs, MD, Yutzey, KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009; 105: 408–21.Google Scholar
Freeze, SL, Landis, BJ, Ware, SM, Helm, BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns. 2016; 25: 1171–8.Google Scholar
Hinton, RB, Martin, LJ, Rame-Gowda, S, Tabangin, ME, Cripe, LH, Benson, DW. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol. 2009; 53: 1065–71.Google Scholar
References
Senat, MV, Deprest, J, Boulvain, M, Paupe, A, Winer, N, Ville, Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004; 351: 136–144.Google Scholar
Szwast, A, Tian, Z, McCann, M, Donaghue, D, Rychik, J. Vasoreactive response to maternal hyperoxygenation in the fetus with hypoplastic left heart syndrome. Circ Cardiovasc Imaging. 2010; 3: 172–8.Google Scholar
Schidlow, DN, Donofrio, MT. Prenatal maternal hyperoxygenation testing and implications for critical care delivery planning among fetuses with congenital heart disease: early experience. Am J Perinatol. 2018; 35: 16–23.Google Scholar
Kohl, T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol. 2010; 31: 250–63.Google Scholar
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zhang, M, Zhao, Y, et al. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016; 6: 39304.Google Scholar
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zang, M, Wang, T, Zhou, Q. Sustained chronic maternal hyperoxygenation increases myocardial deformation in fetuses with a small aortic isthmus at risk for coarctation. J Am Soc Echocardiogr. 2017; 30; 992–1000.Google Scholar
Maxwell, D, Allan, L, Tynan, MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J. 1991; 65: 256–8.Google Scholar
Delius, RE, Rademecker, MA, de Leval, MR, Elliott, MJ, Stark, J. Is a high-risk biventricular repair always preferable to conversion to a single ventricle repair? J Thorac Cardiovasc Surg. 1996; 112: 1561–8; discussion 1568–9.Google Scholar
Burch, M, Kaufman, L, Archer, N, Sullivan, I. Persistent pulmonary hypertension late after neonatal aortic valvotomy: a consequence of an expanded surgical cohort. Heart. 2004; 90: 918–920.Google Scholar
Emani, SM, Bacha, EA, McElhinney, DB, Marx, GR, Tworetzky, W, Pigula, FA, del Nido, PJ. Primary left ventricular rehabilitation is effective in maintaining two-ventricle physiology in the borderline left heart. J Thorac Cardiovasc Surg. 2009; 138: 1276–82.Google Scholar
Tulzer, G, Arzt, W, Franklin, RC, Loughna, PV, Mair, R, Gardiner, HM. Pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. Lancet. 2002; 360: 1567–8.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, Benson, CB, Brusseau, R, Morash, D, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009; 124; e510–18.Google Scholar
Marshall, AC, van der Velde, ME, Tworetzky, W, Gomez, CA, Wilkins-Haug, L, Benson, CB, et al. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004; 110: 253–8.Google Scholar
Rychik, J, Rome, JJ, Collins, MH, DeCampli, WM, Spray, TL. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999; 34: 554–60.Google Scholar
Taylor, PV, Scott, JS, Gerlis, LM, Esscher, E, Scott, O. Maternal antibodies against fetal cardiac antigens in congenital complete heart block. N Engl J Med. 1986; 315: 667–72.Google Scholar
Eliasson, H, Sonesson, SE, Sharland, G, Granath, F, Simpson, JM, Carvalho, JS, et al. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation. 2011; 124: 1919–26.Google Scholar
Lopes, LM, Tavares, GM, Damiano, AP, Lopes, MA, Aiello, VD, Schultz, R, Zugaib, M. Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation. 2008; 118: 1268–75.Google Scholar
Jaeggi, ET, Fouron, JC, Silverman, ED, Ryan, G, Smallhorn, J, Hornberger, LK. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation. 2004; 110: 1542–8.Google Scholar
Carpenter, RJ Jr., Strasburger, JF, Garson, A Jr., Smith, RT, Deter, RL, Engelhardt, HT Jr. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J Am Coll Cardiol. 1986; 8: 1434–6.Google Scholar
Walkinshaw, SA, Welch, CR, McCormack, J, Walsh, K. In utero pacing for fetal congenital heart block. Fetal Diagn Ther. 1994; 9: 183–5.Google Scholar
Assad, RS, Zielinsky, P, Kalil, R, Lima, G, Aramayo, A, Santos, A, et al. New lead for in utero pacing for fetal congenital heart block. J Thorac Cardiovasc Surg. 2003; 126: 300–2.Google Scholar
Bar-Cohen, Y, Loeb, GE, Pruetz, JD, Silka, MJ, Guerra, C, Vest, AN, Zhou, L, Chmait, RH. Preclinical testing and optimization of a novel fetal micropacemaker. Heart Rhythm. 2015; 12: 1683–90.Google Scholar
Co-Vu, J, Lopez-Colon, D, Vyas, HV, Weiner, N, DeGroff, C. Maternal hyperoxygenation: a potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography. 2017; 34: 1822–33.Google Scholar
Kovacevic, A, Öhman, A, Tulzer, G, Herberg, U, Dangel, J, Carvalho, JS, et al. Fetal hemodynamic response to aortic valvuloplasty and postnatal outcome: a European multicenter study. Ultrasound Obstet Gynecol. 2018; 52: 221–9.Google Scholar
Gardiner, HM, Kovacevic, A, Tulzer, G, Sarkola, T, Herberg, U, Dangel, J, et al. Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound Obstet Gynecol. 2016; 48: 373–81.Google Scholar
Di Donato, RM, Jonas, RA, Lang, P, Rome, JJ, Mayer, JE Jr., Castaneda, AR. Neonatal repair of tetralogy of Fallot with and without pulmonary atresia. J Thorac Cardiovasc Surg. 1991; 101: 126–37.Google Scholar
Freud, LR, McElhinney, DB, Marshall, AC, Marx, GR, Friedman, KG, del Nido, PJ, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 2014; 130: 638–45.Google Scholar
Axt-Fliedner, R, Kreiselmaier, P, Schwarze, A, Krapp, M, Gembruch, U. Development of hypoplastic left heart syndrome after diagnosis of aortic stenosis in the first trimester by early echocardiography. Ultrasound Obstet Gynecol. 2006; 28: 106–9.Google Scholar
Freud, LR, Moon-Grady, A, Escobar-Diaz, MC, Gotteiner, NL, Young, LT, McElhinney, DB, Tworetzky, W. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound Obstet Gynecol. 2015; 45: 326–32.Google Scholar
Matsui, H, Gardiner, HM. Fetal intervention for cardiac disease: the cutting edge of perinatal care. Semin Fetal Neonatal Med. 2007; 12: 482–9.Google Scholar
Reich, O, Tax, P, Marek, J, Rázek, V, Gilík, J, Tomek, V, et al. Long term results of percutaneous balloon valvuloplasty of congenital aortic stenosis: independent predictors of outcome. Heart. 2004; 90: 70–76.Google Scholar
McElhinney, DB, Lock, JE, Keane, JF, Moran, AM, Colan, SD. Left heart growth, function, and reintervention after balloon aortic valvuloplasty for neonatal aortic stenosis. Circulation. 2005; 111: 451–8.Google Scholar
Ashburn, DA, McCrindle, BW, Tchervenkov, CI, Jacobs, ML, Lofland, GK, Bove, EL, et al. Outcomes after the Norwood operation in neonates with critical aortic stenosis or aortic valve atresia. J Thorac Cardiovasc Surg. 2003; 125: 1070–82.Google Scholar
