Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 2.1 Render date: 2021-12-04T05:36:55.811Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 5 - Fertility Preservation Strategies in the Female: Medical/Surgical

Published online by Cambridge University Press:  27 March 2021

Jacques Donnez
Affiliation:
Catholic University of Louvain, Brussels
S. Samuel Kim
Affiliation:
University of Kansas School of Medicine
Get access
Type
Chapter
Information
Fertility Preservation
Principles and Practice
, pp. 171 - 210
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA Cancer J Clin, 2018;68(1):730.CrossRefGoogle ScholarPubMed
Miller, KD, Siegel, RL, Lin, CC et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin, 2016;66(4):271289.CrossRefGoogle ScholarPubMed
Lambertini, M, Del Mastro, L, Pescio, MC et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med, 2016;14:1.CrossRefGoogle ScholarPubMed
ISFP Practice Committee, Kim, SS, Donnez, J et al. Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet, 2012;29(6):465468.CrossRefGoogle ScholarPubMed
Peccatori, FA, Azim, HA Jr., Orecchia, R et al. Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2013;24 Suppl 6:vi160170.CrossRefGoogle ScholarPubMed
Paluch-Shimon, S, Pagani, O, Partridge, AH et al. ESO-ESMO 3rd international consensus guidelines for breast cancer in young women (BCY3). Breast, 2017;35:203217.CrossRefGoogle Scholar
Martinez, F. International Society for Fertility Preservation–ESHRE–ASRM Expert Working Group. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Fertil Steril, 2017;108(3):407–415.e11.CrossRefGoogle Scholar
Oktay, K, Harvey, BE, Partridge, AH et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol, 2018;36(19):19942001.CrossRefGoogle ScholarPubMed
De Vos, M, Smitz, J, Woodruff, TK. Fertility preservation in women with cancer. Lancet, 2014;384(9950):13021310.CrossRefGoogle ScholarPubMed
Turner, NH, Partridge, A, Sanna, G, Di Leo, A, Biganzoli, L. Utility of gonadotropin-releasing hormone agonists for fertility preservation in young breast cancer patients: the benefit remains uncertain. Ann Oncol, 2013;24(9):22242235.CrossRefGoogle ScholarPubMed
Blumenfeld, Z, Katz, G, Evron, A. “An ounce of prevention is worth a pound of cure”: the case for and against GnRH-agonist for fertility preservation. Ann Oncol, 2014;25(9):17191728.CrossRefGoogle Scholar
Rodriguez-Wallberg, K, Turan, V, Munster, P, Oktay, K. Can ovarian suppression with gonadotropin-releasing hormone analogs (GnRHa) preserve fertility in cancer patients? Ann Oncol, 2016;27(2):257.CrossRefGoogle ScholarPubMed
Del Mastro, L, Lambertini, M. Gonadotropin-releasing hormone analogs for ovarian function protection during chemotherapy in young early breast cancer patients: the last piece of the puzzle? Ann Oncol, 2017;28(8):16831685.CrossRefGoogle ScholarPubMed
Lambertini, M, Cinquini, M, Moschetti, I et al. Temporary ovarian suppression during chemotherapy to preserve ovarian function and fertility in breast cancer patients: A GRADE approach for evidence evaluation and recommendations by the Italian Association of Medical Oncology. Eur J Cancer, 2017;71:2533.CrossRefGoogle ScholarPubMed
Chapman, RM, Sutcliffe, SB. Protection of ovarian function by oral contraceptives in women receiving chemotherapy for Hodgkin’s disease. Blood, 1981;58(4):849851.CrossRefGoogle ScholarPubMed
Kishk, EAF, Mohammed Ali, MH. Effect of a gonadotropin-releasing hormone analogue on cyclophosphamide-induced ovarian toxicity in adult mice. Arch Gynecol Obstet, 2013;287(5):10231029.CrossRefGoogle ScholarPubMed
Tan, S-J, Yeh, Y-C, Shang, W-J et al. Protective effect of a gonadotropin-releasing hormone analogue on chemotherapeutic agent-induced ovarian gonadotoxicity: a mouse model. Eur J Obstet Gynecol Reprod Biol, 2010;149(2):182185.CrossRefGoogle ScholarPubMed
Demeestere, I, Streiff, AK, Suzuki, J et al. Follicle-stimulating hormone accelerates mouse oocyte development in vivo. Biol Reprod, 2012;87(1):3,111.CrossRefGoogle ScholarPubMed
Rossi, V, Lispi, M, Longobardi, S et al. LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death Differ, 2017;24(1):7282.CrossRefGoogle Scholar
Blumenfeld, Z. How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. The Oncologist, 2007;12(9):10441054.CrossRefGoogle ScholarPubMed
Durlinger, AL, Kramer, P, Karels, B et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology, 1999;140(12):57895796.CrossRefGoogle ScholarPubMed
Sánchez, F, Smitz, J. Molecular control of oogenesis. Biochim Biophys Acta, 2012;1822(12):18961912.CrossRefGoogle ScholarPubMed
Roness, H, Gavish, Z, Cohen, Y, Meirow, D. Ovarian follicle burnout: a universal phenomenon? Cell Cycle, 2013;12(20):32453246.CrossRefGoogle ScholarPubMed
Hasky, N, Uri-Belapolsky, S, Goldberg, K et al. Gonadotrophin-releasing hormone agonists for fertility preservation: unraveling the enigma? Hum Reprod, 2015;30(5):10891101.CrossRefGoogle ScholarPubMed
Kitajima, Y, Endo, T, Nagasawa, K et al. Hyperstimulation and a gonadotropin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5. Endocrinology, 2006;147(2):694699.CrossRefGoogle Scholar
Jayaprakasan, K, Campbell, BK, Hopkisson, JF et al. Effect of pituitary desensitization on the early growing follicular cohort estimated using anti-Mullerian hormone. Hum Reprod, 2008;23(11):25772583.CrossRefGoogle ScholarPubMed
Dada, T, Salha, O, Allgar, V, Sharma, V. Utero-ovarian blood flow characteristics of pituitary desensitization. Hum Reprod, 2001;16(8):16631670.CrossRefGoogle ScholarPubMed
Yu Ng, EH, Chi Wai, Chan C, Tang, OS, Shu Biu, Yeung W, Chung, Ho P. Effect of pituitary downregulation on antral follicle count, ovarian volume and stromal blood flow measured by three-dimensional ultrasound with power Doppler prior to ovarian stimulation. Hum Reprod, 2004;19(12):28112815.CrossRefGoogle ScholarPubMed
Ben-Aharon, I, Granot, T, Meizner, I et al. Long-term follow-up of chemotherapy-induced ovarian failure in young breast cancer patients: the role of vascular toxicity. The Oncologist, 2015;20(9):985991.CrossRefGoogle ScholarPubMed
Meirow, D, Dor, J, Kaufman, B et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod Oxf Engl, 2007 June;22(6):16261633.CrossRefGoogle ScholarPubMed
Codacci-Pisanelli, G, Del Pup, L, Del Grande, M, Peccatori, FA. Mechanisms of chemotherapy-induced ovarian damage in breast cancer patients. Crit Rev Oncol Hematol, 2017;113:9096.CrossRefGoogle ScholarPubMed
Asimakopoulos, B, Nikolettos, N, Nehls, B et al. Gonadotropin-releasing hormone antagonists do not influence the secretion of steroid hormones but affect the secretion of vascular endothelial growth factor from human granulosa luteinized cell cultures. Fertil Steril, 2006;86(3):636641.CrossRefGoogle Scholar
Harrison, GS, Wierman, ME, Nett, TM, Glode, LM. Gonadotropin-releasing hormone and its receptor in normal and malignant cells. Endocr Relat Cancer, 2004;11(4):725748.CrossRefGoogle ScholarPubMed
Whitelaw, PF, Eidne, KA, Sellar, R, Smyth, CD, Hillier, SG. Gonadotropin-releasing hormone receptor messenger ribonucleic acid expression in rat ovary. Endocrinology, 1995;136(1):172179.CrossRefGoogle ScholarPubMed
Gründker, C, Emons, G. Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer. Reprod Biol Endocrinol, 2003;1:65.CrossRefGoogle ScholarPubMed
Blumenfeld, Z, von Wolff, M. GnRH-analogues and oral contraceptives for fertility preservation in women during chemotherapy. Hum Reprod Update, 2008;14(6):543552.CrossRefGoogle ScholarPubMed
Sobinoff, AP, Nixon, B, Roman, SD, McLaughlin, EA. Staying alive: PI3 K pathway promotes primordial follicle activation and survival in response to 3MC-induced ovotoxicity. Toxicol Sci, 2012;128(1):258271.CrossRefGoogle Scholar
Kalich-Philosoph, L, Roness, H, Carmely, A et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med, 2013;5(185):185ra62.Google ScholarPubMed
