Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 3.31 Render date: 2021-12-06T15:49:28.865Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 3 - Fertility Preservation in Cancer and Non-Cancer Patients

Published online by Cambridge University Press:  27 March 2021

Jacques Donnez
Affiliation:
Catholic University of Louvain, Brussels
S. Samuel Kim
Affiliation:
University of Kansas School of Medicine
Get access
Type
Chapter
Information
Fertility Preservation
Principles and Practice
, pp. 67 - 126
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Surveillance, Epidemiology and End Results Program, 1975–2015, Division of Cancer Control and Population Sciences, National Cancer Institute, 2018.Google Scholar
Larsen, EC, Müller, J, Schmiegelow, K et al. Reduced ovarian function in long-term survivors of radiation and chemotherapy-treated childhood cancer. J Clin Endocrinol Met, 2003;88:53075314.CrossRefGoogle ScholarPubMed
Gidoni, Y, Holzer, H, Tulandi, T et al. Fertility preservation in patients with non-oncological conditions. Reprod Biomed Online, 2008;16:792800.CrossRefGoogle ScholarPubMed
Cobo, A, Bellver, J, Domingo, J et al. New options in assisted reproduction technology: the Cryotop method of oocyte vitrification. Reprod Biomed Online, 2008;17:6872.CrossRefGoogle ScholarPubMed
Meseguer, M, Molina, N, García-Velasco, JA et al. Sperm cryopreservation in oncological patients: a 14-year follow-up study. Fertil Steril, 2006;85:640645.CrossRefGoogle ScholarPubMed
Kuwayama, M, Vajta, G, Kato, O et al. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online, 2005;11:300308.CrossRefGoogle ScholarPubMed
Silber, SJ, Derosa, M, Pineda, J et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod, 2008;23:15311537.CrossRefGoogle ScholarPubMed
Elgindy, E, Sibai, H, Abdelghani, A et al. Protecting ovaries during chemotherapy through gonad suppression: A systematic review and metaanalysis. Obstet Gynecol, 2015;126:187195.CrossRefGoogle Scholar
De Vos, M, Smitz, J, Woodruff, T. Fertility preservation in women with cancer. Lancet, 2014;384:13021310.CrossRefGoogle ScholarPubMed
Tulandi, T, Huang, JY, Tan, SL. Preservation of female fertility: an essential progress. Obstet Gynecol, 2008;112:11601172.CrossRefGoogle Scholar
Bines, J, Oleske, DM, Cobleigh, MA. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol, 1996;14:17181729.CrossRefGoogle ScholarPubMed
Poniatowski, BC, Grimm, P, Cohen, G. Chemotherapy-induced menopause: A literature review. Cancer Invest, 2001;19:641648.CrossRefGoogle ScholarPubMed
Meirow, D, Nugent, D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update, 2001;7:535543.CrossRefGoogle ScholarPubMed
Meirow, D, Epstein, M, Lewis, H et al. Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Hum Reprod, 2001;16:632637.CrossRefGoogle ScholarPubMed
Martinez, F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Fertil Steril, 2017;108:407415.CrossRefGoogle ScholarPubMed
Sonmezer, M, Oktay, K. Fertility preservation in young women undergoing breast cancer therapy. The Oncologist, 2006;11:422434.CrossRefGoogle ScholarPubMed
Warne, GL, Fairley, KF, Hobbs, JB et al. Cyclophosphamide-induced ovarian failure. N Engl J Med, 1973;289:11591162.CrossRefGoogle ScholarPubMed
Marcello, MF, Nuciforo, G, Romeo, R et al. Structural and ultrastructural study of the ovary in childhood leukemia after successful treatment. Cancer, 1990;66:20992104.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Familiari, G, Caggiati, A, Nottola, SA et al. Ultrastructure of human primordial follicles after combination chemotherapy for Hodgkin´s disease. Hum Reprod, 1993;8:20802087.CrossRefGoogle ScholarPubMed
Meirow, D, Dor, J, Kaufman, B et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod, 2007;22:16261633.Google ScholarPubMed
Anderson, RA, Themmen, AP, Al-Qahtani, A et al. The effects of chemotherapy and long term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum Reprod, 2006;21:25832592.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, AB, Kelsey, TW. The radiosensitivity of human oocyte. Hum Reprod, 2003;18:117121.CrossRefGoogle ScholarPubMed
Howell, SJ, Shalet, S. Gonadal damage from chemotherapy and radiotherapy. Endocrinol Metab Clin, 1998;27:927943.CrossRefGoogle ScholarPubMed
Patrick, K, Wallace, WH, Critchley, H. Late reproductive effects of cancer treatment in female survivors of childhood malignancy. Curr Obstet Gynecol, 2003;13:369372.CrossRefGoogle Scholar
Goynumer, G, Kayabasoglu, F, Aydogdu, S et al. The effect of tubal sterilization through electrocoagulation on the ovarian reserve. Contraception, 2009;80:9094.CrossRefGoogle ScholarPubMed
Hernández-Díaz, S, Werler, MM, Walker, AM et al. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med, 2000;343:16081614.CrossRefGoogle ScholarPubMed
Alonso, V, Linares, V, Bellés, M et al. Sulfasalazine induced oxidative stress: a possible mechanism of male infertility. Reprod Toxicol, 2009;27:3540.CrossRefGoogle ScholarPubMed
Ostensen, , Khamashta, M, Lockshin, M et al. Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Res Ther, 2006;8:209.CrossRefGoogle ScholarPubMed
Gutierrez, JC, Hwang, K. The toxicity of methotrexate in male fertility and paternal eratogenicity. Expert Opin Drug Metab Toxicol, 2017;1:5158.CrossRefGoogle Scholar
Martini, AC, Molina, RI, Tissera, AD et al. Analysis of semen from patients chronically treated with low or moderate doses of aspirin like drugs. Fertil Steril, 2003;80:221222.CrossRefGoogle ScholarPubMed
Huang, JY, Tulandi, T, Holzer, H et al. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril, 2008;89:567572.CrossRefGoogle ScholarPubMed
Tao, T, del Valle, A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet, 2008;25:287296.CrossRefGoogle ScholarPubMed
Cobo, A, Kuwayama, M, Pérez, S et al. Comparison of concomitant outcome achieved with fresh and cryopreserved oocytes vitrified by the Cryotop method. Fertil Steril, 2008;89:16571664.CrossRefGoogle ScholarPubMed