Jacobs, JP, O’Brien, SM, Pasquali, SK, Jacobs, ML, Lacour-Gayet, FG, Tchervenkov, CI, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011; 92: 2184–91; discussion 2191–2.Google Scholar
Rasiah, SV, Ewer, AK, Miller, P, Wright, JG, Barron, DJ, Brawn, WJ, Kilby, MD. Antenatal perspective of hypoplastic left heart syndrome: 5 years on. Arch Dis Child Fetal Neonatal Ed. 2008; 93: F192–7.Google Scholar
Daubeney, PE, Wang, D, Delany, DJ, Keeton, BR, Anderson, RH, Slavik, Z, Flather, M, Webber, SA, UK and Ireland Collaborative Study of Pulmonary Atresia with Intact Ventricular Septum. UK and Ireland collaborative study of pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg. 2005; 130: 1071.Google Scholar
Baba, K, Kotani, Y, Chetan, D, Chaturvedi, RR, Lee, KJ, Benson, LN, et al. Hybrid versus Norwood strategies for single-ventricle palliation. Circulation. 2012; 126 (Suppl. 1): S123–31.Google Scholar
Kovacevic, A, Roughton, M, Mellander, M, Öhman, A, Tulzer, G, Dangel, J, et al. Fetal aortic valvuloplasty: investigating institutional bias in surgical decision-making. Ultrasound Obstet Gynecol. 2014; 44: 538–44.Google Scholar
Arzt, W, Wertaschnigg, D, Veit, I, Klement, F, Gitter, R, Tulzer, G. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: Experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011; 37: 689–95.Google Scholar
McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, Brown, DW, Benson, CB, Silva, V, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009; 120: 1482–90.Google Scholar
Jaeggi, E, Renaud, C, Ryan, G, Chaturvedi, R. Intrauterine therapy for structural congenital heart disease: Contemporary results and Canadian experience. Trends Cardiovasc Med. 2016; 26: 639–46.Google Scholar
Pedra, SR, Peralta, CF, Crema, L, Jatene, IB, da Costa, RN, Pedra, CA. Fetal interventions for congenital heart disease in Brazil. Pediatr Cardiol. 2014; 35: 399–405.Google Scholar
Galindo, A, Gómez-Montes, E, Gómez, O, Bennasar, M, Crispi, F, Herraiz, I, et al. Fetal aortic valvuloplasty: experience and results of two tertiary centers in Spain. Fetal Diagn Ther. 2017; 42: 262–70.Google Scholar
Moon-Grady, AJ, Morris, SA, Belfort, M, Chmait, R, Dangel, J, Devlieger, R, et al. International Fetal Cardiac Intervention Registry: A Worldwide Collaborative Description and Preliminary Outcomes. J Am Coll Cardiol. 2015; 66: 388–99.Google Scholar
Hunter, LE, Chubb, H, Miller, O, Sharland, G, Simpson, JM. Fetal aortic valve stenosis: a critique of case selection criteria for fetal intervention. Prenat Diagn. 2015; 35: 1176–81.Google Scholar
Roman, KS, Fouron, JC, Nii, M, Smallhorn, JF, Chaturvedi, R, Jaeggi, ET. Determinants of outcome in fetal pulmonary valve stenosis or atresia with intact ventricular septum. Am J Cardiol. 2007; 99: 699–703.Google Scholar
Gardiner, HM, Belmar, C, Tulzer, G, Barlow, A, Pasquini, L, Carvalho, JS, et al. Morphological and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol. 2008; 51: 1299–308.Google Scholar
Tulzer, A, Arzt, W, Gitter, R, Prandstetter, C, Grohmann, E, Mair, R, Tulzer, G. Immediate effects and outcomes after in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact septum or critical pulmonary stenosis. Ultrasound Obstet Gynecol. 2018; 52: 230–7.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, Benson, CB, Brusseau, R, Morash, D, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009; 124: e510–18.Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, Challman, M, Nguyen, M, Feagin, DK, et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016; 48: 365–72.Google Scholar
Wohlmuth, C, Wertaschnigg, D, Wieser, I, Arzt, W, Tulzer, G. Tissue Doppler imaging in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome before and after fetal aortic valvuloplasty. Ultrasound Obstet Gynecol. 2016; 47: 608–15.Google Scholar
Tworetzky, W, Wilkins-Haug, L, Jennings, RW, van der Velde, ME, Marshall, AC, Marx, GR, et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation. 2004; 110: 2125–31.Google Scholar
Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, Copel, JA, Sklansky, MS, Abuhamad, A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014; 129: 2183–242.Google Scholar
Jouannic, JM, Boudjemline, Y, Benifla, JL, Bonnet, D. Transhepatic ultrasound-guided cardiac catheterization in the fetal lamb. Circulation. 2005; 111: 736–41.Google Scholar
Kohl, T, Müller, A, Tchatcheva, K, Achenbach, S, Gembruch, U. Fetal transesophageal echocardiography: clinical introduction as a monitoring tool during cardiac intervention in a human fetus. Ultrasound Obstet Gynecol. 2005; 26: 780–5.Google Scholar
References
Gaynor, JW, Nord, AS, Wernovsky, G, Bernbaum, J, Solot, CB, Burnham, N, Zackai, E, Heagerty, PJ, Clancy, RR, Nicolson, SC, Jarvik, GP, Gerdes, M. Apolipoprotein E genotype modifies the risk of behavior problems after infant cardiac surgery. Pediatrics. 2009; 124: 241–250.Google Scholar
Bellinger, DC, Newburger, JW, Wypij, D, Kuban, KC, duPlessis, AJ, Rappaport, LA. Behaviour at eight years in children with surgically corrected transposition: the Boston Circulatory Arrest Trial. Cardiol Young. 2009; 19: 86–97.Google Scholar
Bellinger, DC, Wypij, D, duPlessis, AJ, Rappaport, LA, Jonas, RA, Wernovsky, G, Newburger, JW. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003; 126: 1385–96.Google Scholar
Wernovsky, G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young. 2006; 16 (Suppl. 1): 92–104.Google Scholar
Yi, JJ, Tang, SX, McDonald-McGinn, DM, Calkins, ME, Whinaa, DA, Souders, MC, Zackai, EH, Goldmuntz, E, Gaynor, JW, Gur, RC, Emanuel, BS, Gur, RE. Contribution of congenital heart disease to neuropsychiatric outcome in school-age children with 22q11.2 deletion syndrome. Am J Med Genet. 2013; 165: 137–47.Google Scholar
Alsaied, T, Marino, BS, Esbensen, AJ, Anixt, JS, Epstein, JN, Cnota, JF. Does congenital heart disease affect neurodevelopmental outcomes in children with Down syndrome? Congenit Heart Dis. 2016; 11: 26–33.Google Scholar
Visootsak, J, Mahle, WT, Kirshbom, PM, Huddleston, L, Caron-Besch, M, Ransom, M, Sherman, SL. Neurodevelopmental outcomes in children with Down syndrome and congenital heart defects. Am J Med Genet. 2011; 155: 2688–91.Google Scholar
Takashima, S, Becker, LE, Armstrong, DL, Chan, F. Abnormal neuronal development in the visual cortex of the human fetus and infant with Down’s syndrome. A quantitative and qualitative Golgi study. Brain Res. 1981; 225: 1–21.Google Scholar
Robin, NH, Taylor, CJ, McDonald-McGinn, DM, Zackai, EH, Bingham, P, Collins, KJ, et al. Polymicrogyria and deletion 22q11.2 sundrome: window to the etiology of a common cortical malformation. Am J Med Genet. 2006; 140: 2416–25.Google Scholar