Edwards, BS, Isom, WJ, Navratil, AM. Gonadotropin releasing hormone activation of the mTORC2/Rictor complex regulates actin remodeling and ERK activity in LβT2 cells. Mol Cell Endocrinol, 2017;439:346353.CrossRefGoogle ScholarPubMed
Ataya, KM, McKanna, JA, Weintraub, AM, Clark, MR, LeMaire, WJ. A luteinizing hormone-releasing hormone agonist for the prevention of chemotherapy-induced ovarian follicular loss in rats. Cancer Res, 1985;45(8):36513656.Google ScholarPubMed
Bokser, L, Szende, B, Schally, AV. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats. Br J Cancer, 1990;61(6):861865.CrossRefGoogle ScholarPubMed
Ataya, K, Ramahi-Ataya, A. Reproductive performance of female rats treated with cyclophosphamide and/or LHRH agonist. Reprod Toxicol, 1993;7(3):229235.CrossRefGoogle ScholarPubMed
Montz, FJ, Wolff, AJ, Gambone, JC. Gonadal protection and fecundity rates in cyclophosphamide-treated rats. Cancer Res, 1991;51(8):21242126.Google ScholarPubMed
Ataya, K, Rao, LV, Lawrence, E, Kimmel, R. Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod, 1995;52(2):365372.CrossRefGoogle ScholarPubMed
Imai, A, Sugiyama, M, Furui, T, Tamaya, T, Ohno, T. Direct protection by a gonadotropin-releasing hormone analog from doxorubicin-induced granulosa cell damage. Gynecol Obstet Invest, 2007;63(2):102106.CrossRefGoogle ScholarPubMed
Bildik, G, Akin, N, Senbabaoglu, F et al. GnRH agonist leuprolide acetate does not confer any protection against ovarian damage induced by chemotherapy and radiation in vitro. Hum Reprod, 2015;30(12):29122925.Google Scholar
Yüce, MA, Balkanli Kaplan, P, Gücer, F et al. Prevention of cyclophosphamide-induced ovarian damage by concomitant administration of GnRHa in mice: a dose-dependent relationship? Eur J Gynaecol Oncol, 2004;25(5):628631.Google ScholarPubMed
Horicks, F, Van Den Steen, G, Houben, S, Englert, Y, Demeestere, I. Folliculogenesis is not fully inhibited during GnRH analogues treatment in mice challenging their efficiency to preserve the ovarian reserve during chemotherapy in this model. PloS One, 2015;10(9):e0137164.CrossRefGoogle Scholar
Li, M, Huang, H, Liang, Y, Tan, J, Lin, D. Effect of zoladex administered before chemotherapy on menstruation of patients with breast cancer. Chinese J Clin Oncol, 2008;35:905907.Google Scholar
Badawy, A, Elnashar, A, El-Ashry, M, Shahat, M. Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril, 2009;91(3):694697.CrossRefGoogle ScholarPubMed
Sverrisdottir, A, Nystedt, M, Johansson, H, Fornander, T. Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial. Breast Cancer Res Treat, 2009;117(3):561567.CrossRefGoogle ScholarPubMed
Gerber, B, von Minckwitz, G, Stehle, H et al. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol, 2011;29(17):23342341.CrossRefGoogle ScholarPubMed
Sun, J, Ren, Y, Li, W. Effect of zoladex administered before chemotherapy on menstruation of patients with breast cancer. China Dis Med, 2011;19:1516.Google Scholar
Del Mastro, L, Boni, L, Michelotti, A et al. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemotherapy-induced early menopause in premenopausal women with breast cancer: a randomized trial. JAMA, 2011;306(3):269276.Google ScholarPubMed
Munster, PN, Moore, AP, Ismail-Khan, R et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol, 2012;30(5):533538.CrossRefGoogle ScholarPubMed
Elgindy, EA, El-Haieg, DO, Khorshid, OM et al. Gonadatrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet Gynecol, 2013;121(1):7886.CrossRefGoogle ScholarPubMed
Song, G, Gao, H, Yuan, Z. Effect of leuprolide acetate on ovarian function after cyclophosphamide-doxorubicin-based chemotherapy in premenopausal patients with breast cancer: results from a phase II randomized trial. Med Oncol, 2013;30(3):667.CrossRefGoogle ScholarPubMed
Jiang, FY, Zhang, QQ, Zeng, J. Protective effect of GnRHa on chemo-therapy induced ovarian damage in breast cancer patients. Shandong Med J, 2013;53(8):1618.Google Scholar
Karimi-Zarchi, M, Forat-Yazdi, M, Vafaeenasab, MR et al. Evaluation of the effect of GnRH agonist on menstrual reverse in breast cancer cases treated with cyclophosphamide. Eur J Gynaecol Oncol, 2014;35(1):5961.Google ScholarPubMed
Moore, HCF, Unger, JM, Phillips, K-A et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N Engl J Med, 2015;372(10):923932.CrossRefGoogle ScholarPubMed
Lambertini, M, Boni, L, Michelotti, A et al. Ovarian suppression with triptorelin during adjuvant breast cancer chemotherapy and long-term ovarian function, pregnancies, and disease-free survival: a randomized clinical trial. JAMA, 2015;314(24):26322640.CrossRefGoogle ScholarPubMed
Leonard, RCF, Adamson, DJA, Bertelli, G et al. GnRH agonist for protection against ovarian toxicity during chemotherapy for early breast cancer: the Anglo Celtic Group OPTION trial. Ann Oncol, 2017;28(8):18111816.CrossRefGoogle ScholarPubMed
Zhang, Y, Ji, Y, Li, J et al. Sequential versus simultaneous use of chemotherapy and gonadotropin-releasing hormone agonist (GnRHa) among estrogen receptor (ER)-positive premenopausal breast cancer patients: effects on ovarian function, disease-free survival, and overall survival. Breast Cancer Res Treat, 2018;168(3):679686.CrossRefGoogle ScholarPubMed
Waxman, JH, Ahmed, R, Smith, D et al. Failure to preserve fertility in patients with Hodgkin’s disease. Cancer Chemother Pharmacol, 1987;19(2):159162.CrossRefGoogle ScholarPubMed
Giuseppe, L, Attilio, G, Edoardo, DN et al. Ovarian function after cancer treatment in young women affected by Hodgkin disease (HD). Hematol, 2007;12(2):141147.CrossRefGoogle Scholar
Behringer, K, Wildt, L, Mueller, H et al. No protection of the ovarian follicle pool with the use of GnRH-analogues or oral contraceptives in young women treated with escalated BEACOPP for advanced-stage Hodgkin lymphoma. Final results of a phase II trial from the German Hodgkin Study Group. Ann Oncol, 2010;21(10):20522060.CrossRefGoogle ScholarPubMed
Demeestere, I, Brice, P, Peccatori, FA et al. Gonadotropin-releasing hormone agonist for the prevention of chemotherapy-induced ovarian failure in patients with lymphoma: 1-year follow-up of a prospective randomized trial. J Clin Oncol, 2013;31(7):903909.CrossRefGoogle ScholarPubMed
Demeestere, I, Brice, P, Peccatori, FA et al. No evidence for the benefit of gonadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy: final long-term report of a prospective randomized trial. J Clin Oncol, 2016;34(22):25682574.CrossRefGoogle ScholarPubMed
Gilani, MM, Hasanzadeh, M, Ghaemmaghami, F, Ramazanzadeh, F. Ovarian preservation with gonadotropin-releasing hormone analog during chemotherapy. Asia Pac J Clin Oncol, 2007;3(2):7983.CrossRefGoogle Scholar
Clowse, MEB, Behera, MA, Anders, CK et al. Ovarian preservation by GnRH agonists during chemotherapy: a meta-analysis. J Womens Health 2002, 2009;18(3):311319.CrossRefGoogle ScholarPubMed
Ben-Aharon, I, Gafter-Gvili, A, Leibovici, L, Stemmer, SM. Pharmacological interventions for fertility preservation during chemotherapy: a systematic review and meta-analysis. Breast Cancer Res Treat, 2010;122(3):803811.CrossRefGoogle ScholarPubMed
Kim, SS, Lee, JR, Jee, BC et al. Use of hormonal protection for chemotherapy-induced gonadotoxicity. Clin Obstet Gynecol. 2010;53(4):740752.CrossRefGoogle ScholarPubMed
Bedaiwy, MA, Abou-Setta, AM, Desai, N et al. Gonadotropin-releasing hormone analog cotreatment for preservation of ovarian function during gonadotoxic chemotherapy: a systematic review and meta-analysis. Fertil Steril, 2011;95(3):906914.e1-4.CrossRefGoogle ScholarPubMed
Chen, H, Li, J, Cui, T, Hu, L. Adjuvant gonadotropin-releasing hormone analogues for the prevention of chemotherapy induced premature ovarian failure in premenopausal women. Cochrane Database Syst Rev, 2011;(11):CD008018.Google ScholarPubMed
Yang, B, Shi, W, Yang, J et al. Concurrent treatment with gonadotropin-releasing hormone agonists for chemotherapy-induced ovarian damage in premenopausal women with breast cancer: a meta-analysis of randomized controlled trials. Breast, 2013;22(2):150157.CrossRefGoogle ScholarPubMed