Chian, RC, Huang, JY, Tan, SL et al. Obstetric and perinatal outcome in 200 infants conceived from vitrified oocytes. Reprod Biomed Online, 2008;16:608610.CrossRefGoogle ScholarPubMed
The Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. Fertil Steril, 2005;83:16221628.CrossRefGoogle Scholar
Nugent, D, Meirow, D, Brook, PF et al. Transplantation in reproductive medicine: previous experience, present knowledge and future prospects. Hum Reprod Update, 1997;3:267280.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet, 2015;32:11671170.CrossRefGoogle ScholarPubMed
Van der Ven, H, Liebenthron, J, Beckmann, M et al. Ninety-five orthotropic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod, 2016;31:20312041.CrossRefGoogle Scholar
Diaz-Garcia, C, Domingo, J, Garcia-Velasco, JA et al. Oocyte vitrification versus ovarian cortex transplantation in fertility preservation for adult women undergoing gonadotoxic treatments: a prospective cohort study. Fertil Steril, 2018;109:478485.CrossRefGoogle ScholarPubMed
Dolmans, MM, Luyckx, V, Donnez, J, Andersen, CY, Greve, T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril, 2013;99:15141522.CrossRefGoogle ScholarPubMed
Shapira, M, Raanani, H, Barshack, I et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril, 2018;109:4853.CrossRefGoogle Scholar
Committee, IP, Kim, SS, Donnez, J et al. Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet, 2012;29:465468.Google Scholar
Robertson, JA. Ethical issues in ovarian transplantation and donation. Fertil Steril, 2000;73:443446.CrossRefGoogle ScholarPubMed
Blumenfeld, Z, Evron, A. Endocrine prevention of chemotherapy-induced ovarian failure. Curr Opin Obstet Gynecol, 2016;28:223229.CrossRefGoogle ScholarPubMed
Del Mastro, L, Ceppi, M, Poggio, F et al. Gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in cancer women: systematic review and meta-analysis of randomized trials. Cancer Treat Rev, 2014;40:675683.CrossRefGoogle ScholarPubMed
Srkalovic, G, Schally, AV, Wittliff, JL et al. Presence and characteristics of receptors for [D-Trp6] luteinizing hormone releasing hormone and epidermal growth factor in human ovarian cancer. Int J Oncol, 1998;12:489498.Google Scholar
Emous, G, Grndker, C, Ganthert, AR et al. GnRH antagonists in the treatment of gynaecological and breast cancer. Endocr Relat Cancer, 2003;10:291299.CrossRefGoogle Scholar
Blumenfeld, Z, Shapiro, D, Shteinberg, M et al. Preservation of fertility and ovarian function and minimizing gonadotoxicity in young women with systemic lupus erythematosus treated by chemotherapy. Lupus, 2000;9:401405.CrossRefGoogle ScholarPubMed
Gougeon, A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev, 1996;17:121155.CrossRefGoogle ScholarPubMed
Chian, RC, Huang, JY, Gilbert, L et al. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril, 2009;91:23912398.CrossRefGoogle ScholarPubMed
Cohen, Y, St-Onge-St-Hilaire, A, Tannus, S et al. Decreased pregnancy and live birth rates after vitrification of in vitro matured oocytes. J Assist Reprod Genet. 2018;35(9):1683–1689.CrossRefGoogle Scholar
Buckett, WM, Chian, RC, Dean, NL et al. Pregnancy loss in pregnancies conceived after in vitro oocyte maturation, conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril, 2008;90:546550.CrossRefGoogle ScholarPubMed
Bisharah, M, Tulandi, T. Laparoscopic preservation of ovarian function: an underused procedure. Am J Obstet Gynecol, 2003;188:367370.CrossRefGoogle Scholar
Chen, Y, Sun, J, Zou, K et al. Treatment for lupus nephritis: an overview of systematic reviews and meta-analyses. Rheumatol Int, 2017;37:10891099.CrossRefGoogle ScholarPubMed
Bernatsky, S, Clarke, A, Suissa, S. Hematologic malignant neoplasms after drug exposure in rheumatoid arthritis. Arch Intern Med, 2008;168:378381.CrossRefGoogle ScholarPubMed
Langford, C. Wegener’s granulomatosis: current and upcoming therapies. Arthritis Res Ther, 2003;5:180191.CrossRefGoogle ScholarPubMed
Schroeder, JO, Euler, H, Loffler, H. Synchronization of plasmapheresis and pulse cyclophosphamide in severe systemic lupus erythematosus. Ann Intern Med, 1987;107:344346.CrossRefGoogle ScholarPubMed
Manger, K, Wildt, L, Kalden, JR et al. Prevention of gonadal toxicity and preservation of gonadal function and fertility in young women with systemic lupus erythematosus treated by cyclophosphamide: the PREGO-Study. Autoimmun Rev, 2006;5:269272.CrossRefGoogle ScholarPubMed
Buyon, JP, Petri, MA, Kim, MY et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med, 2005;142:953962.CrossRefGoogle ScholarPubMed
Oktay, K, Hourvitz, A, Sahin, G et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metabol, 2006;91:38853890.CrossRefGoogle ScholarPubMed
Ahlstrom, A, Westin, C, Wikland, M et al. Prediction of live birth in frozen-thawed single blastocyst transfer cycles by pre-freeze and post-thaw morphology. Hum Reprod, 2013;28:11991209.CrossRefGoogle ScholarPubMed
Goldman, RH, Racowsky, C, Farland, LV et al. Predicting the likelihood of live birth for elective oocyte cryopreservation: a counseling tool for physicians and patients. Hum Reprod, 2017;32:853859.CrossRefGoogle ScholarPubMed
Dondorp, WJ, De Wert, GM. Fertility preservation for healthy women: ethical aspects. Hum Reprod, 2009;24:17791785.CrossRefGoogle ScholarPubMed
Cobo, A, Garcia-Velasco, JA, Coello, A et al. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril, 2016;105:755–764.e8.CrossRefGoogle ScholarPubMed
Cobo A, García-Velasco JA, Domingo J, Pellicer A, Remohí J. Elective and Onco-fertility preservation: factors related to IVF outcomes. Hum Reprod, 2018;33(12):2222–2231.CrossRefGoogle Scholar
Somigliana, E, Ragni, G, Benedetti, F et al. Does laparoscopic excision of endometriotic ovarian cysts significantly affect ovarian reserve? Insights from IVF cycles. Hum Reprod, 2003;18:24502453.CrossRefGoogle ScholarPubMed
Carrillo, L, Seidman, D, Cittadini, E et al. The role of fertility preservation in patients with endometriosis. J Assist Reprod Genet, 2016;33:317323.CrossRefGoogle ScholarPubMed