Newburger, JW, Jonas, RA, Wernovsky, G, Wypij, D, Hickey, PR, Kuban, K, Farrell, DM, Holmes, GL, Helmers, SL, Constantinou, J, Carrazana, E. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. New Engl J Med. 1993; 329: 1057–64.Google Scholar
Bellinger, DC, Jonas, RA, Rappaport, LA, Wypij, D, Wernovsky, G, Kuban, KC, Barnes, PD, Holmes, GL, Hickey, PR, Strand, RD, Walsh, AZ. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. New Engl J Med. 1995; 332: 549–55.Google Scholar
Bellinger, DC, Wypij, D, Rivkin, MJ, DeMaso, DR, Robertson, RL, Dunbar-Masterson, C, Rappaport, LA, Wernovsky, G, Jonas, RA, Newburger, JW. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011; 124: 1361–69.Google Scholar
Wypij, D, Jonas, RA, Bellinger, DC, Del Nido, P, Mayer, JE, Bacha, EA, Forbess, JM, Pigula, F, Laussen, PC, Newburger, JW. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials. J Thorac Cardiovasc Surg. 2008; 135: 355–60.Google Scholar
Gaynor, JW, Stopp, C, Wypij, D, Andropoulos, DB, Atallah, J, Atz, AM, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015; 135: 816–25.Google Scholar
Marino, BS, Lipkin, PH, Newburger, JW, Peacock, G, Gerdes, M, Gaynor, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012; 126: 1143–72.Google Scholar
Glauer, TA, Rorke, LB, Weinberg, PM, Clancy, RR. Acquired neuropathologic lesions associated with the hypoplastic left heart syndrome. Pediatrics. 1990; 85: 991–1000.Google Scholar
Kinney, HC, Panigrahy, A, Newburger, JW, Jonas, RA, Sleeper, LA. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol. 2005; 110: 563–78.Google Scholar
Mahle, WT, Tavani, F, Zimmerman, RA, Nicolson, SC, Galli, KK, Gaynor, JW, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002; 106: I109–14.Google Scholar
Miller, SP, McQuillen, PS, Hamrick, S, Xu, D, Glidden, DV, Charlton, N, Karl, T, Azakie, A, Ferriero, DM, Barkovich, AJ, Vigneron, DB. Abnormal brain development in newborns with congenital heart disease. New Engl J Med. 2007; 357: 1928–38.Google Scholar
Peyvandi, S, Chau, V, Guo, T, Xu, D, Glass, HC, Synnes, A, Poskitt, K, Barkovich, AJ, Miller, SP, McQuillen, PS. Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease. J Am Coll Cardiol. 2018; 71: 1986–96.Google Scholar
Licht, DJ, Shera, DM, Clancy, RR, Wernovsky, G, Montenegro, LM, Nicolson, SC, Zimmerman, RA, Spray, TL, Gaynor, JW, Vossough, A. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009; 137: 529–37.Google Scholar
Limperopoulos, C, Majnemer, A, Shevell, MI, Rosenblatt, B, Rohlicek, C, Tchervenkov, C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics. 1999; 103: 402–8.Google Scholar
Birca, A, Vakorin, VA, Porayette, P, Madathil, S, Chau, V, Seed, M, et al. Interplay of brain structure and function in neonatal congenital heart disease. Ann Clin Transl Neurol. 2016; 3: 708–22.Google Scholar
Dimitropoulos, A, McQuillen, PS, Sethi, V, Moosa, A, Chau, V, Xu, D, Brant, R, Azakie, A, Campbell, A, Barkovich, AJ, Poskitt, KJ. Brain injury and development in newborns with critical congenital heart disease. Neurology. 2013; 81: 241–8.Google Scholar
Volpe, JJ. Encephalopathy of congenital heart disease – destructive and developmental effects intertwined. J Pediatr. 2014; 164: 962–5.Google Scholar
Hinton, RB, Andelfinger, G, Sekar, P, Hinton, AC, Gendron, RL, Michelfelder, EC, Robitaille, Y, Benson, DW. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res. 2008; 64: 364.Google Scholar
Limperopoulos, C, Tworetzky, W, McElhinney, DB, Newburger, JW, Brown, DW, Robertson, RL, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010; 121: 26–33.Google Scholar
Schellen, C, Ernst, S, Gruber, GM, Mlczoch, E, Weber, M, Brugger, PC, Ulm, B, Langs, G, Salzer-Muhar, U, Prayer, D, Kasprian, G. Fetal MRI detects early alterations of brain development in Tetralogy of Fallot. Am J Obstet Gynecol. 2015; 213: 392.e1–7.Google Scholar
Jorgensen, DS, Tabor, A, Rode, L, Dyre, L, Ekelund, CK, Helmuth, SG, et al. Longitudinal brain and body growth in normal fetuses and fetuses with transposition of the great arteries – a quantitative volumetric magnetic resonance imaging study. Circulation. 2018; 138: 1368–70.Google Scholar
Rudolph, AM. Congenital Diseases of the Heart: Clinical-Physiologic Considerations in Diagnosis and Management. Chicago: Year Book Medical Publishers, 1974.Google Scholar
Prsa, M, Sun, L, van Amerom, J, Yoo, SJ, Grosse-Wortmann, L, Jaeggi, E, Macgowan, C, Seed, M. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014; 7: 663–70.Google Scholar
Sun, L, Macgowan, CK, Portnoy, S, Sled, JG, Yoo, SJ, Grosse‐Wortmann, L, Jaeggi, E, Kingdom, J, Seed, M. New advances in fetal cardiovascular magnetic resonance imaging for quantifying the distribution of blood flow and oxygen transport: potential applications in fetal cardiovascular disease diagnosis and therapy. Echocardiography. 2017; 34: 1799–803.Google Scholar
Sun, L, Macgowan, CK, Sled, JG, Yoo, SJ, Manlhiot, C, Porayette, P, Grosse-Wortmann, L, Jaeggi, E, McCrindle, BW, Hickey, E, Miller, S, Seed, M. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015; 131: 1313–23.Google Scholar
Jones, HN, Olbrych, SK, Smith, KL, Cnota, JF, Habli, M, Ramos-Gonzales, O, Owens, KJ, Hinton, AC, Polzin, WJ, Muglia, LJ, Hinton, RB. Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta. 2015; 36: 1078–86.Google Scholar
Donofrio, MT, Bremer, YA, Schieken, RM, Gennings, C, Morton, LD, Eidem, BW, Cetta, F, Falkensammer, CB, Huhta, JC, Kleinman, CS. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003; 24: 436–43.Google Scholar
Cohn, HE, Sacks, EJ, Heymann, MA, Rudolph, AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974; 120: 817–24.Google Scholar
Wladimiroff, JW, Tonge, HM, Stewart, PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. BJOG. 1986; 93: 471–5.Google Scholar
Pearce, W. Hypoxic regulation of the fetal cerebral circulation. J App Physiol. 2006; 100: 731–8.Google Scholar
Wheaton, WW, Chandel, NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol-Cell Physiol. 2010; 300: C385–93.Google Scholar
Yuen, TJ, Silbereis, JC, Griveau, A, Chang, SM, Daneman, R, Fancy, SP, Zahed, H, Maltepe, E, Rowitch, DH. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell. 2014; 158: 383–96.Google Scholar
Tolcos, M, Bateman, E, O’Dowd, R, Markwick, R, Vrijsen, K, Rehn, A, Rees, S. Intrauterine growth restriction affects the maturation of myelin. Exp Neurol. 2011; 232: 53–65.Google Scholar
Morton, PD, Korotcova, L, Lewis, BK, Bhuvanendran, S, Ramachandra, SD, Zurakowski, D, Zhang, J, Mori, S, Frank, JA, Jonas, RA, Gallo, V, Ishibashi, N. Abnormal neurogenesis and cortical growth in congenital heart disease. Sci Transl Med. 2017; 9: 7029.Google Scholar