Wang, C, Chen, M, Fu, F, Huang, M. Gonadotropin-releasing hormone analog cotreatment for the preservation of ovarian function during gonadotoxic chemotherapy for breast cancer: a meta-analysis. PloS One, 2013;8(6):e66360.CrossRefGoogle ScholarPubMed
Zhang, Y, Xiao, Z, Wang, Y et al. Gonadotropin-releasing hormone for preservation of ovarian function during chemotherapy in lymphoma patients of reproductive age: a summary based on 434 patients. PloS One, 2013;8(11):e80444.CrossRefGoogle ScholarPubMed
Sun, X, Dongol, S, Jiang, J, Kong, B. Protection of ovarian function by GnRH agonists during chemotherapy: a meta-analysis. Int J Oncol, 2014;44(4):13351340.CrossRefGoogle ScholarPubMed
Del Mastro, L, Ceppi, M, Poggio, F et al. Gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in cancer women: systematic review and meta-analysis of randomized trials. Cancer Treat Rev, 2014;40(5):675683.CrossRefGoogle ScholarPubMed
Vitek, WS, Shayne, M, Hoeger, K et al. Gonadotropin-releasing hormone agonists for the preservation of ovarian function among women with breast cancer who did not use tamoxifen after chemotherapy: a systematic review and meta-analysis. Fertil Steril, 2014;102(3):808–815.e1.CrossRefGoogle Scholar
Elgindy, E, Sibai, H, Abdelghani, A, Mostafa, M. Protecting ovaries during chemotherapy through gonad suppression: a systematic review and meta-analysis. Obstet Gynecol, 2015;126(1):187195.CrossRefGoogle ScholarPubMed
Shen, Y-W, Zhang, X-M, Lv, M et al. Utility of gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage in premenopausal women with breast cancer: a systematic review and meta-analysis. OncoTargets Ther, 2015;8:33493359.CrossRefGoogle ScholarPubMed
Lambertini, M, Ceppi, M, Poggio, F et al. Ovarian suppression using luteinizing hormone-releasing hormone agonists during chemotherapy to preserve ovarian function and fertility of breast cancer patients: a meta-analysis of randomized studies. Ann Oncol, 2015;26(12):24082419.CrossRefGoogle ScholarPubMed
Munhoz, RR, Pereira, AAL, Sasse, AD et al. Gonadotropin-releasing hormone agonists for ovarian function preservation in premenopausal women undergoing chemotherapy for early-stage breast cancer: a systematic review and meta-analysis. JAMA Oncol, 2016;2(1):6573.CrossRefGoogle ScholarPubMed
Silva, C, Caramelo, O, Almeida-Santos, T, Ribeiro Rama, AC. Factors associated with ovarian function recovery after chemotherapy for breast cancer: a systematic review and meta-analysis. Hum Reprod, 2016;31(12):27372749.CrossRefGoogle ScholarPubMed
Bai, F, Lu, Y, Wu, K et al. Protecting effects of gonadotropin-releasing hormone agonist on chemotherapy-induced ovarian damage in premenopausal breast cancer patients: a systematic review and meta-analysis. Breast Care, 2017;12(1):4852.CrossRefGoogle ScholarPubMed
Senra, JC, Roque, M, Talim, MCT, Reis, FM, Tavares, RLC. Gonadotropin-releasing hormone agonists for ovarian protection during cancer chemotherapy: systematic review and meta-analysis. Ultrasound Obstet Gynecol, 2018;51(1):7786.CrossRefGoogle ScholarPubMed
Hickman, LC, Llarena, NC, Valentine, LN, Liu, X, Falcone, T. Preservation of gonadal function in women undergoing chemotherapy: a systematic review and meta-analysis of the potential role for gonadotropin-releasing hormone agonists. J Assist Reprod Genet, 2018;35(4):571581.CrossRefGoogle ScholarPubMed
Lambertini, M, Moore, HCF, Leonard, RCF et al. Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: a systematic review and meta-analysis of individual patient-level data. J Clin Oncol, 2018;36(19):19811990.CrossRefGoogle ScholarPubMed
Lambertini, M, Goldrat, O, Clatot, F, Demeestere, I, Awada, A. Controversies about fertility and pregnancy issues in young breast cancer patients: current state of the art. Curr Opin Oncol, 2017;29(4):243252.CrossRefGoogle ScholarPubMed
European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber, L, Davies, M et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod, 2016;31(5):926937.Google ScholarPubMed
Meirow, D, Rabinovici, J, Katz, D et al. Prevention of severe menorrhagia in oncology patients with treatment-induced thrombocytopenia by luteinizing hormone-releasing hormone agonist and depo-medroxyprogesterone acetate. Cancer, 2006;107(7):16341641.CrossRefGoogle ScholarPubMed
Lawrenz, B, Jauckus, J, Kupka, MS et al. Fertility preservation in >1,000 patients: patient’s characteristics, spectrum, efficacy and risks of applied preservation techniques. Arch Gynecol Obstet, 2011;283:651656.CrossRefGoogle ScholarPubMed
Jennings, E, Hilders, CG, Louwe, LA, Peters, AA. Female fertility preservation: practical and ethical considerations of an underused procedure. Cancer J, 2008;14:333339.CrossRefGoogle Scholar
Tulandi, T, Huang, JY, Tan, SL. Preservation of female fertility: an essential progress. Obstet Gynecol, 2008;112:11601172.CrossRefGoogle Scholar
Georgeseu, E, Goldberg, J, du Plessis, S, Agarwal, A. Present and future fertility preservation strategies for female cancer patients. Obstet Gynecol Surv, 2008;63:725733.CrossRefGoogle Scholar
Falcone, T, Bedaiwy, M. Fertility preservation and pregnancy outcome after malignancy. Curr Opin Obstet Gynecol, 2005;17:2126.CrossRefGoogle ScholarPubMed
Azem, F, Yovel, I, Wagman, I et al. Surrogate pregnancy in a patient who underwent radical hysterectomy and bilateral transposition of ovaries. Fertil Steril, 2003;79:1229–1130.CrossRefGoogle Scholar
Hadar, H, Loven, D, Herskovitz, P et al. An evaluation of lateral and medial transposition of the ovaries out of radiation fields. Cancer, 1994;74:774779.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Wallace, WHB, Shalet, SM, Hendy, JH et al. Ovarian failure following abdominal irradiation in childhood. The radiosensitivity of human oocyte. Br J Radiol, 1989;62:995998.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, AB, Saran, F, Kelsey, TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys, 2005;62:738744.CrossRefGoogle ScholarPubMed
Wo, J, Viseanathan, A. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys, 2009;73:13041312.CrossRefGoogle ScholarPubMed
Ghadjar, P, Budach, V, Köhler, C, Jantke, A, Marnitz, S. Modern radiation therapy and potential fertility preservation strategies in patients with cervical cancer undergoing chemoradiation. Radiation Oncol, 2015;10(50):353354.CrossRefGoogle ScholarPubMed
Chiarelli, AM, Marrett, LD, Darlington, G. Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario, Canada. Am J Epidemiol, 1999;150:245254.CrossRefGoogle ScholarPubMed
Ray, GR, Trueblood, HW, Enright, LP et al. Oophoropexy: a means of preserving ovarian function following pelvic megavoltage radiotherapy for Hodgkin’s disease. Radiol, 1970;96:175180.CrossRefGoogle ScholarPubMed
Belinson, JL, Doherty, M, McDay, JB. A new technique for ovarian transposition. Surg Gynecol Obstet, 1984;159:157160.Google ScholarPubMed
Covens, AL, van der Putten, HW, Fyles, AW et al. Laparoscopic ovarian transposition. Eur J Gynaecol Oncol, 1996;17:177182.Google ScholarPubMed
Thibaud, E, Ramirez, M, Brauner, R et al. Preservation of ovarian function by ovarian transposition performed before pelvic irradiation during childhood. J Pediatr, 1992;121:880884.CrossRefGoogle ScholarPubMed
Bisharah, M, Tulandi, T. Laparoscopic preservation of ovarian function: an underused procedure. Am J Obstet Gynecol, 2003;188:367370.CrossRefGoogle Scholar
Morice, P, Juncker, L, Rey, A et al. Ovarian transposition for patients with cervical carcinoma treated by radiosurgical combination. Fertil Steril, 2000;74:743748.CrossRefGoogle ScholarPubMed
Morice, P, Thiam-Ba, R, Castaigne, D et al. Fertility results after ovarian transposition for pelvic malignancies treated by external irradiation or brachytherapy. Hum Reprod, 1998;13:660663.CrossRefGoogle ScholarPubMed