García-Velasco, JA, Somigliana, E. Management of endometriomas in women requiring IVF: to touch or not to touch. Hum Reprod, 2009;24:496501.CrossRefGoogle ScholarPubMed
Busacca, M, Vignali, M. Endometrioma excision and ovarian reserve: a dangerous relation. J Minim Invasive Gynecol, 2009;16:142148.CrossRefGoogle ScholarPubMed
Rauck, AM, Grouas, AC. Bone marrow transplantation in adolescents. Adolesc Med, 1999;10:445449.Google ScholarPubMed
Lau, NM, Huang, JY, MacDonald, S et al. Feasibility of fertility preservation in young females with Turner syndrome. Reprod Biomed Online, 2009;18:290295.CrossRefGoogle ScholarPubMed
Pienkowski, C, Menendez, M, Cartault, A et al. Turner’s syndrome and procreation. Ovarian function and Turner’s syndrome. Gynecol Obstet Fertil, 2008;36:10301034.CrossRefGoogle ScholarPubMed
Sénéchal, C, Rousset-Jablonski, C. Should a systematic fertility preservation be proposed to healthy women carrying a BRCA1/2 mutation? Gynecol Obstet Fertil, 2015;43:800805.CrossRefGoogle ScholarPubMed
Derks-Smeets, IAP, van Tilborg, TC, van Montfoort, A et al. BRCA1 mutation carriers have a lower number of mature oocytes after ovarian stimulation for IVF/PGD. J Assist Reprod Genet, 2017;34:14751482.CrossRefGoogle ScholarPubMed
Cobo, A, Bellver, J, Domingo, J et al. New options in assisted reproduction technology: the Cryotop method of oocyte vitrification. Reprod Biomed Online, 2008;17:6872.CrossRefGoogle ScholarPubMed
Bosch, E, Labarta, E, Crespo, J et al. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: analysis of over 4000 cycles. Hum Reprod, 2010;25:20922100.CrossRefGoogle ScholarPubMed
Wheeler, JM. Epidemiology of endometriosis-associated infertility. J Reprod Med, 1989;34(1):4146.Google ScholarPubMed
Giudice, LC, Kao, LC. Endometriosis. Lancet, 2004;364(9447):17891799.CrossRefGoogle ScholarPubMed
Rogers, PA, D’Hooghe, TM, Fazleabas, A et al. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci, 2009;16(4):335346.CrossRefGoogle ScholarPubMed
Nisolle, M, Donnez, J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril, 1997;68(4):585596.CrossRefGoogle ScholarPubMed
Seyhan, A, Ata, B, Uncu, G. The impact of endometriosis and its treatment on ovarian reserve. Semin Reprod Med, 2015;33(6):422428.CrossRefGoogle ScholarPubMed
Giudice, LC. Clinical practice. Endometriosis. N Engl J Med, 2010;362(25):23892398.CrossRefGoogle ScholarPubMed
Sanchez, AM, Vigano, P, Somigliana, E et al. The distinguishing cellular and molecular features of the endometriotic ovarian cyst: from pathophysiology to the potential endometrioma-mediated damage to the ovary. Hum Reprod Update, 2014;20(2):217230.CrossRefGoogle ScholarPubMed
Kitajima, M, Defrere, S, Dolmans, MM et al. Endometriomas as a possible cause of reduced ovarian reserve in women with endometriosis. Fertil Steril, 2011;96(3):685691.CrossRefGoogle ScholarPubMed
Vercellini, P, Chapron, C, De Giorgi, O et al. Coagulation or excision of ovarian endometriomas? Am J Obstet Gynecol, 2003;188(3):606610.CrossRefGoogle ScholarPubMed
Donnez, J, Chantraine, F, Nisolle, M. The efficacy of medical and surgical treatment of endometriosis-associated infertility: arguments in favour of a medico-surgical approach. Hum Reprod Update, 2002;8(1):8994.CrossRefGoogle Scholar
Exacoustos, C, Zupi, E, Amadio, A et al. Laparoscopic removal of endometriomas: sonographic evaluation of residual functioning ovarian tissue. Am J Obstet Gynecol, 2004;191(1):6872.CrossRefGoogle ScholarPubMed
Muzii, L, Bellati, F, Bianchi, et al. Laparoscopic stripping of endometriomas: a randomized trial on different surgical techniques. Part II: pathological results. Hum Reprod, 2005;20(7):19871992.CrossRefGoogle ScholarPubMed
Hart, RJ, Hickey, M, Maouris, P, Buckett, W. Excisional surgery versus ablative surgery for ovarian endometriomata. Cochrane Database Syst Rev, 2008;2:CD004992.Google Scholar
Raffi, F, Metwally, M, Amer, S. The impact of excision of ovarian endometrioma on ovarian reserve: a systematic review and meta-analysis. J Clin Endocrinol Metab, 2012;97(9):31463154.CrossRefGoogle ScholarPubMed
Meenakshi, M, McCluggage, WG. Vascular involvement in adenomyosis: report of a large series of a common phenomenon with observations on the pathogenesis of adenomyosis. Int J Gynecol Pathol, 2010;29(2):117121.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. The ovary: from conception to death. Fertil Steril, 2017;108(4):594595.CrossRefGoogle ScholarPubMed
Wallace, WH, Kelsey, TW. Human ovarian reserve from conception to the menopause. PLoS One, 2010;5(1):e8772.CrossRefGoogle ScholarPubMed
Schubert, B, Canis, M, Darcha, C et al. Human ovarian tissue from cortex surrounding benign cysts: a model to study ovarian tissue cryopreservation. Hum Reprod, 2005;20(7):17861792.CrossRefGoogle Scholar
Maneschi, F, Marasa, L, Incandela, S, Mazzarese, M, Zupi, E. Ovarian cortex surrounding benign neoplasms: a histologic study. Am J Obstet Gynecol, 1993; 169 (2 Pt 1): 388393.CrossRefGoogle ScholarPubMed
Van Langendonckt, A, Donnez, J, Defrere, S, Dunselman, GA, Groothuis, PG. Antiangiogenic and vascular-disrupting agents in endometriosis: pitfalls and promises. Mol Hum Reprod, 2008;14(5):259268.CrossRefGoogle ScholarPubMed
Oktem, O, Urman, B. Understanding follicle growth in vivo. Hum Reprod, 2010;25(12):29442954.CrossRefGoogle ScholarPubMed
Skinner, MK. Regulation of primordial follicle assembly and development. Hum Reprod Update, 2005;11(5):461471.CrossRefGoogle ScholarPubMed
Motta, PM, Nottola, SA, Familiari, G et al. Morphodynamics of the follicular-luteal complex during early ovarian development and reproductive life. Int Rev Cytol, 2003;223:177288.CrossRefGoogle ScholarPubMed
Kitajima, M, Dolmans, MM, Donnez, O et al. Enhanced follicular recruitment and atresia in cortex derived from ovaries with endometriomas. Fertil Steril, 2014;101(4):10311037.CrossRefGoogle ScholarPubMed