Fowden, AL, Giussani, DA, Forhead, AJ. Endocrine and metabolic programming during intrauterine development. Early Hum Dev. 2005; 81: 723–34.Google Scholar
Rees, S, Harding, R, Walker, D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 2011; 29: 551–63.Google Scholar
Rollins, CK, Asaro, LA, Akhondi-Asl, A, Kussman, BD, Rivkin, MJ, Bellinger, DC, Warfield, SK, Wypij, D, Newburger, JW, Soul, JS. White matter volume predicts language development in congenital heart disease. J Pediatr. 2017; 181: 42–8.Google Scholar
von Rhein, M, Buchmann, A, Hagmann, C, Huber, R, Klaver, P, Knirsch, W, Latal, B. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain. 2013; 137: 268–76.Google Scholar
Rivkin, MJ, Watson, CG, Scoppettuolo, LA, Wypij, D, Vajapeyam, S, Bellinger, DC, DeMaso, DR, Robertson, RL Jr., Newburger, JW. Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg. 2013; 146: 543–9.Google Scholar
Panigrahy, A, Schmithorst, VJ, Wisnowski, JL, Watson, CG, Bellinger, DC, Newburger, JW, Rivkin, MJ. Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries. NeuroImage: Clinical. 2015; 7: 438–48.Google Scholar
Ibuki, K, Watanabe, K, Yoshimura, N, Kakimoto, T, Matsui, M, Yoshida, T, Origasa, H, Ichida, F. The improvement of hypoxia correlates with neuroanatomic and developmental outcomes: comparison of midterm outcomes in infants with transposition of the great arteries or single-ventricle physiology. J Thorac Cardiovasc Surg. 2012; 143: 1077–85.Google Scholar
Homsy, J, Zaidi, S, Shen, Y, Ware, JS, Samocha, KE, Karczewski, KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015; 350: 1262–6.Google Scholar
Forbess, JM, Visconti, KJ, Hancock-Friesen, C, Howe, RC, Bellinger, DC, Jonas, RA. Neurodevelopmental outcome after congenital heart surgery: results from an institutional registry. Circulation. 2002; 106: I95–102.Google Scholar
Laraja, K, Sadhwani, A, Tworetzky, W, Marshall, AC, Gauvreau, K, Freud, L, Hass, C, Dunbar-Masterson, C, Ware, J, Lafranchi, T, Wilkins-Haug, L. Neurodevelopmental outcome in children after fetal cardiac intervention for aortic stenosis with evolving hypoplastic left heart syndrome. J Pediatr. 2017; 184: 130–6.Google Scholar
Porayette, P, Madathil, S, Sun, L, Jaeggi, E, Grosse‐Wortmann, L, Yoo, SJ, Hickey, E, Miller, SP, Macgowan, CK, Seed, M. MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenat Diag. 2016 ; 36: 274–81.Google Scholar
Kohl, T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Ped Cardiol. 2010; 31: 250–63.Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, Challman, M, Nguyen, M, Feagin, DK, Schoppe, L, Zhang, J, Bhatt, A, Sexson‐Tejtel, SK, Lopez, KN. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016; 48: 365–72.Google Scholar
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zhang, M, Zhao, Y, Wang, T, Zhou, Q. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016; 6: 39304.Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, Karlsten, M, Nguyen, MJ, Schoppe, L, et al. The effect of maternal hyperoxygenation on cerebral and placental vasoregulation in the fetus with left heart hypoplasia. J Am Soc Echo. 2015; 28: B92.Google Scholar
Accurso, FJ, Alpert, B, Wilkening, RB, Petersen, RG, Meshia, G. Time-dependent response of fetal pulmonary blood flow to an increase in fetal oxygen tension. Resp Physiol. 1986; 63: 43–52.Google Scholar
Szwast, A, Putt, M, Gaynor, JW, Licht, D, Rychik, J. Cerebrovascular response to maternal hyperoxygenation (MH) in fetuses with hypoplastic left heart syndrome (HLHS) depends upon gestational age (GA) and baseline cerebrovascular resistance. Ultrasound Obstet Gynecol. 2017; 52: 473–8.Google Scholar
da Fonseca, EB, Bittar, RE, Carvalho, MH, Zugaib, M. Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study. Am J Obstet Gynecol. 2003; 188: 419–24.Google Scholar
Stein, DG, Wright, DW, Kellermann, AL. Does progesterone have neuroprotective properties? Ann Emerg Med. 2008; 51: 164–72.Google Scholar
Partridge, EA, Davey, MG, Hornick, MA, McGovern, PE, Mejaddam, AY, Vrecenak, JD, et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat Comm. 2017; 8: 15112.Google Scholar
Usuda, H, Watanabe, S, Miura, Y, Saito, M, Musk, GC, Rittenschober-Böhm, J, Ikeda, H, Sato, S, Hanita, T, Matsuda, T, Jobe, AH. Successful maintenance of key physiological parameters in preterm lambs treated with ex vivo uterine environment therapy for a period of 1 week. Am J Obstet Gynecol. 2017; 217: 457–e1.Google Scholar
Jenkins, KJ, Gauvreau, K, Newburger, JW, Spray, TL, Moller, JH, Iezzoni, LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thoracic Cardiovasc Surg. 2002; 123: 110–18.Google Scholar
Peyvandi, S, De Santiago, V, Chakkarapani, E, Chau, V, Campbell, A, Poskitt, KJ, Xu, D, Barkovich, AJ, Miller, S, McQuillen, P. Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain injury. JAMA Pediatr. 2016; 170: e154450.Google Scholar
References
Naheed, ZJ, Strasburger, JF, Deal, BJ, Benson, DW Jr., Gidding, SS. Fetal tachycardia: mechanisms and predictors of hydrops fetalis. J Am Coll Cardiol. 1996; 27: 1736–40.Google Scholar
Artman, M, Coetzee, W. Developmental regulation of cardiac ion channels. In Zipes, D, Jalife, J, eds., Cardiac Electrophysiology: From Cell to Bedside. Philadelphia, PA: Saunders Elsevier, 2009, pp. 157–68.Google Scholar
Creazzo, T. Functional developmental biology of the myocardium. In Loewy Kirby, M, ed., Cardiac Development. New York: Oxford University Press, 2007, pp. 53–68.Google Scholar
Friedman, WF. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972; 15: 87–111.Google Scholar
Romero, T, Covell, J, Friedman, WF. A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Physiol. 1972; 222: 1285–90.Google Scholar
Schmidt, MR, Kristiansen, SB, White, P, Smerup, M, Bøtker, HE, Vogel, M, Hjortdal, V, Sørensen, K, Redington, A. Glucose-insulin infusion improves cardiac function during fetal tachycardia. J Am Coll Cardiol. 2004; 43: 445–52.Google Scholar
Vanoli, E, Cerati, D, Pedretti, RF. Autonomic control of heart rate: pharmacological and nonpharmacological modulation. Basic Res Cardiol. 1998; 93 (Suppl. 1): 133–42.Google Scholar
Rudolph, AM, Heymann, MA. Cardiac output in the fetal lamb: the effects of spontaneous and induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol. 1976; 124: 183–92.Google Scholar
Reed, KL, Appleton, CP, Anderson, CF, Shenker, L, Sahn, DJ. Doppler studies of vena cava flows in human fetuses. Insights into normal and abnormal cardiac physiology. Circulation. 1990; 81: 498–505.Google Scholar
Brace, RA. Effects of outflow pressure on fetal lymph flow. Am J Obstet Gynecol. 1989; 160: 494–7.Google Scholar