Williams, RS, Littell, RD, Mendenhall, NP. Laparoscopic oophoropexy and ovarian function in the treatment of Hodgkin disease. Cancer, 1999 November 15;86:21382142.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hwang, JH, Yoo, HJ, Park, SH et al. Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy. Fertil Steril, 2012;97:13871393.CrossRefGoogle ScholarPubMed
Huang, KG, Lee, CL, Tsai, CS, Han, CM, Hwang, LL. A new approach for laparoscopic ovarian transposition before pelvic irradiation. Gynecol Oncol, 2007;105:234237.CrossRefGoogle ScholarPubMed
Van Eijkeren, MA, Van DerWijk, I, Al Sharouni, SY et al. Benefits and side effects of lateral ovarian transposition (LOT) performed during radical hysterectomy and pelvic lymphadenectomy for early stage cervical cancer. Int J Gynecol Cancer, 1999;9:396400.CrossRefGoogle ScholarPubMed
Feeney, DD, Moore, DH, Look, KY, Stehman, FB, Sutton, GP. The fate of the ovaries after radical hysterectomy and ovarian transposition. Gynecol Oncol, 1995;56:37.CrossRefGoogle ScholarPubMed
Kuohung, W, Ram, K, Cheng, DM et al. Laparoscopic oophoropexy prior to radiation for pediatric brain tumor and subsequent ovarian function. Hum Reprod, 2008;23:117121.CrossRefGoogle ScholarPubMed
Pahisa, J, Martínez-Román, S, Martínez-Zamora, MA et al. Laparoscopic ovarian transposition in patients with early cervical cancer. Int J Gynecol Cancer, 2008;18:584–589.CrossRefGoogle ScholarPubMed
Terenziani, M, Piva, L, Meazza, C et al.Oophoropexy: a relevant role in preservation of ovarian function after pelvic irradiation. Fertil Steril, 2009;91:935.e156.CrossRefGoogle ScholarPubMed
Iavazzo, C, Filippos, M, Gkegkes, I. The role of robotics in ovarian transposition. Acta Inform Med, 2013;21:135137.CrossRefGoogle ScholarPubMed
Al-Badawi, I, Al-Aker, M, Tulandi, T. Robotic-assisted ovarian transposition before radiation. Surg Technol Int, 2010;19:141143.Google ScholarPubMed
Gubbala, K, Laios, A, Gallos, I et al. Outcomes of ovarian transposition in gynaecological cancers; a systematic review and meta-analysis. J Ovarian Research, 2014;7:69.CrossRefGoogle ScholarPubMed
Gómez-Hidalgo, NR, Darin, MC, Dalton, H et al. Ovarian torsion after laparoscopic ovarian transposition in patients with gynecologic cancer: a report of two cases. J Minim Invasive Gynecol, 2015;22:687690.CrossRefGoogle ScholarPubMed
Ferlay, J, Soerjomataram, I, Dikshit, R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015;136(5):E359E386.CrossRefGoogle ScholarPubMed
Howlader, N, Noone, AM, Krapcho, M et al. (eds.). SEER Cancer Statistics Review, 1975–2012. Bethesda, MD: National Cancer Institute, http://seer.cancer.gov/csr/1975_2012/, based on November 2014 SEER data submission, posted to the SEER web site, April 2015.Google Scholar
Bentivegna, E, Gouy, S, Maulard, A et al. Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol, 2016;17:e240e253.CrossRefGoogle ScholarPubMed
Wright, JD, NathavithArana, R, Lewin, SN et al. Fertility-conserving surgery for young women with stage IA1 cervical cancer: safety and access. Obstet Gynecol, 2010;115:585590.CrossRefGoogle Scholar
Hartman, CA, Teixeira, JC, Barbosa, SB et al. Analysis of conservative surgical treatment and prognosis of microinvasive squamous cell carcinoma of the cervix stage IA1: results of follow-up to 20 years. Int J Gynecol Cancer, 2017 February;27(2):357363.CrossRefGoogle ScholarPubMed
Spoozak, L, Lewin, SN, Burke, WM et al. Microinvasive adenocarcinoma of the cervix. Am J Obstet Gynecol, 2012;206:80:e16.CrossRefGoogle ScholarPubMed
Cibula, D, Pötter, R, Planchamp, F et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Radiother Oncol, 2018 June;127(3):404416.CrossRefGoogle ScholarPubMed
Winter, WE 3rd, Kucera, PR, Rodgers, W et al. Surgical staging in patients with ovarian tumors of low malignant potential. Obstet Gynecol, 2002;100:671676.Google ScholarPubMed
Colombo, N, Carinelli, S, Colombo, A et al. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2012;23(Suppl 7):vii2732.CrossRefGoogle ScholarPubMed
Baiocchi, G, de Brot, L, Faloppa, CC et al. Is parametrectomy always necessary in early-stage cervical cancer? Gynecol Oncol, 2017;146(1): 16–19.CrossRefGoogle Scholar
Shim, SH, Lim, MC, Kim, HJ et al. Can simple trachelectomy or conization show comparable survival rate compared with radical trachelectomy in IA1 cervical cancer patients with lymphovascular space invasion who wish to save fertility? A systematic review and guideline recommendation. PLoS One, 2018 January 31;13(1):e0189847.CrossRefGoogle ScholarPubMed
Gien, LT, Covens, A. Fertility-sparing options for early stage cervical cancer. Gynecol Oncol, 2010;117:350357.CrossRefGoogle ScholarPubMed
Dargent, D, Martin, X, Sacchetoni, A, Mathevet, P. Laparoscopic vaginal radical trachelectomy: a treatment to preserve the fertility of cervical carcinoma patients. Cancer, 2000;88:18771882.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Xu, L, Sun, FQ, Wang, ZH. Radical trachelectomy versus radical hysterectomy for the treatment of early cervical cancer: a systematic review. Acta Obstet Gynecol Scand, 2011;90:12001209.CrossRefGoogle ScholarPubMed
Zapardiel, I, Cruz, M, Diestro, MD, Requena, A, Garcia-Velasco, JA. Assisted reproductive techniques after fertility-sparing treatments in gynaecological cancers. Hum Reprod Update, 2016; 22(3):28–305.CrossRefGoogle Scholar
Machida, H, Mandelbaum, RS, Mikami, M et al. Characteristics and outcomes of reproductive-aged women with early-stage cervical cancer: trachelectomy versus hysterectomy. Am J Obstet Gynecol, 2018 August 20. pii: S00029378(18):30673–30672.Google Scholar
Helpman, L, Grisaru, D, Covens, A. Early adenocarcinoma of the cervix: is radical vaginal trachelectomy safe? Gynecol Oncol, 2011;123:9598.CrossRefGoogle ScholarPubMed
Plante, M, Gregoire, J, Renaud, MC, Roy, M. The vaginal radical trachelectomy: an update of a series of 125 cases and 106 pregnancies. Gynecol Oncol, 2011;121: 290297.CrossRefGoogle ScholarPubMed
Hoogendam, JP, Zweemer, RP, Hobbelink, MG et al. 99mTc-Nanocolloid SPECT/MRI fusion for the selective assessment of nonenlarged sentinel lymph nodes in patients with early-stage cervical cancer. J Nucl Med, 2016 April;57(4):551556.CrossRefGoogle ScholarPubMed
Lakhman, Y1, Akin, O, Park, KJ et al. Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology, 2013 October;269(1):149158.CrossRefGoogle ScholarPubMed
Shepherd, JH, Spencer, C, Herod, J, Ind, TE. Radical vaginal trachelectomy as a fertility-sparing procedure in women with early-stage cervical cancer-cumulative pregnancy rate in a series of 123 women. BJOG, 2006;113:719724.CrossRefGoogle Scholar
Rob, L, Skapa, P, Robova, H. Fertility-sparing surgery in patients with cervical cancer. Lancet Oncol, 2011;12: 192200.CrossRefGoogle ScholarPubMed
Delgado, G, Bundy, B, Zaino, R et al. Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol, 1990;38:352357.CrossRefGoogle ScholarPubMed
Plante, M, Lau, S, Brydon, L et al. Neoadjuvant chemotherapy followed by vaginal radical trachelectomy in bulky stage IB1 cervical cancer: case report. Gynecol Oncol, 2006;101:367370.CrossRefGoogle ScholarPubMed
Robova, H, Halaska, MJ, Pluta, M et al. Oncological and pregnancy outcomes after high-dose density neoadjuvant chemotherapy and fertility-sparing surgery in cervical cancer. Gynecol Oncol, 2014;135:213216.CrossRefGoogle ScholarPubMed
Saso, S, Ghaem-Maghami, S, Chatterjee, J et al. Abdominal radical trachelectomy in West London. BJOG, 2012;119:187193.CrossRefGoogle ScholarPubMed
Lintner, B, Saso, S, Tarnai, L et al. Use of abdominal radical trachelectomy to treat cervical cancer greater than 2 cm in diameter. Int J Gynecol Cancer, 2013;23:10651070.CrossRefGoogle ScholarPubMed
Salihi, R, Leunen, K, Van Limbergen, E et al. Neoadjuvant chemotherapy followed by large cone resection as fertility-sparing therapy in stage IB cervical cancer. Gynecol Oncol, 2015;139:447451.CrossRefGoogle ScholarPubMed