Sanchez, AM, Papaleo, E, Corti, L et al. Iron availability is increased in individual human ovarian follicles in close proximity to an endometrioma compared with distal ones. Hum Reprod, 2014;29(3):577583.CrossRefGoogle Scholar
Ferrero, S, Barra, F, Maggiore, ULR. Current and emerging therapeutics for the management of endometriosis. Drugs, 2018;78(10):9951012.CrossRefGoogle ScholarPubMed
Dolmans, MM, Martinez-Madrid, B, Gadisseux, E et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction, 2007;134(2):253262.CrossRefGoogle ScholarPubMed
Donnez, J, Lousse, JC, Jadoul, P, Donnez, O, Squifflet, J. Laparoscopic management of endometriomas using a combined technique of excisional (cystectomy) and ablative surgery. Fertil Steril, 2010;94(1):2832.CrossRefGoogle ScholarPubMed
Working group of Esge, E, Wes, , Saridogan, E, Becker, CM et al. Recommendations for the surgical treatment of endometriosis-part 1: ovarian endometrioma. Gynecol Surg, 2017;14(1):27.Google Scholar
Donnez, J, Garcia-Solares, J, Dolmans, MM. Ovarian endometriosis and fertility preservation: a challenge in 2018. Minerva Ginecol, 2018;70(4):408414.Google ScholarPubMed
Donnez, J, Wyns, C, Nisolle, M. Does ovarian surgery for endometriomas impair the ovarian response to gonadotropin? Fertil Steril, 2001;76(4):662665.CrossRefGoogle ScholarPubMed
Carmona, F, Martinez-Zamora, MA, Rabanal, A, Martinez-Roman, S, Balasch, J. Ovarian cystectomy versus laser vaporization in the treatment of ovarian endometriomas: a randomized clinical trial with a five-year follow-up. Fertil Steril, 2011;96(1):251254.CrossRefGoogle ScholarPubMed
Dunselman, GA, Vermeulen, N, Becker, C et al. ESHRE guideline: management of women with endometriosis. Hum Reprod, 2014;29(3):400412.CrossRefGoogle ScholarPubMed
Falcone, T, Flyckt, R. Clinical management of endometriosis. Obstet Gynecol, 2018;131(3):557571.CrossRefGoogle ScholarPubMed
Carrillo, L, Seidman, DS, Cittadini, E, Meirow, D. The role of fertility preservation in patients with endometriosis. J Assist Reprod Genet, 2016;33(3):317323.CrossRefGoogle ScholarPubMed
Hirokawa, W, Iwase, A, Goto, M et al. The post-operative decline in serum anti-Mullerian hormone correlates with the bilaterality and severity of endometriosis. Hum Reprod, 2011;26(4):904910.CrossRefGoogle ScholarPubMed
Aimetti, M, Manavella, V, Corano, L et al. Three-dimensional analysis of bone remodeling following ridge augmentation of compromised extraction sockets in periodontitis patients: A randomized controlled study. Clin Oral Implants Res, 2018;29(2):202214.CrossRefGoogle ScholarPubMed
Roman, H. Endometriosis surgery and preservation of fertility, what surgeons should know. J Visc Surg, 2018;155(Suppl 1):S31S36.CrossRefGoogle ScholarPubMed
Donnez, J. Reply of the authors to I. Brosens. Fertil Steril, 2010;94:e74.CrossRefGoogle Scholar
Garavaglia, E, Sala, C, Taccagni, G et al. Fertility preservation in endometriosis patients: Anti-Mullerian hormone is a reliable marker of the ovarian follicle density. Front Surg, 2017;4:40.CrossRefGoogle ScholarPubMed
Anderson, RA, Wallace, WH. Antimullerian hormone, the assessment of the ovarian reserve, and the reproductive outcome of the young patient with cancer. Fertil Steril, 2013;99(6):14691475.CrossRefGoogle Scholar
Muzii, L, Luciano, AA, Zupi, E, Panici, PB. Effect of surgery for endometrioma on ovarian function: a different point of view. J Minim Invasive Gynecol, 2014;21(4):531533.CrossRefGoogle ScholarPubMed
Shah, DK, Mejia, RB, Lebovic, DI. Effect of surgery for endometrioma on ovarian function. J Minim Invasive Gynecol, 2014;21(2):203209.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive M. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil Steril, 2012;98(6):14071415.CrossRefGoogle Scholar
Somigliana, E, Berlanda, N, Benaglia, L et al. Surgical excision of endometriomas and ovarian reserve: a systematic review on serum antimullerian hormone level modifications. Fertil Steril, 2012;98(6):15311538.CrossRefGoogle ScholarPubMed
Goodman, LR, Goldberg, JM, Flyckt, RL et al. Effect of surgery on ovarian reserve in women with endometriomas, endometriosis and controls. Am J Obstet Gynecol, 2016;215(5):589 e1e6.CrossRefGoogle ScholarPubMed
Turkcuoglu, I, Melekoglu, R. The long-term effects of endometrioma surgery on ovarian reserve: a prospective case-control study. Gynecol Endocrinol, 2018;34(7):612615.CrossRefGoogle ScholarPubMed
Collinet, P, Fritel, X, Revel-Delhom, C et al. Management of endometriosis: CNGOF/HAS clinical practice guidelines – Short version. J Gynecol Obstet Hum Reprod, 2018;47(7):265274.CrossRefGoogle ScholarPubMed
Dolmans, MM, Donnez, J. Indications for fertility preservation in women from malignant diseases to benign conditions to age-related fertility decline. Minerva Ginecol, 2018;70(4):402407.Google ScholarPubMed
Chen, C. Pregnancy after human oocyte cryopreservation. Lancet, 1986;1(8486):884886.CrossRefGoogle ScholarPubMed
Cobo, A, Diaz, C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril, 2011;96(2):277285.CrossRefGoogle ScholarPubMed
Argyle, CE, Harper, JC, Davies, MC. Oocyte cryopreservation: where are we now? Hum Reprod Update, 2016;22(4):440449.CrossRefGoogle ScholarPubMed
Levi-Setti, PE, Patrizio, P, Scaravelli, G. Evolution of human oocyte cryopreservation: slow freezing versus vitrification. Curr Opin Endocrinol Diabetes Obes, 2016;23(6):445450.CrossRefGoogle ScholarPubMed
Rienzi, L, Gracia, C, Maggiulli, R et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update, 2017;23(2):139155.Google ScholarPubMed
Cobo, A, Garcia-Velasco, JA, Coello, A et al. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril, 2016;105(3):755–764 e8.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. N Engl J Med, 2017;377(17):16571665.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. Nat Rev Endocrinol, 2013;9(12):735749.CrossRefGoogle ScholarPubMed
Bedoschi, G, Oktay, K. Current approach to fertility preservation by embryo cryopreservation. Fertil Steril, 2013;99(6):14961502.CrossRefGoogle ScholarPubMed