Rudolph, A. The fetal circulation and postnatal adaptation. In Rudolph, A, ed., Congenital Diseases of the Heart. Armonk, NY: Future Publishing Company, 2001, pp. 3–44Google Scholar
Schmidt, KG, Ulmer, HE, Silverman, NH, Kleinman, CS, Copel, JA. Perinatal outcome of fetal complete atrioventricular block: a multicenter experience. J Am Coll Cardiol. 1991; 17: 1360–6.Google Scholar
Simpson, JM, Sharland, GK. Fetal tachycardias: management and outcome of 127 consecutive cases. Heart. 1998; 79: 576–81.Google Scholar
Jaeggi, E, Fouron, JC, Drblik, SP. Fetal atrial flutter: diagnosis, clinical features, treatment, and outcome. J Pediatr. 1998; 132: 335–9.Google Scholar
Jaeggi, ET, Carvalho, JS, De Groot, E, Api, O, Clur, SA, Rammeloo, L, McCrindle BW, , Ryan, G, Manlhiot, C, Blom, NA. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation. 2011; 124: 1747–54.Google Scholar
Wacker-Gussmann, A, Strasburger, JF, Srinivasan, S, Cuneo, BF, Lutter, W, Wakai, RT. Fetal atrial flutter: electrophysiology and associations with rhythms involving an accessory pathway. J Am Heart Assoc. 2016; 5: e003673.Google Scholar
Kleinman, CS, Donnerstein, RL, Jaffe, CC, DeVore, GR, Weinstein, EM, Lynch, DC, Talner, NS, Berkowitz, RL, Hobbins, JC. Fetal echocardiography. A tool for evaluation of in utero cardiac arrhythmias and monitoring of in utero therapy: analysis of 71 patients. Am J Cardiol. 1983; 51: 237–43.Google Scholar
Jaeggi, E, Fouron, JC, Fournier, A, van Doesburg, N, Drblik, SP, Proulx, F. Ventriculo-atrial time interval measured on M mode echocardiography: a determining element in diagnosis, treatment, and prognosis of fetal supraventricular tachycardia. Heart. 1998; 79: 582–7.Google Scholar
Fouron, JC, Fournier, A, Proulx, F, Lamarche, J, Bigras, JL, Boutin, C, Brassard, M, Gamache, S. Management of fetal tachyarrhythmia based on superior vena cava/aorta Doppler flow recordings. Heart. 2003; 89: 1211–16.Google Scholar
Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, Copel, JA, Sklansky, MS, Abuhamad, A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014; 129: 2183–242.Google Scholar
Kleinman, CS, Copel, JA, Weinstein, EM, Santulli, TV Jr., Hobbins, JC. Treatment of fetal supraventricular tachyarrhythmias. J Clin Ultrasound. 1985; 13: 265–73.Google Scholar
van Engelen, AD, Weijtens, O, Brenner, JI, Kleinman, CS, Copel, JA, Stoutenbeek, P, Meijboom, EJ. Management outcome and follow-up of fetal tachycardia. J Am Coll Cardiol. 1994; 24: 1371–5.Google Scholar
Frohn-Mulder, IM, Stewart, PA, Witsenburg, M, Den Hollander, NS, Wladimiroff, JW, Hess, J. The efficacy of flecainide versus digoxin in the management of fetal supraventricular tachycardia. Prenat Diagn. 1995; 15: 1297–302.Google Scholar
Ebenroth, ES, Cordes, TM, Darragh, RK. Second-line treatment of fetal supraventricular tachycardia using flecainide acetate. Pediatr Cardiol. 2001; 22: 483–7.Google Scholar
Jouannic, JM, Delahaye, S, Fermont, L, Le Bidois, J, Villain, E, Dumez, Y, Dommerques, M. Fetal supraventricular tachycardia: a role for amiodarone as second-line therapy? Prenat Diagn. 2003; 23: 152–6.Google Scholar
Sridharan, S, Sullivan, I, Tomek, V, Wolfenden, J, Škovranek, J, Yates, R, Janoušek, J, Dominguez, TE, Marek, J. Flecainide versus digoxin for fetal supraventricular tachycardia: comparison of two drug treatment protocols. Heart Rhythm. 2016; 13: 1913–19.Google Scholar
Ekman-Joelsson, BM, Mellander, M, Lagnefeldt, L, Sonesson, SE. Foetal tachyarrhythmia treatment remains challenging even if the vast majority of cases have a favourable outcome. Acta Paediatr. 2015; 104: 1090–7.Google Scholar
Hill, GD, Kovach, JR, Saudek, DE, Singh, AK, Wehrheim, K, Frommelt, MA. Transplacental treatment of fetal tachycardia: a systematic review and meta-analysis. Prenat Diagn. 2017; 37: 1076–83.Google Scholar
Allan, LD, Chita, SK, Sharland, GK, Maxwell, D, Priestley, K. Flecainide in the treatment of fetal tachycardias. Br Heart J. 1991; 65: 46–8.Google Scholar
Barjot, P, Hamel, P, Calmelet, P, Maragnes, P, Herlicoviez, M. Flecainide against fetal supraventricular tachycardia complicated by hydrops fetalis. Acta Obstet Gynecol Scand. 1998; 77: 353–8.Google Scholar
Strizek, B, Berg, C, Gottschalk, I, Herberg, U, Geipel, A, Gembruch, U. High-dose flecainide is the most effective treatment of fetal supraventricular tachycardia. Heart Rhythm. 2016; 13: 1283–8.Google Scholar
Ekiz, A, Kaya, B, Bornaun, H, Acar, DK, Avci, ME, Bestel, A, Yildirim, G. Flecainide as first-line treatment for fetal supraventricular tachycardia. J Matern Fetal Neonatal Med. 2018: 31: 407–12.Google Scholar
Sonesson, SE, Fouron, JC, Wesslen-Eriksson, E, Jaeggi, E, Winberg, P. Foetal supraventricular tachycardia treated with sotalol. Acta Paediatr. 1998; 87: 584–7.Google Scholar
Oudijk, MA, Michon, MM, Kleinman, CS, Kapusta, L, Stoutenbeek, P, Visser, GH, Meijboom, EJ. Sotalol in the treatment of fetal dysrhythmias. Circulation. 2000; 101: 2721–6.Google Scholar
Oudijk, MA, Ruskamp, JM, Ververs, FF, Ambachtsheer, EB, Stoutenbeek, P, Visser, GH, Meijboom, EJ. Treatment of fetal tachycardia with sotalol: transplacental pharmacokinetics and pharmacodynamics. J Am Coll Cardiol. 2003; 42: 765–70.Google Scholar
Shah, A, Moon-Grady, A, Bhogal, N, Collins, KK, Tacy, T, Brook, M, Hornberger, LK. Effectiveness of sotalol as first-line therapy for fetal supraventricular tachyarrhythmias. Am J Cardiol. 2012; 109: 1614–18.Google Scholar
van der Heijden, LB, Oudijk, MA, Manten, GT, ter Heide, H, Pistorius, L, Freund, MW. Sotalol as first-line treatment for fetal tachycardia and neonatal follow-up. Ultrasound Obstet Gynecol. 2013; 42: 285–93.Google Scholar
Uzun, O, Babaoglu, K, Sinha, A, Massias, S, Beattie, B. Rapid control of foetal supraventricular tachycardia with digoxin and flecainide combination treatment. Cardiol Young. 2012; 22: 372–80.Google Scholar
Strasburger, JF, Cuneo, BF, Michon, MM, Gotteiner, NL, Deal, BJ, McGregor, SN, Oudijk, MA, Meijboom, EJ, Feinkind, L, Hussey, M, Parilla, BV. Amiodarone therapy for drug-refractory fetal tachycardia. Circulation. 2004; 109: 375–9.Google Scholar
Krapp, M, Baschat, AA, Gembruch, U, Geipel, A, Germer, U. Flecainide in the intrauterine treatment of fetal supraventricular tachycardia. Ultrasound Obstet Gynecol. 2002; 19: 158–64.Google Scholar
Hansmann, M, Gembruch, U, Bald, R, Manz, M, Redel, DA. Fetal tachyarrhythmias: transplacental and direct treatment of the fetus – a report of 60 cases. Ultrasound Obstet Gynecol. 1991; 1: 162–8.Google Scholar
Parilla, BV, Strasburger, JF, Socol, ML. Fetal supraventricular tachycardia complicated by hydrops fetalis: a role for direct fetal intramuscular therapy. Am J Perinatol. 1996; 13: 483–6.Google Scholar