Saadi, JM, Perrotta, M, Orti, R et al. Laparoscopic radical trachelectomy: technique, feasibility, and outcomes. JSLS, 2015;19:e2013.00248.CrossRefGoogle ScholarPubMed
Pareja, R, Rendon, GJ, Vasquez, M et al. Immediate radical trachelectomy versus neoadjuvant chemotherapy followed by conservative surgery for patients with stage IB1 cervical cancer with tumors 2 cm or larger: A literature review and analysis of oncological and obstetrical outcomes. Gynecol Oncol, 2015;137:574580.CrossRefGoogle ScholarPubMed
Bentivegna, E, Maulard, A, Pautier, P et al. Fertility results and pregnancy outcomes after conservative treatment of cervical cancer: a systematic review of the literature. Fertil Steril, 2016 October;106(5):11951211.CrossRefGoogle ScholarPubMed
Kasuga, Y, Nishio, H, Miyakoshi, K et al. Pregnancy outcomes after abdominal radical trachelectomy for early-stage cervical cancer: a 13-year experience in a single tertiary-care center. Int J Gynecol Cancer, 2016;26:163168.CrossRefGoogle Scholar
Li, X, Li, J, Wu, X. Incidence, risk factors and treatment of cervical stenosis after radical trachelectomy: a systematic review. Eur J Cancer, 2015;51:17511759.CrossRefGoogle ScholarPubMed
Ghadjar, P, Budach, V, Kohler, C, Jantke, A, Marnitz, S. Modern radiation therapy and potential fertility preservation strategies in patients with cervical cancer undergoing chemoradiation. Radiat Oncol, 2015;10:50.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. Nat Rev Endocrinol, 2013;9:735749.CrossRefGoogle ScholarPubMed
Pareja, R, Rendon, GJ, Sanz-Lomana, CM, Monzon, O, Ramirez, PT. Surgical, oncological, and obstetrical outcomes after abdominal radical trachelectomy – a systematic literature review. Gynecol Oncol, 2013;131:7782.CrossRefGoogle ScholarPubMed
Kasuga, Y, Miyakoshi, K, Nishio, H et al. Mid-trimester residual cervical length and the risk of preterm birth in pregnancies after abdominal radical trachelectomy: a retrospective analysis. BJOG, 2017 October;124(11):17291735.CrossRefGoogle ScholarPubMed
Alvarez, RM, Biliatis, I, Rockall, A et al. MRI measurement of residual cervical length after radical trachelectomy for cervical cancer and the risk of adverse pregnancy outcomes: a blinded imaging analysis. BJOG. 2018 August 12. DOI:10.1111/1471-0528.15429. [Epub ahead of print].CrossRefGoogle Scholar
Mathevet, P, Laszlo de, Kaszon E, Dargent, D. Fertility preservation in early cervical cancer. Gynecol Obstet Fertil, 2003;31:706712.CrossRefGoogle ScholarPubMed
Lintner, B, Saso, S, Tarnai, L et al. Use of abdominal radical trachelectomy to treat cervical cancer greater than 2 cm in diameter. Int J Gynecol Cancer, 2013;23:10651070.CrossRefGoogle ScholarPubMed
Mangler, M, Lanowska, M, Bartens, A et al. Closure of the cervical os in patients after fertility preserving treatment for early cervical cancer – results of a prospective observational study. J Perinat Med, 2017 November 27;45(8):941945.CrossRefGoogle ScholarPubMed
Lee, TS, Jung, JY, Kim, JW et al. Feasibility of ovarian preservation in patients with early stage endometrial carcinoma. Gynecol Oncol, 2007;104:5257.CrossRefGoogle ScholarPubMed
Renehan, AG, Tyson, M, Egger, M, Heller, RF, Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet, 2008;371:569578.CrossRefGoogle ScholarPubMed
Navarria, I, Usel, M, Rapiti, E et al. Young patients with endometrial cancer: how many could be eligible for fertility-sparing treatment? Gynecol Oncol, 2009;114:448451.CrossRefGoogle ScholarPubMed
Amant, F, Moerman, P, Neven, P et al. Endometrial cancer. Lancet, 2005;366:491505.CrossRefGoogle ScholarPubMed
Koh, WJ, Greer, BE, Abu-Rustum, NR et al. Uterine neoplasms, version 1.2014. J Natl Compr Canc Netw, 2014;12:248280.CrossRefGoogle ScholarPubMed
Rodolakis, A, Biliatis, I, Morice, P et al. European Society of Gynecological Oncology Task Force for Fertility Preservation: clinical recommendations for fertility-sparing management in young endometrial cancer patients. Int J Gynecol Cancer, 2015;25:12581265.CrossRefGoogle ScholarPubMed
Park, JY, Kim, DY, Kim, TJ et al. Hormonal therapy for women with stage IA endometrial cancer of all grades. Obstet Gynecol, 2013 July;122(1):714.CrossRefGoogle ScholarPubMed
Yuk, JS, Song, JY, Lee, JH et al. Levonorgestrel-releasing intrauterine systems versus oral cyclic medroxyprogesterone acetate in endometrial hyperplasia therapy: a meta-analysis. Ann Surg Oncol, 2017;24:13221329.CrossRefGoogle ScholarPubMed
Gunderson, CC, Fader, AN, Carson, KA et al. Oncologic and reproductive outcomes with progestin therapy in women with endometrial hyperplasia and grade 1 adenocarcinoma: a systematic review. Gynecol Oncol, 2012;125:477482.CrossRefGoogle ScholarPubMed
Ushijima, K, Yahata, H, Yoshikawa, H et al. Multicenter phase II study of fertility-sparing treatment with medroxyprogesterone acetate for endometrial carcinoma and atypical hyperplasia in young women. J Clin Oncol, 2007;25:27982803.CrossRefGoogle ScholarPubMed
Park, JY, Lee, SH, Seong, SJ et al. Progestin retreatment in patients with recurrent endometrial adenocarcinoma after successful fertility-sparing management using progestin. Gynecol Oncol, 2013;129:711.CrossRefGoogle Scholar
Greenwald, ZR, Huang, LN, Wissing, MD et al. Does hormonal therapy for fertility preservation affect the survival of young women with early stage endometrial cancer? Cancer, 2017;123:15451554.CrossRefGoogle ScholarPubMed
Park, JY, Seong, SJ, Kim, TJ et al. Significance of body weight change during fertility-sparing progestin therapy in young women with early endometrial cancer. Gynecol Oncol, 2017 July;146(1):3943.CrossRefGoogle ScholarPubMed
Alonso, S, Castellanos, T, Lapuente, F et al. Hysteroscopic surgery for conservative management in endometrial cancer: a review of the literature. Ecancermedicalscience, 2015;9:505.CrossRefGoogle ScholarPubMed
Jadoul, P, Donnez, J. Conservative treatment may be beneficial for young women with atypical endometrial hyperplasia or endometrial adenocarcinoma. Fertil Steril, 2003 December;80(6):13151324.CrossRefGoogle ScholarPubMed
Chiva, L, Lapuente, F, Gonzalez-Cortijo, L et al. Sparing fertility in young patients with endometrial cancer. Gynecol Oncol, 2008;111(Suppl):S101S104.CrossRefGoogle ScholarPubMed
Gonthier, C, Walker, F, Luton, D et al. Impact of obesity on the results of fertility-sparing management for atypical hyperplasia and grade 1 endometrial cancer. Gynecol Oncol, 2014;133:3337.CrossRefGoogle ScholarPubMed
Rodolakis, A, Biliatis, I, Morice, P et al. European Society of Gynecological Oncology Task Force for Fertility Preservation: clinical recommendations for fertility-sparing management in young endometrial cancer patients. Int J Gynecol Cancer, 2015;25:12581265.CrossRefGoogle ScholarPubMed
Juretzka, MM, O’ Hanlan, KA, Katz, SL, El-Danasouri, I, Westphal, LM. Embryo cryopreservation after diagnosis of stage IIB endometrial cancer and subsequent pregnancy in a gestational carrier. Fertil Steril, 2005;83:1041.CrossRefGoogle Scholar
Martınez, F, Devesa, M, Coroleu, B et al. Cancer and fertility preservation: Barcelona consensus meeting. Gynecol Endocrinol, 2013 April;29(4):285291.CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2016. CA Cancer J Clin, 2016;66:730.CrossRefGoogle ScholarPubMed
Skirnisdottir, I, Garmo, H, Wilander, E, Holmberg, L. Borderline ovarian tumors in Sweden 1960–2005: trends in incidence and age at diagnosis compared to ovarian cancer. Int J Cancer, 2008;123:18971901.CrossRefGoogle ScholarPubMed
Zanetta, G, Rota, S, Chiari, S et al. Behavior of borderline tumors with particular interest to persistence, recurrence, and progression to invasive carcinoma: a prospective study. J Clin Oncol, 2001;19:26582664.CrossRefGoogle ScholarPubMed
du Bois, A, Ewald-Riegler, N, de Gregorio, N et al.; Arbeitsgmeinschaft Gynäkologische Onkologie (AGO) study group borderline tumours of the ovary: a cohort study of the Arbeitsgmeinschaft Gynäkologische Onkologie (AGO) study group. Eur J Cancer, 2013 May;49(8):19051914.CrossRefGoogle Scholar