Donnez, J, Nisolle, M, Gillet, N et al. Large ovarian endometriomas. Hum Reprod, 1996;11(3):641646.CrossRefGoogle ScholarPubMed
Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril, 2014;101(5):12371243.CrossRefGoogle Scholar
Practice Committee of the American Society for Reproductive Medicine. Endometriosis and infertility: a committee opinion. Fertil Steril, 2012;98(3):591598.CrossRefGoogle Scholar
Cil, AP, Bang, H, Oktay, K. Age-specific probability of live birth with oocyte cryopreservation: an individual patient data meta-analysis. Fertil Steril, 2013;100(2):492–499 e3.CrossRefGoogle ScholarPubMed
Silber, SJ, Lenahan, KM, Levine, DJ et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med, 2005;353(1):5863.CrossRefGoogle ScholarPubMed
Silber, SJ, Grudzinskas, G, Gosden, RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med, 2008;359(24):26172618.CrossRefGoogle ScholarPubMed
Silber, SJ, DeRosa, M, Pineda, J et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod, 2008;23(7):15311537.CrossRefGoogle ScholarPubMed
Silber, SJ, Gosden, RG. Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure. N Engl J Med, 2007;356(13):13821384.CrossRefGoogle Scholar
Donnez, J, Squifflet, J, Dolmans, MM et al. Orthotopic transplantation of fresh ovarian cortex: a report of two cases. Fertil Steril, 2005;84(4):1018.CrossRefGoogle ScholarPubMed
Donnez, J, Martinez-Madrid, B, Jadoul, P et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update, 2006;12(5):519535.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Demylle, D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004;364(9443):14051410.CrossRefGoogle ScholarPubMed
Gellert, SE, Pors, SE, Kristensen, SG et al. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet, 2018;35(4):561570.CrossRefGoogle ScholarPubMed
Ernst, E, Bergholdt, S, Jorgensen, JS, Andersen, CY. The first woman to give birth to two children following transplantation of frozen/thawed ovarian tissue. Hum Reprod, 2010;25(5):12801281.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Pellicer, A et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril, 2013;99(6):15031513.CrossRefGoogle ScholarPubMed
Jadoul, P, Guilmain, A, Squifflet, J et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod, 2017;32(5):10461054.CrossRefGoogle ScholarPubMed
Meirow, D, Ra’anani, H, Shapira, M et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril, 2016;106(2):467474.CrossRefGoogle ScholarPubMed
Jensen, AK, Macklon, KT, Fedder, J et al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet, 2017;34(3):325336.CrossRefGoogle ScholarPubMed
Van der Ven, H, Liebenthron, J, Beckmann, M et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod, 2016;31(9):20312041.CrossRefGoogle Scholar
Demeestere, I, Simon, P, Emiliani, S, Delbaere, A, Englert, Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist, 2007;12(12):14371442.CrossRefGoogle Scholar
Schmidt, KT, Nyboe Andersen, A, Greve, T. Fertility in cancer patients after cryopreservation of one ovary. Reprod Biomed Online, 2013;26(3):272279.CrossRefGoogle ScholarPubMed
Jadoul, P, Dolmans, MM, Donnez, J. Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed? Hum Reprod Update, 2010;16(6):617630.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Diaz, C, Pellicer, A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril, 2015;104(5):10971098.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet, 2015;32(8):11671170.CrossRefGoogle ScholarPubMed
Donnez, J, Squifflet, J, Jadoul, P et al. Fertility preservation in women with ovarian endometriosis. Front Biosci (Elite Ed), 2012;4:16541662.CrossRefGoogle ScholarPubMed
Dittrich, R, Lotz, L, Keck, G et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril, 2012;97(2):387390.CrossRefGoogle ScholarPubMed
Noone, AM, Howlader, N, Noone, AM et al. SEER cancer statistics review, 1975–2015. National Cancer Institute 2018.Google Scholar
Phillips, SM, Padgett, LS, Leisenring, WM et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomarkers Prev, 2015;24:653663.CrossRefGoogle ScholarPubMed
Oeffinger, KC, Mertens, AC, Sklar, CA et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med, 2006;355:15721582.CrossRefGoogle ScholarPubMed
Hudson, MM, Ness, KK, Gurney, JG et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA, 2013;309:23712381.CrossRefGoogle ScholarPubMed
Chow, EJ, Stratton, KL, Leisenring, WM et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol, 2016;17:567576.CrossRefGoogle ScholarPubMed
Knapp, CA, Quinn, GP, Murphy, D. Assessing the reproductive concerns of children and adolescents with cancer: Challenges and potential solutions. J Adolesc Young Adult Oncol, 2011;1:3135.CrossRefGoogle ScholarPubMed
Quinn, GP, Woodruff, TK, Knapp, CA. Expanding the oncofertility workforce: training allied health professionals to improve health outcomes for adolescents and young adults. J Adolesc Young Adult Oncol, 2016;5:292296.CrossRefGoogle ScholarPubMed
Carlson, CA, Kolon, TF, Mattei, P. Developing a hospital-wide fertility reservation service for pediatric and young adult patients. J Adolesc Health, 2017;61:571576.CrossRefGoogle Scholar
Sklar, C. Reproductive physiology and treatment-related loss of sex hormone production. Med Pediatr Oncol, 1999;33:28.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Kubota, H, Brinster, RL. Spermatogonial stem cells. Biol Reprod, 2018;99(1):5274.CrossRefGoogle ScholarPubMed
Howell, SJ, Shalet, SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr, 2005;34:1217.CrossRefGoogle Scholar
Wallace, WH. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer, 2011;117:23012310.CrossRefGoogle ScholarPubMed
Meistrich, ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril, 2013;100:11801186.CrossRefGoogle ScholarPubMed
van Casteren, NJ, van der Linden, GH, Hakvoort-Cammel, FG et al. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer, 2009;52:108112.CrossRefGoogle ScholarPubMed