Moatassim, S, Touleimat, S, Hazelzet, T, Brasseur, MD, Diguet, A, Durand, I, Verspyck, E. Maternal complications induced by digoxin treatment of fetal tachycardia: a retrospective series of 18 cases. J Gynecol Obstet Hum Reprod. 2018; 47: 35–8.Google Scholar
Bourget, P, Pons, JC, Delouis, C, Fermont, L, Frydman, R. Flecainide distribution, transplacental passage, and accumulation in the amniotic fluid during the third trimester of pregnancy. Ann Pharmacother. 1994; 28: 1031–4.Google Scholar
Hopson, JR, Buxton, AE, Rinkenberger, RL, Nademanee, K, Heilman, JM, Kienzle, MG. Safety and utility of flecainide acetate in the routine care of patients with supraventricular tachyarrhythmias: results of a multicenter trial. The Flecainide Supraventricular Tachycardia Study Group. Am J Cardiol. 1996; 77: 72A–82A.Google Scholar
Peralta, AO, John, RM, Gaasch, WH, Taggart, PI, Martin, DT, Venditti, FJ. The class III antiarrhythmic effect of sotalol exerts a reverse use-dependent positive inotropic effect in the intact canine heart. J Am Coll Cardiol. 2000; 36: 1404–10.Google Scholar
Arnoux, P, Seyral, P, Llurens, M, Djiane, P, Potier, A, Unal, D, Cano, JP, Serradimigni, A, Rouault, F. Amiodarone and digoxin for refractory fetal tachycardia. Am J Cardiol. 1987; 59: 166–7.Google Scholar
Gembruch, U, Manz, M, Bald, R, Rüddel, H, Redel, DA, Schlebusch, H, Nitsch, J, Hansmann, M. Repeated intravascular treatment with amiodarone in a fetus with refractory supraventricular tachycardia and hydrops fetalis. Am Heart J. 1989; 118: 1335–8.Google Scholar
Bartalena, L, Bogazzi, F, Braverman, LE, Martino, E. Effects of amiodarone administration during pregnancy on neonatal thyroid function and subsequent neurodevelopment. J Endocrinol Invest. 2001; 24: 116–30.Google Scholar
Magee, LA, Nulman, I, Rovet, JF, Koren, G. Neurodevelopment after in utero amiodarone exposure. Neurotoxicol Teratol. 1999; 21: 261–5.Google Scholar
Vanbesien, J, Casteels, A, Bougatef, A, De Catte, L, Foulon, W, De Bock, S, Smitz, J, De Schepper, J. Transient fetal hypothyroidism due to direct fetal administration of amiodarone for drug resistant fetal tachycardia. Am J Perinatol. 2001; 18: 113–16.Google Scholar
Gembruch, U, Hansmann, M, Redel, DA, Bald, R. Intrauterine therapy of fetal tachyarrhythmias: intraperitoneal administration of antiarrhythmic drugs to the fetus in fetal tachyarrhythmias with severe hydrops fetalis. J Perinat Med. 1988; 16: 39–44.Google Scholar
Gembruch, U, Manz, M, Bald, R, Ruddel, H, Redel, DA, Schlebusch, H, Nitsch, J, Hansmann, M. Repeated intravascular treatment with amiodarone in a fetus with refractory supraventricular tachycardia and hydrops fetalis. Am Heart J. 1989; 118: 1335–8.Google Scholar
References
Glickstein, JS, Buyon, J, Friedman, D. Pulsed Doppler echocardiographic assessment of the fetal PR interval. Am J Cardiol. 2000; 86: 236–9.Google Scholar
Fouron, JC, Fournier, A, Proulx, F, et al. Management of fetal tachyarrhythmia based on superior vena cava/aorta Doppler flow recordings. Heart. 2003; 89: 1211–16.Google Scholar
Carvalho, JS, Prefumo, F, Ciardelli, V, et al. Evaluation of fetal arrhythmias from simultaneous pulsed wave Doppler in pulmonary artery and vein. Heart. 2007; 93: 1448–53.Google Scholar
Wacker-Gussmann, A, Plankl, C, Sewald, M, et al. Fetal cardiac time intervals in healthy pregnancies – an observational study by fetal ECG (Monica Healthcare System). J Perin Medicine. 2017; 46: 587–92.Google Scholar
Wacker-Gussmann, A, Strasburger, JF, Srinivasan, S, et al. Fetal atrial flutter: electrophysiology and associations with rhythms involving an accessory pathway. J Am Heart Assoc. 2016; 5: e003673.Google Scholar
Eswaran, H, Escalona-Vargas, D, Bolin, EH, et al. Fetal magnetocardiography using optically pumped magnetometers: a more adaptable and less expensive alternative? Prenat Diagn. 2017; 37: 193–6.Google Scholar
Rasiah, SV, Ewer, AK, Miller, P, et al. Prenatal diagnosis, management and outcome of fetal dysrhythmia: a tertiary fetal medicine centre experience over an eight-year period. Fetal DiagnTher. 2011; 30: 122–7.Google Scholar
Fouron, JC. Fetal arrhythmias: the Saint-Justine hospital experience. Prenat Diagn. 2004; 24: 1068–80.Google Scholar
Cuneo, BF, Strasburger, JF, Wakai, RT, et al. Conduction system disease in fetuses evaluated for irregular cardiac rhythm. Fetal Diagn Ther. 2006; 21: 307–13.Google Scholar
Srinivasan, S, Strasburger, J. Overview of fetal arrhythmias. Curr Opin Pediatr. 2008; 20: 522–31.Google Scholar
Eliasson, H, Wahren-Herlenius, M, Sonesson, SE. Mechanisms in fetal bradyarrhythmia: 65 cases in a single center analyzed by Doppler flow echocardiographic techniques. Ultrasound Obstet Gynecol. 2011; 37:172–8.Google Scholar
Wiggins, DL, Strasburger, JF, Gotteiner, NL, et al. Magnetophysiologic and echocardiographic comparison of blocked atrial bigeminy and 2:1 atrioventricular block in the fetus. Heart Rhythm. 2013; 10: 1192–8.Google Scholar
Carvalho, JS. Primary bradycardia: keys and pitfalls in diagnosis. Ultrasound Obstet Gynecol. 2014; 44: 125–30.Google Scholar
Strasburger, JF, Wakai, RT. Fetal cardiac arrhythmia detection and in utero therapy. Nat Rev Cardiol. 2010; 7: 277–90.Google Scholar
Jaeggi, ET, Carvalho, JS, De Groot, E, et al. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation. 2011; 124: 1747–54.Google Scholar
Uzun, O, Babaoglu, K, Sinha, A, et al. Rapid control of foetal supraventricular tachycardia with digoxin and flecainide combination treatment. Cardiol Young. 2012; 22: 372–80.Google Scholar
Gembruch, U. Fetal Tachyarrhythmia. In Yagel, S, Silverman, NH, Gembruch, U, eds., Fetal Cardiology: Maternal-Fetal Medicine. New York: Informa Healthcare, 2009, pp. 461–81.Google Scholar
Oudijk, MA, Stoutenbeek, P, Sreeram, N, et al. Persistent junctional reciprocating tachycardia in the fetus. J Matern Fetal Neonatal Med. 2003; 13: 191–6.Google Scholar
Zaidi, SJ, Siddiqui, S, Cuneo, BF, et al. Prenatal diagnosis and management of junctional ectopic tachycardia. Heart Rhythm Case Rep. 2017; 3: 503–8.Google Scholar
Dubin, AM, Cuneo, BF, Strasburger, JF, et al. Congenital junctional ectopic tachycardia and congenital complete atrioventricular block: a shared etiology? Heart Rhythm. 2005; 2: 313–15.Google Scholar
Kang, SL, Howe, D, Coleman, M, et al. Foetal supraventricular tachycardia with hydrops fetalis: a role for direct intraperitoneal amiodarone. Cardiol Young. 2015; 25: 447–53.Google Scholar
Shah, A, Moon-Grady, A, Bhogal, N, et al. Effectiveness of sotalol as first-line therapy for fetal supraventricular tachyarrhythmias. Am J Cardiol. 2012; 109: 1614–18.Google Scholar