Morice, P, Camatte, S, El Hassan, J et al. Clinical outcomes and fertility after conservative treatment of ovarian borderline tumors. Fertil Steril, 2001 January;75(1):9296.CrossRefGoogle ScholarPubMed
Donnez, J, Munschke, A, Berliere, M et al. Safety of conservative management and fertility outcome in women with borderline tumors of the ovary. Fertil Steril, 2003 May;79(5):12161221.CrossRefGoogle ScholarPubMed
Zanetta, G, Rota, S, Lissoni, A et al. Ultrasound, physical examination, and CA 125 measurement for the detection of recurrence after conservative surgery for early borderline ovarian tumors. Gynecol Oncol, 2001 April;81(1):6366.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists. ACOG Practice Bulletin. Management of adnexal masses. Obstet Gynecol, 2007;110:201214.CrossRefGoogle Scholar
du Bois, A, Trillsch, F, Mahner, S, Heitz, F, Harter, P. Management of borderline ovarian tumors. Ann Oncol, 2016 April;27(Suppl 1):i20i22.CrossRefGoogle ScholarPubMed
Vasconcelos, I, de Sousa, Mendes M. Conservative surgery in ovarian borderline tumours: a meta-analysis with emphasis on recurrence risk. Eur J Cancer, 2015 March;51(5):620631.CrossRefGoogle ScholarPubMed
Fauvet, R, Boccara, J, Dufournet, C et al. Restaging surgery for women with borderline ovarian tumors: results of a French multicenter study. Cancer, 2004;100:11451151.CrossRefGoogle ScholarPubMed
Suh-Burgmann, E. Long-term outcomes following conservative surgery for borderline tumor of the ovary: a large population-based study. Gynecol Oncol, 2006;103:841847.CrossRefGoogle ScholarPubMed
Helpman, L, Beiner, ME, Aviel-Ronen, S et al. Safety of ovarian conservation and fertility preservation in advanced borderline ovarian tumors. Fertil Steril, 2015 July;104(1):138–44.CrossRefGoogle ScholarPubMed
Uzan, C, Muller, E, Kane, A et al. Prognostic factors for recurrence after conservative treatment in a series of 119 patients with stage I serous borderline tumors of the ovary. Ann Oncol, 2014;25:166171.CrossRefGoogle Scholar
Vasconcelos, I, Darb-Esfahani, S, Sehouli, J. Serous and mucinous borderline ovarian tumours: differences in clinical presentation, high-risk histopathological features, and lethal recurrence rates. BJOG, 2016;123:498508.CrossRefGoogle ScholarPubMed
Nam, JH. Borderline ovarian tumors and fertility. Curr Opin Obstet Gynecol, 2010 June;22(3):227234.CrossRefGoogle ScholarPubMed
Daraï, E, Fauvet, R, Uzan, C et al. Fertility and borderline ovarian tumor: a systematic review of conservative management, risk of recurrence and alternative options. Hum Reprod Update, 2013 March–April;19(2):151166.CrossRefGoogle ScholarPubMed
Denschlag, D, von Wolff, M, Amant, F et al. Clinical recommendation on fertility preservation in borderline ovarian neoplasm: ovarian stimulation and oocyte retrieval after conservative surgery. Gynecol Obstet Invest, 2010;70(3):160165.CrossRefGoogle ScholarPubMed
Morice, P, Denschlag, D, Rodolakis, A et al.; Fertility Task Force of the European Society of Gynecologic Oncology.Recommendations of the fertility task force of the European Society of Gynecologic Oncology about the conservative management of ovarian malignant tumors. Int J Gynecol Cancer, 2011 July;21(5):951963.CrossRefGoogle ScholarPubMed
Redman, C, Duffy, S, Bromham, N, Francis, K. Guideline Development Recognition and initial management of ovarian cancer: summary of NICE guidance. BMJ, 2011;342:d2073.CrossRefGoogle ScholarPubMed
Bentivegna, E, Fruscio, R, Roussin, S et al. Long-term follow-up of patients with an isolated ovarian recurrence after conservative treatment of epithelial ovarian cancer: review of the results of an international multicenter study comprising 545 patients. Fertil Steril, 2015 November;104(5):13191324.CrossRefGoogle ScholarPubMed
Ghezzi, F, Cromi, A, Fanfani, F et al. Laparoscopic fertility-sparing surgery for early ovarian epithelial cancer: A multi-institutional experience. Gynecol Oncol, 2016 June;141(3):461465.CrossRefGoogle ScholarPubMed
Zapardiel, I, Cruz, M, Diestro, MD, Requena, A, Garcia-Velasco, JA. Assisted reproductive techniques after fertility-sparing treatments in gynaecological cancers. Hum Reprod Update, 2016 April;22(3):281305.CrossRefGoogle ScholarPubMed
Smith, HO, Berwick, M, Verschraegen, CF et al. Incidence and survival rates for female malignant germ cell tumors. Obstet Gynecol, 2006 May;107(5):10751085.CrossRefGoogle ScholarPubMed
Park JY, Kim DY, Suh DS et al. Analysis of outcomes and prognostic factors after fertility-sparing surgery in malignant ovarian germ cell tumors. Gynecol Oncol. 2017 Jun;145(3):513–518CrossRefGoogle Scholar
Jorge, S, Jones, NL, Chen, L et al. Characteristics, treatment and outcomes of women with immature ovarian teratoma, 1998–2012. Gynecol Oncol, 2016 August;142(2):261266.CrossRefGoogle ScholarPubMed
Kang, H, Kim, TJ, Kim, WY et al. Outcome and reproductive function after cumulative high-dose combination chemotherapy with bleomycin, etoposide and cisplatin (BEP) for patients with ovarian endodermal sinus tumor. Gynecol Oncol, 2008;111:106110.CrossRefGoogle ScholarPubMed
Mangili, G, Sigismondi, C, Lorusso, D et al. Is surgical restaging indicated in apparent stage IA pure ovarian dysgerminoma? The MITO group retrospective experience. Gynecol Oncol, 2011;121:280284.CrossRefGoogle ScholarPubMed
Reed, N, Millan, D, Verheijen, R, Castiglione, M; ESMO Guidelines Working Group. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2010 May;21(Suppl 5):v31-6.CrossRefGoogle ScholarPubMed
Cushing, B, Giller, R, Cullen, JW et al.; Pediatric Oncology Group 9049; Children’s Cancer Group 8882. Randomized comparison of combination chemotherapy with etoposide, bleomycin, and either high-dose or standard-dose cisplatin in children and adolescents with high-risk malignant germ cell tumors: a pediatric intergroup study–Pediatric Oncology Group 9049 and Children’s Cancer Group 8882. J Clin Oncol, 2004 July 1;22(13):26912700.CrossRefGoogle ScholarPubMed
Billmire, DF, Cullen, JW, Rescorla, FJ et al. Surveillance after initial surgery for pediatric and adolescent girls with stage I ovarian germ cell tumors: report from the Children’s Oncology Group. J Clin Oncol, 2014;32:465470.CrossRefGoogle Scholar
Taylor, HC. Malignant and semi-malignant tumors of the ovary. Surg Gynecol Obstet, 1929;48:204230.Google Scholar
Hart, WR, Norris, HJ. Borderline and malignant mucinous tumors of the ovary. Cancer, 1973;31:10311044.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Bell, DA, Weinstock, MA, Scully, RE. Peritoneal implants of ovarian serous borderline tumors. Histologic features and prognosis. Cancer, 1988;62:22122222.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Duvillard, P. Tumeurs ovariennes à la limite de la malignité. Ann. Pathol, 1996;16:396405.Google Scholar
Gershenson, D, Silva, E, Levy, L et al. Ovarian serous borderline tumors with invasive peritoneal implants. Cancer, 1998;82:10961103.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Gershenson, D, Silva, EL, Tortolero-Luna, G et al. Serous borderline tumors of the ovary with non invasive peritoneal implants. Cancer, 1998;83:21572163.3.0.CO;2-D>CrossRefGoogle Scholar
Seidman, JD, Kurman, RJ. Subclassification of serous borderline tumors of the ovary into benign and malignant types. A clinicopathologic study of 65 advanced stage cases. Am J Surg Pathol, 1996;20:13311345.CrossRefGoogle ScholarPubMed
Kane, A, Uzan, C, Rey, A, Gouy, S et al. Prognostic factors in patients with ovarian serous low malignant potential (borderline) tumors with peritoneal implants. Oncologist, 2009;14:591600.CrossRefGoogle ScholarPubMed
Seidman, JD, Kurman, RJ. Treatment of micropapillary serous ovarian carcinoma (the aggressive variant of serous borderline tumors. Cancer, 2002;95:675676.CrossRefGoogle ScholarPubMed