Holoch, P, Wald, M. Current options for preservation of fertility in the male. Fertil Steril, 2011;96:286290.CrossRefGoogle ScholarPubMed
Pryzant, RM, Meistrich, ML, Wilson, G. Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin’s lymphomas. J Clin Oncol, 1993;11:239247.CrossRefGoogle ScholarPubMed
Meistrich, ML, Wilson, G, Brown, BW, da Cunha, MF, Lipshultz, LI. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer, 1992;70:27032712.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Kenney, LB, Laufer, MR, Grant, FD, Grier, H, Diller, L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer, 2001;91:613621.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Green, DM, Liu, W, Kutteh, WH et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol, 2014;15:12151223.CrossRefGoogle ScholarPubMed
Viviani, S, Santoro, A, Ragni, G et al. Gonadal toxicity after combination chemotherapy for Hodgkin’s disease. Comparative results of MOPP vs ABVD. Eur J Cancer Clin Oncol, 1985;21:601605.CrossRefGoogle ScholarPubMed
Marmor, D, Duyck, F. Male reproductive potential after MOPP therapy for Hodgkin’s disease: a long-term survey. Andrologia, 1995;27:99106.CrossRefGoogle ScholarPubMed
Dohle, GR. Male infertility in cancer patients: Review of the literature. Int J Urol, 2010;17:327331.CrossRefGoogle ScholarPubMed
Paoli, D, Rizzo, F, Fiore, G et al. Spermatogenesis in Hodgkin’s lymphoma patients: a retrospective study of semen quality before and after different chemotherapy regimens. Hum Reprod, 2016;31:263272.Google ScholarPubMed
Behringer, K, Mueller, H, Goergen, H et al. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol, 2013;31:231239.CrossRefGoogle Scholar
Waring, AB, Wallace, WH. Subfertility following treatment for childhood cancer. Hosp Med, 2000;61:550557.CrossRefGoogle ScholarPubMed
Chovanec, M, Abu Zaid, M, Hanna, N et al. Long-term toxicity of cisplatin in germ-cell tumor survivors. Ann Oncol, 2017;28:26702679.CrossRefGoogle ScholarPubMed
Pont, J, Albrecht, W. Fertility after chemotherapy for testicular germ cell cancer. Fertil Steril, 1997;68:15.CrossRefGoogle ScholarPubMed
Hansen, PV, Hansen, SW. Gonadal function in men with testicular germ cell cancer: the influence of cisplatin-based chemotherapy. Eur Urol, 1993;23:153156.CrossRefGoogle ScholarPubMed
Meistrich, M, Chawla, SP, da Cunha, MF et al. Recovery of sperm production after chemotherapy for osteosarcoma. Cancer, 1989;63:21152123.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Brignardello, E, Felicetti, F, Castiglione, A et al. Gonadal status in long-term male survivors of childhood cancer. J Cancer Res Clin Oncol, 2016;142:11271132.CrossRefGoogle ScholarPubMed
Longhi, A, Macchiagodena, M, Vitali, G, Bacci, G. Fertility in male patients treated with neoadjuvant chemotherapy for osteosarcoma. J Pediatr Hematol Oncol, 2003;25:292296.CrossRefGoogle ScholarPubMed
Janeway, KA, Grier, HE. Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol, 2010;11:670678.CrossRefGoogle ScholarPubMed
Williams, D, Crofton, PM, Levitt, G. Does ifosfamide affect gonadal function? Pediatr Blood Cancer, 2008;50:347351.CrossRefGoogle ScholarPubMed
Jacob, A, Barker, H, Goodman, A, Holmes, J. Recovery of spermatogenesis following bone marrow transplantation. Bone Marrow Transplant, 1998;22:277279.CrossRefGoogle ScholarPubMed
Sanders, JE, Hawley, J, Levy, W et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood, 1996;87:30453052.CrossRefGoogle ScholarPubMed
Ash, P. The influence of radiation on fertility in man. Br J Radiol, 1980;53:271278.CrossRefGoogle ScholarPubMed
Kenney, LB, Cohen, LE, Shnorhavorian, M et al. Male reproductive health after childhood, adolescent, and young adult cancers: a report from the Children’s Oncology Group. J Clin Oncol, 2012;30:34083416.CrossRefGoogle Scholar
Blatt, J, Sherins, RJ, Niebrugge, D, Bleyer, WA, Poplack, DG. Leydig cell function in boys following treatment for testicular relapse of acute lymphoblastic leukemia. J Clin Oncol, 1985;3:12271231.CrossRefGoogle ScholarPubMed
Castillo, LA, Craft, AW, Kernahan, J, Evans, RG, Aynsley-Green, A. Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol, 1990;18:185189.CrossRefGoogle ScholarPubMed
Sklar, CA, Robison, LL, Nesbit, ME et al. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J Clin Oncol, 1990;8:19811987.CrossRefGoogle ScholarPubMed
Shapiro, E, Kinsella, TJ, Makuch, RW et al. Effects of fractionated irradiation of endocrine aspects of testicular function. J Clin Oncol, 1985;3:12321239.CrossRefGoogle ScholarPubMed
Fraass, BA, Kinsella, TJ, Harrington, FS, Glatstein, E. Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int J Radiat Oncol Biol Phys, 1985;11:609615.CrossRefGoogle ScholarPubMed
Socie, G, Salooja, N, Cohen, A et al. Nonmalignant late effects after allogeneic stem cell transplantation. Blood, 2003;101:33733385.CrossRefGoogle ScholarPubMed
Sayan, M, Cassidy, RJ, Butker, EE et al. Gonadal shielding technique to preserve fertility in male pediatric patients treated with total body irradiation for stem cell transplantation. Bone Marrow Transplant, 2016;51:997998.CrossRefGoogle ScholarPubMed
Speiser, B, Rubin, P, Casarett, G. Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer, 1973;32:692698.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Sandeman, TF. The effects of x irradiation on male human fertility. Br J Radiol, 1966;39:901907.CrossRefGoogle ScholarPubMed
Djaladat, H, Burner, E, Parikh, PM, Beroukhim Kay, D, Hays, K. The association between testis cancer and semen abnormalities before orchiectomy: a systematic review. J Adolesc Young Adult Oncol, 2014;3:153159.CrossRefGoogle ScholarPubMed
Kenney, LB, Antal, Z, Ginsberg, JP et al. Improving male reproductive health after childhood, adolescent, and young adult cancer: progress and future directions for survivorship research. J Clin Oncol, 2018;36:21602168.CrossRefGoogle Scholar
Crowne, E, Gleeson, H, Benghiat, H, Sanghera, P, Toogood, A. Effect of cancer treatment on hypothalamic-pituitary function. Lancet Diabetes Endocrinol, 2015;3:568576.CrossRefGoogle ScholarPubMed