Sridharan, S, Sullivan, I, Tomek, V, et al. Flecainide versus digoxin for fetal supraventricular tachycardia: comparison of two drug treatment protocols. Heart Rhythm. 2016; 13: 1913–19.Google Scholar
Ekman-Joelsson, BM, Mellander, M, Lagnefeldt, L, et al. Foetal tachyarrhythmia treatment remains challenging even if the vast majority of cases have a favourable outcome. Acta Paediatr. 2015; 104: 1090–7.Google Scholar
Strizek, B, Berg, C, Gottschalk, I, et al. High-dose flecainide is the most effective treatment of fetal supraventricular tachycardia. Heart Rhythm. 2016; 13: 1283–8.Google Scholar
Ekiz, A, Kaya, B, Bornaun, H, et al. Flecainide as first-line treatment for fetal supraventricular tachycardia. J Matern Fetal Neonatal Med. 2018; 31: 407–12.Google Scholar
Hill, GD, Kovach, JR, Saudek, DE, et al. Transplacental treatment of fetal tachycardia: a systematic review and meta-analysis. Prenat Diagn. 2017; 37: 1076–83.Google Scholar
Strasburger, JF, Cuneo, BF, Michon, MM, et al. Amiodarone therapy for drug-refractory fetal tachycardia. Circulation. 2004; 109: 375–9.Google Scholar
Jouannic, JM, Delahaye, S, Fermont, L, et al. Fetal supraventricular tachycardia: a role for amiodarone as second-line therapy? Prenat Diagn. 2003; 23: 152–6.Google Scholar
Parilla, BV, Strasburger, JF, Socol, ML. Fetal supraventricular tachycardia complicated by hydrops fetalis: a role for direct fetal intramuscular therapy. Am J Perinatol. 1996; 13: 483–6.Google Scholar
Vigneswaran, TV, Callaghan, N, Andrews, RE, et al. Correlation of maternal flecainide concentrations and therapeutic effect in fetal supraventricular tachycardia. Heart Rhythm. 2014; 11: 2047–53.Google Scholar
Cuneo, BF, Strasburger, JF. We only find what we look for: fetal heart rate and the diagnosis of long-QT syndrome. Circ Arrhythm Electrophysiol. 2015; 8: 760–2.Google Scholar
Lopes, LM, Tavares, GM, Damiano, AP, et al. Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation. 2008; 118: 1268–75.Google Scholar
Glatz, AC, Gaynor, JW, Rhodes, LA, et al. Outcome of high-risk neonates with congenital complete heart block paced in the first 24 hours after birth. J Thorac Cardiovasc Surg. 2008; 136: 767–73.Google Scholar
Baruteau, AE, Fouchard, S, Behaghel, A, et al. Characteristics and long-term outcome of non-immune isolated atrioventricular block diagnosed in utero or early childhood: a multicentre study. Eur Heart J. 2012; 33: 622–9.Google Scholar
Eliasson, H, Sonesson, SE, Sharland, G, et al. Isolated atrioventricular block in the fetus: a retrospective multinational, multicentre study of 175 patients. Circulation. 2011; 124: 1919–26.Google Scholar
Van Hare, GF. Magnetocardiography in the diagnosis of fetal arrhythmias. Heart Rhythm. 2013; 10: 1199–200.Google Scholar
Buyon, JP, Hiebert, R, Copel, J, et al. Autoimmune-associated congenital heart block: demographics, mortality, morbidity and recurrence rates obtained from a national neonatal lupus registry. J Am Coll Cardiol. 1998; 31: 1658–66.Google Scholar
Levesque, K, Morel, N, Maltret, A, et al. Description of 214 cases of autoimmune congenital heart block: results of the French neonatal lupus syndrome. Autoimmun Rev. 2015; 14: 1154–60.Google Scholar
Friedman, DM, Kim, MY, Copel, JA, et al. Utility of Cardiac Monitoring in Fetuses at Risk for Congenital Heart Block: The PR Interval and Dexamethasone Evaluation (PRIDE) Prospective Study. Circulation. 2008; 117: 485–93.Google Scholar
Jaeggi, E, Laskin, C, Hamilton, R, et al. The importance of the level of maternal anti-Ro/SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus a prospective study of 186 antibody-exposed fetuses and infants. J Am Coll Cardiol. 2010; 55: 2778–84.Google Scholar
Hutter, D, Silverman, ED, Jaeggi, ET. The benefits of transplacental treatment of isolated congenital complete heart block associated with maternal anti-Ro/SSA antibodies: a review. Scand J Immunol. 2010; 72: 235–41.Google Scholar
Saxena, A, Izmirly, PM, Mendez, B, et al. Prevention and treatment in utero of autoimmune-associated congenital heart block. Cardiol Rev. 2014; 22: 263–7.Google Scholar
Vest, AN, Zhou, L, Huang, X, et al. Design and testing of a transcutaneous RF recharging system for a fetal micropacemaker. IEEE Trans Biomed Circuits Syst. 2017; 11: 336–46.Google Scholar
Cuneo, BF, Mitchell, MB, Marwan, AI, et al. Ex utero intrapartum treatment to ventricular pacing: a novel delivery strategy for complete atrioventricular block with severe bradycardia. Fetal Diagn Ther. 2017; 42: 311–14.Google Scholar
Izmirly, PM, Costedoat-Chalumeau, N, Pisoni, C, et al. Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti-SSA/RO associated cardiac manifestations of neonatal lupus. Circulation. 2012; 126: 76–82.Google Scholar
Ciardulli, A, D’Antonio, F, Magro-Malosso, ER, et al. Maternal steroid therapy for fetuses with second-degree immune-mediated congenital atrioventricular block: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2018; 97: 787–94.Google Scholar
Van den Berg, NW, Slieker, MG, van Beynum, IM, et al. Fluorinated steroids do not improve outcome of isolated atrioventricular block. Int J Cardiol. 2016; 225: 167–71.Google Scholar
Izmirly, PM, Saxena, A, Sahl, SK, et al. Assessment of fluorinated steroids to avert progression and mortality in anti-SSA/Ro-associated cardiac injury limited to the fetal conduction system. Ann Rheum Dis. 2016; 75: 1161–5.Google Scholar
Cuneo, BF, Ambrose, SE, Tworetzky, W. Detection and successful treatment of emergent anti-SSA-mediated fetal atrioventricular block. Am J Obstet Gynecol. 2016; 215: 27–8.Google Scholar
Cuneo, BF, Zhao, H, Strasburger, JF, et al. Atrial and ventricular rate response and patterns of heart rate acceleration during maternal-fetal terbutaline treatment of fetal complete heart block. Am J Cardiol. 2007; 100: 661–5.Google Scholar
Friedman, DM, Llanos, C, Izmirly, PM, et al. Evaluation of fetuses in a study of intravenous immunoglobulin as preventive therapy for congenital heart block: results of a multicenter, prospective, open-label clinical trial. Arthritis Rheum. 2010; 62: 1138–46.Google Scholar
Pisoni, CN, Brucato, A, Ruffatti, A, et al. Failure of intravenous immunoglobulin to prevent congenital heart block: findings of a multicenter, prospective, observational study. Arthritis Rheum. 2010; 62: 1147–52.Google Scholar
Trucco, SM, Jaeggi, E, Cuneo, B, et al. Use of intravenous gamma globulin and corticosteroids in the treatment of maternal autoantibody-mediated cardiomyopathy. J Am Coll Cardiol. 2011; 57: 715–23.Google Scholar
Ruffatti, A, Cerutti, A, Favaro, M, et al. Plasmapheresis, intravenous immunoglobulins and bethametasone – a combined protocol to treat autoimmune congenital heart block: a prospective cohort study. Clin Exp Rheumatol. 2016; 34: 706–13.Google Scholar