Eichhorn, JH, Bell, DA, Young, RH et al. Ovarian serous borderline tumors with micropapillary and cribriform patterns: a study of 40 cases and comparison with 44 cases without these patterns. Am J Surg Pathol, 1999;23:397409.CrossRefGoogle ScholarPubMed
Morice, P, Uzan, C, Fauvet, R et al. Borderline ovarian tumour: pathological diagnostic dilemma and risk factors for invasive or lethal recurrence. Lancet Oncol, 2012 March;13(3):e103e115.CrossRefGoogle ScholarPubMed
Trimble, CL, Kosary, C, Trimble, EL. Long-term and patterns of care in women with ovarian tumors of low malignant potential. Gynecol Oncol, 2002;86:3437.CrossRefGoogle ScholarPubMed
Daraï, E, Fauvet, R, Uzan, C et al. Fertility and borderline ovarian tumor: a systematic review of conservative management, risk of recurrence and alternative options. Hum Reprod Update, 2013 March–April;19(2):151166.CrossRefGoogle ScholarPubMed
Palomba, S, Zupi, E, Russo, T et al. Comparison of two fertility-sparing approaches for bilateral borderline ovarian tumours: a randomized controlled study. Hum Reprod, 2007;22:578585.CrossRefGoogle ScholarPubMed
Palomba, S, Falbo, A, Del Negro, S et al. Ultra-conservative fertility-sparing strategy for bilateral borderline ovarian tumours: an 11-year follow-up. Hum Reprod, 2010;25:19661972.CrossRefGoogle ScholarPubMed
Bendifallah, S, Ballester, M, Uzan, C et al. Nomogram to predict recurrence in patients with early and advanced-stage mucinous and serous borderline ovarian tumors. Am J Obstet Gynecol, 2014 December;211(6):637.e16.CrossRefGoogle ScholarPubMed
Morice, P, Uzan, C, Fauvet, R et al. Borderline ovarian tumour: pathological diagnostic dilemma and risk factors for invasive or lethal recurrence. Lancet Oncol, 2012 March;13(3):e103e115.CrossRefGoogle ScholarPubMed
Uzan, C, Nikpayam, M, Ribassin-Majed, L et al. Influence of histological subtypes on the risk of an invasive recurrence in a large series of stage I borderline ovarian tumor including 191 conservative treatments. Ann Oncol, 2014 July;25(7):13121319.CrossRefGoogle Scholar
du Bois, A, Ewald-Riegler, N, de Gregorio, N et al.; Arbeitsgmeinschaft Gynäkologische Onkologie (AGO) Study Group. Borderline tumours of the ovary: A cohort study of the Arbeitsgmeinschaft Gynäkologische Onkologie (AGO) Study Group. Eur J Cancer, 2013 May;49(8):19051914.CrossRefGoogle Scholar
Fauvet, R, Poncelet, C, Boccara, J et al. Fertility after conservative treatment for borderline ovarian tumors: a French multicenter study. Fertil Steril, 2005;83:284290, quiz 525–286.CrossRefGoogle ScholarPubMed
Kanat-Pektas, M, Ozat, M, Gungor, T et al. Fertility outcome after conservative surgery for borderline ovarian tumors: a single center experience. Arch Gynecol Obstet, 2011;284:12531258.CrossRefGoogle ScholarPubMed
Trillsch, F, Mahner, S, Woelber, L et al. Age-dependent differences in borderline ovarian tumours (BOT) regarding clinical characteristics and outcome: results from a sub-analysis of the Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) ROBOT study. Ann Oncol, 2014 July;25(7):13201327.CrossRefGoogle ScholarPubMed
Fauvet, R, Demblocque, E, Morice, P, Querleu, D, Darai, E. Behavior of serous borderline ovarian tumors with and without micropapillary patterns: results of a French multicenter study. Ann Surg Oncol, 2012;19:941947.CrossRefGoogle ScholarPubMed
Ouldamer, L, Bendifallah, S, Naoura, I et al. Nomogram to predict live birth rate after fertility-sparing surgery for borderline ovarian tumours. Hum Reprod, 2016 August;31(8):17321737.CrossRefGoogle ScholarPubMed
Rizzuto, I1, Behrens, RF, Smith, LA. Risk of ovarian cancer in women treated with ovarian stimulating drugs for infertility. Cochrane Database Syst Rev, 2013 August;13(8):CD008215.Google Scholar
Basille, C, Olivennes, F, Le Calvez, J et al. Impact of gonadotrophins and steroid hormones on tumour cells derived from borderline ovarian tumours. Hum Reprod, 2006;21:32413245.CrossRefGoogle ScholarPubMed
Nijman, HW, Burger, CW, Baak, JP et al. Borderline malignancy of the ovary and controlled hyperstimulation, a report of 2 cases. Eur J Cancer, 1992;28A:19711972.CrossRefGoogle ScholarPubMed
Mantzavinos, T, Kanakas, N, Genatas, C et al. Five years’ follow-up in two patients with borderline tumors of the ovary hyperstimulated by gonadotrophin therapy for in-vitro fertilization. Hum Reprod, 1994;9:20322033.CrossRefGoogle ScholarPubMed
Lawal, AH, Lynch, CB. Borderline ovarian cancer, bilateral surgical castration, chemotherapy and a normal delivery after ovum donation and in vitro fertilisation-embryo transfer. Br J Obstet Gynaecol, 1996;103:931932.CrossRefGoogle Scholar
Hoffman, JS, Laird, L, Benadiva, C et al. In vitro fertilization following conservative management of stage 3 serous borderline tumor of the ovary. Gynecol Oncol, 1999;74:515518.CrossRefGoogle ScholarPubMed
Gallot, D, Pouly, JL, Janny, L et al. Successful transfer of frozen-thawed embryos obtained immediately before radical surgery for a stage IIIa serus borderline ovarian tumor: Case report. Hum Reprod, 2000;15:23472350.CrossRefGoogle Scholar
Morris, RT, Gershenson, DM, Silva, EG et al. Outcome and reproductive function after conservative surgery for borderline ovarian tumors. Obstet Gynecol, 2000;95:541547.Google ScholarPubMed
Beiner, ME, Gotlieb, WH, Davidson, B et al. Infertility treatment after conservative management of borderline ovarian tumors. Cancer, 2001;92:320325.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Attar, E, Berkman, S, Topuz, S et al. Evolutive peritoneal disease after conservative management and the use of infertility drugs in a patient with stage IIIC borderline micro-papillary serous carcinoma (MPSC) of the ovary: case report. Hum Reprod, 2004;19:14721475.CrossRefGoogle Scholar
Fasouliotis, SJ, Davis, O, Schattman, G et al. Safety and efficacy of infertility treatment after conservative management of borderline ovarian tumors: a preliminary report. Fertil Steri, 2004;82:568572.CrossRefGoogle ScholarPubMed
Marcickiewicz, J, Brannstrom, M. Fertility preserving surgical treatment of borderline ovarian tumour: long-term consequence for fertility and recurrence. Acta Obtet Gynecol Scand, 2006;85:14961500.CrossRefGoogle ScholarPubMed
Fortin, A, Morice, P, Thoury, A et al. Impact of infertility drugs after treatment of borderline ovarian tumors: results of a retrospective multicenter study. Fertil Steril, 2007;87:591596.CrossRefGoogle ScholarPubMed
Park, CW, Yang, KM, Kim, HO et al. Outcomes of controlled ovarian hyperstimulation/in vitro fertilization for infertile patients with borderline ovarian tumor after conservative treatment. J Korean Med Sci, 2007;22 Suppl:S134S138.CrossRefGoogle ScholarPubMed
Yinon, Y, Beiner, ME, Gotlieb, WH et al. Clinical outcome of cystectomy compared with unilateral salpingo-oophorectomy as fertility-sparing treatment of borderline ovarian tumors. Fertil Steril, 2007;88:479484.CrossRefGoogle ScholarPubMed
Porcu, E, Venturoli, S, Damiano, G et al. Healthy twins delivered after oocyte cryopreservation and bilateral ovariectomy for ovarian cancer. Reprod Biomed Online, 2008;17:265267.CrossRefGoogle ScholarPubMed
Cabenda-Narain, NE, Jansen, FW, Dieben, SW, Verburg, HJ, Gaarenstroom, KN. Conservatively treated borderline ovarian tumours, followed by IVF treatment: a case series. J Obstet Gynaecol, 2011;31:327329.CrossRefGoogle ScholarPubMed
Koskas, M, Uzan, C, Gouy, S et al. Fertility determinants after conservative surgery for mucinous borderline tumours of the ovary (excluding peritoneal pseudomyxoma). Hum Reprod, 2011;26:808814.CrossRefGoogle Scholar
DiSaia, P.J. Conservative management of the patient with early gynecologic cancer. CA Cancer J Clin, 1989;39:135154.CrossRefGoogle ScholarPubMed
Colombo, N, Chiari, S, Maggioni, A et al. Controversial issues in the management of early epithelial ovarian cancer: conservative surgery and role of adjuvant therapy. Gynecol Oncol, 1994;55:S47S51.CrossRefGoogle ScholarPubMed