Darzy, KH, Shalet, SM. Hypopituitarism following radiotherapy revisited. Endocr Dev, 2009;15:124.CrossRefGoogle ScholarPubMed
Schmiegelow, M, Lassen, S, Poulsen, HS et al. Gonadal status in male survivors following childhood brain tumors. J Clin Endocrinol Metab, 2001;86:24462452.Google ScholarPubMed
Constine, LS, Woolf, PD, Cann, D et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med, 1993;328:8794.CrossRefGoogle ScholarPubMed
Ogle, SK, Hobbie, WL, Carlson, CA et al. Sperm banking for adolescents with cancer. J Pediatr Oncol Nurs, 2008;25:97101.CrossRefGoogle ScholarPubMed
Klosky, JL, Lehmann, V, Flynn, JS et al. Patient factors associated with sperm cryopreservation among at-risk adolescents newly diagnosed with cancer. Cancer, 2018;124:35673575.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Ogle, SK, Tuchman, LK et al. Sperm banking for adolescent and young adult cancer patients: sperm quality, patient, and parent perspectives. Pediatr Blood Cancer, 2008;50:594598.CrossRefGoogle Scholar
DiNofia, AM, Wang, X, Yannekis, G et al. Analysis of semen parameters in a young cohort of cancer patients. Pediatr Blood Cancer, 2017;64:381386.CrossRefGoogle Scholar
Yu, G, Liu, Y, Zhang, H, Wu, K. Application of testicular spermatozoa cryopreservation in assisted reproduction. Int J Gynaecol Obstet, 2018;142:354358.CrossRefGoogle ScholarPubMed
Adank, MC, van Dorp, W, Smit, M et al. Electroejaculation as a method of fertility preservation in boys diagnosed with cancer: a single-center experience and review of the literature. Fertil Steril, 2014;102:199–205 e191.CrossRefGoogle ScholarPubMed
Jurewicz, M, Hillelsohn, J, Mehta, S, Gilbert, BR. Fertility preservation in pubertal and pre-pubertal boys with cancer. Pediatr Endocrinol Rev, 2018;15:234243.Google ScholarPubMed
Brinster, RL. Male germline stem cells: from mice to men. Science, 2007;316:404405.CrossRefGoogle Scholar
Hermann, BP, Sukhwani, M, Winkler, F et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell, 2012;11:715726.CrossRefGoogle ScholarPubMed
Bhang, DH, Kim, BJ, Kim, BG et al. Testicular endothelial cells are a critical population in the germline stem cell niche. Nat Commun, 2018;9:4379.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Carlson, CA, Lin, K et al. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod, 2010;25:3741.CrossRefGoogle ScholarPubMed
Richards, JS. Perspective: the ovarian follicle–a perspective in 2001. Endocrinology, 2001;142:21842193.CrossRefGoogle ScholarPubMed
Banerjee, S, Banerjee, S, Saraswat, G, Bandyopadhyay, SA, Kabir, SN. Female reproductive aging is master-planned at the level of ovary. PLoS One, 2014;9: e96210.CrossRefGoogle ScholarPubMed
Mattison, DR, Plowchalk, DR, Meadows, MJ et al. Reproductive toxicity: male and female reproductive systems as targets for chemical injury. Med Clin North Am, 1990;74:391411.CrossRefGoogle ScholarPubMed
Gargus, E, Deans, R, Anazodo, A, Woodruff, TK. Management of primary ovarian insufficiency symptoms in survivors of childhood and adolescent cancer. J Natl Compr Canc Netw, 2018;16:11371149.CrossRefGoogle ScholarPubMed
Levine, JM, Whitton, JA, Ginsberg, JP et al. Nonsurgical premature menopause and reproductive implications in survivors of childhood cancer: a report from the childhood cancer survivor study. Cancer, 2018;124:10441052.CrossRefGoogle ScholarPubMed
Chemaitilly, W, Li, Z, Krasin, MJ et al. Premature ovarian insufficiency in childhood cancer survivors: a report from the St. Jude lifetime cohort. J Clin Endocrinol Metab, 2017;102:22422250.CrossRefGoogle ScholarPubMed
Oktem, O, Kim, SS, Selek, U, Schatmann, G, Urman, B. Ovarian and uterine functions in female survivors of childhood cancers. Oncologist, 2018;23:214224.CrossRefGoogle ScholarPubMed
Oktem, O, Oktay, K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer, 2007;110:22222229.CrossRefGoogle ScholarPubMed
Chemaitilly, W, Mertens, AC, Mitby, P et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab, 2006;91:17231728.CrossRefGoogle ScholarPubMed
Gracia, CR, Ginsberg, JP. Fertility risk in pediatric and adolescent cancers. Cancer Treat Res, 2007;138:5772.CrossRefGoogle ScholarPubMed
Thomas-Teinturier, C, Allodji, RS, Svetlova, E et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod, 2015;30:14371446.CrossRefGoogle ScholarPubMed
Green, DM, Kawashima, T, Stovall, M et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol, 2009;27:26772685.CrossRefGoogle ScholarPubMed
De Bruin, ML, Huisbrink, J, Hauptmann, M et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. Blood, 2008;111:101108.CrossRefGoogle ScholarPubMed
Sklar, CA, Mertens, AC, Mitby, P et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst, 2006;98:890896.CrossRefGoogle ScholarPubMed
van Dorp, W, Haupt, R, Anderson, RA et al. Reproductive function and outcomes in female survivors of childhood, adolescent, and young adult cancer: a review. J Clin Oncol, 2018;36:21692180.CrossRefGoogle Scholar
Overbeek, A, van den Berg, MH, van Leeuwen, FE et al. Chemotherapy-related late adverse effects on ovarian function in female survivors of childhood and young adult cancer: a systematic review. Cancer Treat Rev, 2017;53:1024.CrossRefGoogle Scholar
Borgmann-Staudt, A, Rendtorff, R, Reinmuth, S et al. Fertility after allogeneic haematopoietic stem cell transplantation in childhood and adolescence. Bone Marrow Transplant, 2012;47:271276.CrossRefGoogle ScholarPubMed
Thibaud, E, Rodriguez-Macias, K, Trivin, C et al. Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transplant, 1998;21:287290.CrossRefGoogle ScholarPubMed
Sanders, JE, Woolfrey, AE, Carpenter, PA et al. Late effects among pediatric patients followed for nearly 4 decades after transplantation for severe aplastic anemia. Blood, 2011;118:14211428.CrossRefGoogle ScholarPubMed
Vatanen, A, Wilhelmsson, M, Borgstrom, B et al. Ovarian function after allogeneic hematopoietic stem cell transplantation in childhood and adolescence. Eur J Endocrinol, 2014;170:211218.CrossRefGoogle ScholarPubMed