Rein, AJ, Mevorach, D, Perles, Z, et al. Early diagnosis and treatment of atrioventricular block in the fetus exposed to maternal anti-SSA/ RO-SSB/LA antibodies. a prospective, observational, fetal kinetocardiogram-based study. Circulation. 2009; 119: 1867–72.Google Scholar
Jaeggi, ET, Silverman, ED, Laskin, C, et al. Prolongation of the atrioventricular conduction in fetuses exposed to maternal anti-Ro/SSA and anti-La/SSB antibodies did not predict progressive heart block. A prospective observational study on the effects of maternal antibodies on 165 fetuses. J Am Coll Cardiol. 2011; 57: 1487–92.Google Scholar
Bergman, G, Eliasson, H, Bremme, K, et al. Anti-Ro52/SSA antibody-exposed fetuses with prolonged atrioventricular time intervals show signs of decreased cardiac performance. Ultrasound Obstet Gynecol. 2009; 34: 543–9.Google Scholar
Kan, N, Silverman, ED, Kingdom, J, et al. Serial echocardiography for immune-mediated heart disease in the fetus: results of a risk-based prospective surveillance strategy. Prenat Diagn. 2017; 37: 375–82.Google Scholar
Cuneo, BF, Moon-Grady, AJ, Sonesson, SE, et al. Heart sounds at home: feasibility of an ambulatory fetal heart rhythm surveillance program for anti-SSA-positive pregnancies. J Perinatol. 2017; 37: 226–30.Google Scholar
References
Greizerstein, HB. Placental and fetal composition during the last trimester of gestation in the rat. Biol Reprod. 1982; 26: 847–53.Google Scholar
Engle, WA, Lemons, JA. Composition of the fetal and maternal guinea pig throughout gestation. Pediatr Res. 1986; 20: 1156–60.Google Scholar
Hartnoll, G, Betremieux, P, Modi, N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000; 82: F24–8.Google Scholar
Barker, G, Boyd, RD, D’Souza, SW, et al. Placental water content and distribution. Placenta. 1994; 15: 47–56.Google Scholar
Goodwin, JW, Godden, JO, Chance, GW. Perinatal Medicine: The Basic Science Underlying Clinical Practice. Baltimore: The Williams and Wilkins Co, 1976.Google Scholar
Campbell, J, Wathen, N, Macintosh, M, et al. Biochemical composition of amniotic fluid and extraembryonic coelomic fluid in the first trimester of pregnancy. Br J Obstet Gynaecol. 1992; 99: 563–5.Google Scholar
Faber, J, Gault, TJ, Long, LR, Thornburg, KL. Chloride and the generation of amniotic fluid in the early embryo. J Exp Zool. 1973; 183: 343–52.Google Scholar
Gillibrand, PN. Changes in the electrolytes, urea and osmolality of the amniotic fluid with advancing pregnancy. J Obstet Gynaecol Br Commonw. 1969; 76: 898–905.Google Scholar
Desai, M, Ladella, S, Ross, MG. Reversal of pregnancy-mediated plasma hypotonicity in the near-term rat. J Matern Fetal Neonatal Med. 2003; 13: 197–202.Google Scholar
Cheung, CY, Brace, RA. Amniotic fluid volume and composition in mouse pregnancy. J Soc Gynecol Investig. 2005; 12: 558–62.Google Scholar
Brace, RA, Wolf, EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989; 161: 382–8.Google Scholar
Gadd, RL. The volume of the liquor amnii in normal and abnormal pregnancies. J Obstet Gynaecol Br Commonw. 1966; 73: 11–22.Google Scholar
Beischer, NA, Brown, JB, Townsend, L. Studies in prolonged pregnancy. 3. Amniocentesis in prolonged pregnancy. Am J Obstet Gynecol. 1969; 103: 496–503.Google Scholar
Queenan, JT, Von Gal, HV, Kubarych, SF. Amniography for clinical evaluation of erythroblastosis fetalis. Am J Obstet Gynecol. 1968; 102: 264–74.Google Scholar
Sibley, CP, Boyd, DH. Mechanisms of transfer across the human placenta. In Polin, RA, Fox, WW, Abman, S, eds., Fetal and Neonatal Physiology. Philadelphia: WB Saunders, 2006, pp. 111–22.Google Scholar
Stulc, J, Stulcova, B, Sibley, CP. Evidence for active maternal-fetal transport of Na+ across the placenta of the anaesthetized rat. J Physiol. 1993; 470: 637–49.Google Scholar
Faber, JJ, Anderson, DF. Current topic: water volume of the ovine conceptus; point of view. Placenta. 1992; 13: 199–212.Google Scholar
Lumbers, ER, Smith, FG, Stevens, AD. Measurement of net transplacental transfer of fluid to the fetal sheep. J Physiol. 1985; 364: 289–99.Google Scholar
Faichney, GJ, Fawcett, AA, Boston, RC. Water exchange between the pregnant ewe, the foetus and its amniotic and allantoic fluids. J Comp Physiol B. 2004; 174: 503–10.Google Scholar
Brace, RA. Progress toward understanding the regulation of amniotic fluid volume: water and solute fluxes in and through the fetal membranes. Placenta. 1995; 16: 1–18.Google Scholar
Schroder, HJ. Basics of placental structures and transfer functions. In Brace, RA, Ross, MG, Robillard, JE, eds., Fetal & Neonatal Body Fluids. Ithaca: Perinatology Press, 1989, pp. 187–226.Google Scholar
Hempstock, J, Bao, YP, Bar-Issac, M, et al. Intralobular differences in antioxidant enzyme expression and activity reflect the pattern of maternal arterial bloodflow within the human placenta. Placenta. 2003; 24: 517–23.Google Scholar
Stulc, J, Stulcova, B. Asymmetrical transfer of inert hydrophilic solutes across rat placenta. Am J Physiol. 1993; 265: R670–5.Google Scholar
Schroder, H, Nelson, P, Power, G. Fluid shift across the placenta: I. The effect of dextran T 40 in the isolated guinea-pig placenta. Placenta. 1982; 3: 327–38.Google Scholar
Hanson, RS, Powrie, RO, Larson, L. Diabetes insipidus in pregnancy: a treatable cause of oligohydramnios. Obstet Gynecol. 1997; 89: 816–17.Google Scholar
Ross, MG, Cedars, L, Nijland, MJ, Ogundipe, A. Treatment of oligohydramnios with maternal 1-deamino-[8-D-arginine] vasopressin-induced plasma hypoosmolality. Am J Obstet Gynecol. 1996; 174: 1608–13.Google Scholar
Ross, MG, Nijland, MJ, Kullama, LK. 1-Deamino-[8-D-arginine] vasopressin-induced maternal plasma hypoosmolality increases ovine amniotic fluid volume. Am J Obstet Gynecol. 1996; 174: 1125–7.Google Scholar
Gizzo, S, Noventa, M, Vitagliano, A, et al. An update on maternal hydration strategies for amniotic fluid improvement in isolated oligohydramnios and normohydramnios: evidence from a systematic review of literature and meta-analysis. PLoS ONE. 2015. 10: e0144334.Google Scholar
Leichtweiss, HP, Schroder, H. The effect of elevated outflow pressure on flow resistance and the transfer of THO, albumin and glucose in the isolated guinea pig placenta. Pflugers Arch. 1977; 371: 251–6.Google Scholar
Brace, RA, Moore, TR. Transplacental, amniotic, urinary, and fetal fluid dynamics during very-large-volume fetal intravenous infusions. Am J Obstet Gynecol. 1991; 164: 907–16.Google Scholar
Brownbill, P, Sibley, CP. Regulation of transplacental water transfer: the role of fetoplacental venous tone. Placenta. 2006; 27: 560–7.Google Scholar
Reynolds, LP,