Zanetta, G, Chiari, S, Rota, S et al. Conservative surgery for stage I ovarian carcinoma in women of childbearing age. Br J Obstet Gynaecol, 1997;104:10301035.CrossRefGoogle Scholar
Schilder, JM, Thompson, AM, DePriest, PD et al. Outcome of reproductive age women with stage IA or IC invasive epithelial ovarian cancer treated with fertility-sparing therapy. Gynecol Oncol, 2002;87:17.CrossRefGoogle ScholarPubMed
Morice, P, Leblanc, E, Rey, A et al. GCCLCC and SFOG. Conservative treatment in epithelial ovarian cancer: results of a multicentre study of the GCCLCC (Groupe des Chirurgiens de Centre de Lutte Contre le Cancer) and SFOG (Société Francaise d’Oncologie Gynécologique). Hum Reprod, 2005;20:13791385.CrossRefGoogle Scholar
Park, JY, Kim, DY, Suh, DS et al. Outcomes of fertility-sparing surgery for invasive epithelial ovarian cancer: oncologic safety and reproductive outcomes. Gynecol Oncol, 2008;110:345353.CrossRefGoogle ScholarPubMed
Satoh, T, Hatae, M, Watanabe, Y et al. Outcomes of fertility-sparing surgery for stage I epithelial ovarian cancer: a proposal for patient selection. [Erratum appears in J Clin Oncol 2011 Dec 10;29(35):4725] J of Clini Oncol, 2010;28(10):17271732.CrossRefGoogle Scholar
Wright, JD, Shah, M, Mathew, Let al. Fertility preservation in young women with epithelial ovarian cancer. Cancer, 2009;115(18):41184126.CrossRefGoogle ScholarPubMed
Fruscio, R, Corso, S, Ceppi, L et al. Conservative management of early-stage epithelial ovarian cancer: results of a large retrospective series. Ann Oncol, 2013 January;24(1):138144.CrossRefGoogle ScholarPubMed
Fruscio, R, Ceppi, L, Corso, S et al. Long-term results of fertility-sparing treatment compared with standard radical surgery for early-stage epithelial ovarian cancer. Br J Cancer, 2016;115(6):641648.CrossRefGoogle ScholarPubMed
Marpeau, O, Schilder, J, Zafrani, Y et al. Prognosis of patients who relapse after fertility-sparing surgery in epithelial ovarian cancer. Ann Surg Oncol, 2008;15:478483.CrossRefGoogle ScholarPubMed
Bentivegna, E, Fruscio, R, Roussin, S et al. Long-term follow-up of patients with an isolated ovarian recurrence after conservative treatment of epithelial ovarian cancer: review of the results of an international multicenter study comprising 545 patients. Fertil & Steril, 2015;104(5):13191324.CrossRefGoogle ScholarPubMed
Kajiyama, H, Shibata, K, Suzuki, S et al. Is there any possibility of fertility-sparing surgery in patients with clear-cell carcinoma of the ovary? Gynecol Oncol, 2008;111:523526.CrossRefGoogle ScholarPubMed
Park, JY, Suh, DS, Kim, JH et al. Outcomes of fertility-sparing surgery among young women with FIGO stage I clear cell carcinoma of the ovary. In Gynaecol Obstet, 2016;134(1):4952.Google Scholar
Petrillo, M, Legge, F, Ferrandina, G et al. Fertility-sparing surgery in ovarian cancer extended beyond the ovaries: a case report and review of the literature. Gynecol Obstet Invest, 2014;77(1):15.CrossRefGoogle ScholarPubMed
Kashima, K, Yahata, T, Fujita, K, Tanaka, K. Outcomes of fertility-sparing surgery for women of reproductive age with FIGO stage IC epithelial ovarian cancer. Int J Gynaecol Obstet, 2013;121(1):5355.CrossRefGoogle ScholarPubMed
Kwon, YS, Hahn, HS, Kim, TJ et al. Fertility preservation in patients with early epithelial ovarian cancer. J Gynecol Oncol, 2009;20(1):4447.CrossRefGoogle ScholarPubMed
Schlaerth, AC, Chi, DS, Poynor, EA, Barakat, RR, Brown, CL. Long-term survival after fertility-sparing surgery for epithelial ovarian cancer. Int J Gynecol Cancer, 2009;19(7):11991204.CrossRefGoogle ScholarPubMed
Cheng, X, Cheng, B, Wan, X, Lu, W, Xie, X. Outcomes of conservative surgery in early epithelial ovarian carcinoma. Eur J Gynaecol Oncol, 2012;33(1):9395.CrossRefGoogle ScholarPubMed
Peccatori, F, Bonazzi, C, Chiari, S et al. Surgical management of malignant ovarian germ-cell tumors: 10 years’ experience of 129 patients. Obstet Gynecol, 1995;86:367372.CrossRefGoogle ScholarPubMed
Mitchell, PL, Al-Nasiri, N, A’Hern, R et al. Treatment of nondysgerminomatous ovarian germ cell tumors: an analysis of 69 cases. Cancer, 1999;85:22322244.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Brewer, M, Gershenson, DM, Herzog, CE et al. Outcome and reproductive function after chemotherapy for ovarian dysgerminoma. J Clin Oncol, 1999;17:26702675.CrossRefGoogle ScholarPubMed
Tewari, K, Cappuccini, F, Disaia, PJ et al. Malignant germ cell tumors of the ovary. Obstet Gynecol, 2000;95:128133.Google ScholarPubMed
Low, JJ, Perrin, LC, Crandon, AJ et al. Conservative surgery to preserve ovarian function in patients with malignant ovarian germ cell tumors. A review of 74 cases. Cancer, 2000;89:391398.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Zanetta, G, Bonazzi, C, Cantù, M et al. Survival and reproductive function after treatment of malignant germ cell ovarian tumors. J Clin Oncol, 2001;19:10151020.CrossRefGoogle ScholarPubMed
Tangir, J, Zelterman, D, Ma, W et al. Reproductive function after conservative surgery and chemotherapy for malignant germ cell tumors of the ovary. Obstet Gynecol, 2003;101:251257.Google ScholarPubMed
Zanagnolo, V, Sartori, E, Galleri, G et al. Clinical review of 55 cases of malignant ovarian germ cell tumors. Eur J Gynaecol Oncol, 2004;25:315320.Google ScholarPubMed
Boran, N, Tulunay, G, Caliskan, E et al. Pregnancy outcomes and menstrual function after fertility sparing surgery for pure ovarian dysgerminomas. Arch Gynecol Obstet, 2005;271:104108.CrossRefGoogle ScholarPubMed
Ayhan, A, Celik, H, Taskiran, C et al. Oncologic and reproductive outcome after fertility-saving surgery in ovarian cancer. Eur J Gynaecol Oncol, 2003;24:223232.Google ScholarPubMed
Kang, H, Kim, TJ, Kim, WY et al. Outcome and reproductive function after cumulative high-dose combination chemotherapy with bleomycin, etoposide and cisplatin (BEP) for patients with ovarian endodermal sinus tumor. Gynecol Oncol, 2008;111:106110.CrossRefGoogle ScholarPubMed
de La Motte Rouge, T, Pautier, P, Duvillard, P et al. Survival and reproductive function of 52 women treated with surgery and bleomycin, etoposide, cisplatin (BEP) chemotherapy for ovarian yolk sac tumor. Ann Oncol, 2008;19:14351441.CrossRefGoogle ScholarPubMed
Satoh, T, Aoki, Y, Kasamatsu, T et al. Administration of standard-dose BEP regimen (bleomycin+etoposide+cisplatin) is essential for treatment of ovarian yolk sac tumour. Eur J Cancer, 2015 February;51(3):340351.CrossRefGoogle ScholarPubMed
Zhang, M, Cheung, MK, Shin, JY et al. Prognostic factors responsible for survival in sex cord stromal tumors of the ovary-an analysis of 376 women. Gynecol Oncol, 2007;104:396400.CrossRefGoogle Scholar
Gouy, S, Arfi, A, Maulard, A et al. Results from a monocentric long-term analysis of 23 patients with an ovarian Sertoli-Leydig cell tumors. The Oncologist, 2019;24(5):702–709.CrossRefGoogle Scholar
Colombo, N1, Peiretti, M, Garbi, A et al.; ESMO Guidelines Working Group.Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2012 October;23(Suppl 7):vii2026.CrossRefGoogle ScholarPubMed
Schneider, DT, Orbach, D, Cecchetto, G et al. Ovarian Sertoli Leydig cell tumours in children and adolescents: an analysis of the European Cooperative Study Group on Pediatric Rare Tumors (EXPeRT). Eur J Cancer, 2015 March;51(4):543550.CrossRefGoogle Scholar
Zhang, HY, Zhu, JE, Huang, W, Zhu, J. Clinicopathologic features of ovarian Sertoli-Leydig cell tumors. Int J Clin Exp Pathol, 2014 September 15;7(10):69566964. eCollection 2014.Google ScholarPubMed
Young, RH, Scully, RE. Ovarian Sertoli-Leydig cell tumors. A clinicopathological analysis of 207 cases. Am J Surg Pathol, 1985 August;9(8):543569. Review.CrossRefGoogle ScholarPubMed
Schumer, ST, Cannistra, SA. Granulosa cell tumor of the ovary. J Clin Oncol, 2003;21:11801189.CrossRefGoogle ScholarPubMed