Nabhan, SK, Bitencourt, MA, Duval, M et al. Fertility recovery and pregnancy after allogeneic hematopoietic stem cell transplantation in Fanconi anemia patients. Haematologica, 2010;95:17831787.CrossRefGoogle ScholarPubMed
Singhal, S, Powles, R, Treleaven, J et al. Melphalan alone prior to allogeneic bone marrow transplantation from HLA-identical sibling donors for hematologic malignancies: alloengraftment with potential preservation of fertility in women. Bone Marrow Transplant, 1996;18:10491055.Google ScholarPubMed
Panasiuk, A, Nussey, S, Veys, P et al. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan. Br J Haematol, 2015;170:719726.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, AB, Kelsey, TW. The radiosensitivity of the human oocyte. Hum Reprod, 2003;18:117121.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, AB, Saran, F, Kelsey, TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys, 2005;62:738744.CrossRefGoogle ScholarPubMed
Wallace, WH, Shalet, SM, Hendry, JH, Morris-Jones, PH, Gattamaneni, HR. Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol, 1989;62:995998.CrossRefGoogle ScholarPubMed
Beneventi, F, Locatelli, E, Giorgiani, G et al. Gonadal and uterine function in female survivors treated by chemotherapy, radiotherapy, and/or bone marrow transplantation for childhood malignant and non-malignant diseases. BJOG, 2014;121:856865; discussion 865.CrossRefGoogle ScholarPubMed
Teh, WT, Stern, C, Chander, S, Hickey, M. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res Int, 2014;2014:482968.CrossRefGoogle ScholarPubMed
Koustenis, E, Pfitzer, C, Balcerek, M et al. Impact of cranial irradiation and brain tumor location on fertility: a survey. Klin Padiatr, 2013;225:320324.Google ScholarPubMed
Green, DM, Nolan, VG, Kawashima T et al. Decreased fertility among female childhood cancer survivors who received 22–27 Gy hypothalamic/pituitary irradiation: a report from the Childhood Cancer Survivor Study. Fertil Steril, 2011; 95(6):19221927, 1927 e1.CrossRefGoogle ScholarPubMed
Hamre, MR, Robison, LL, Nesbit, ME et al. Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Study Group. J Clin Oncol, 1987;5:17591765.CrossRefGoogle Scholar
Wallace, WH, Shalet, SM, Tetlow, LJ, Morris-Jones, PH. Ovarian function following the treatment of childhood acute lymphoblastic leukaemia. Med Pediatr Oncol, 1993;21:333339.CrossRefGoogle ScholarPubMed
DeWire, M, Green, DM, Sklar, CA et al. Pubertal development and primary ovarian insufficiency in female survivors of embryonal brain tumors following risk-adapted craniospinal irradiation and adjuvant chemotherapy. Pediatr Blood Cancer, 2015;62:329334.CrossRefGoogle ScholarPubMed
Lester-Coll, NH, Morse, CB, Zhai, HA et al. Preserving fertility in adolescent girls and young women requiring craniospinal irradiation: a case report and discussion of options to be considered prior to treatment. J Adolesc Young Adult Oncol, 2014;3:9699.CrossRefGoogle Scholar
Perez-Andujar, A, Newhauser, WD, Taddei, PJ, Mahajan, A, Howell, RM. The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation. Phys Med Biol, 2013;58:31073123.CrossRefGoogle Scholar
Jadoul, P, Anckaert, E, Dewandeleer, A et al. Clinical and biologic evaluation of ovarian function in women treated by bone marrow transplantation for various indications during childhood or adolescence. Fertil Steril, 2011;96(1):126133.CrossRefGoogle ScholarPubMed
Sarafoglou, K, Boulad, F, Gillio, A, Sklar, C. Gonadal function after bone marrow transplantation for acute leukemia during childhood. J Pediatr, 1997;130:210216.CrossRefGoogle ScholarPubMed
Jadoul, P, Donnez, J. How does bone marrow transplantation affect ovarian function and fertility? Curr Opin Obstet Gynecol, 2012;24:164171.CrossRefGoogle ScholarPubMed
Salooja, N, Szydlo, RM, Socie, G et al. Pregnancy outcomes after peripheral blood or bone marrow transplantation: a retrospective survey. Lancet, 2001;358:271276.CrossRefGoogle ScholarPubMed
Lee, SJ, Schover, LR, Partridge, AH et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol, 2006;24:29172931.CrossRefGoogle Scholar
Oktay, K, Harvey, BE, Partridge, AH et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol, 2018;36:19942001.CrossRefGoogle ScholarPubMed
Druckenmiller, S, Goldman, KN, Labella, PA et al. Successful oocyte cryopreservation in reproductive-aged cancer survivors. Obstet Gynecol, 2016;127:474480.CrossRefGoogle ScholarPubMed
Rienzi, L, Gracia, C, Maggiulli, R et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update, 2017;23:139155.Google ScholarPubMed
Argyle, CE, Harper, JC, Davies, MC. Oocyte cryopreservation: where are we now? Hum Reprod Update, 2016;22:440449.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Diaz, C, Pellicer, A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril, 2015;104:10971098.CrossRefGoogle ScholarPubMed
Pacheco, F, Oktay, K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci, 2017;24:11111120.CrossRefGoogle ScholarPubMed
Van der Ven, H, Liebenthron, J, Beckmann, M et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod, 2016;31:20312041.CrossRefGoogle Scholar
Flyckt, R. Ovarian cortical biopsy for fertility preservation. 2019 Oncofertility Conference, Chicago, Illinois. Presented November 13, 2019.Google Scholar
Xiao, S, Zhang, J, Romero, MM et al. In vitro follicle growth supports human oocyte meiotic maturation. Sci Rep, 2015;5:17323.CrossRefGoogle ScholarPubMed
Luyckx, V, Dolmans, MM, Vanacker, J et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril, 2014;101:11491156.CrossRefGoogle Scholar
Prasath, EB, Chan, ML, Wong, WH et al. First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient. Hum Reprod, 2014;29:276278.CrossRefGoogle Scholar
Segers, I, Mateizel, I, Van Moer, E et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising “ex vivo” method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet, 2015;32:12211231.CrossRefGoogle ScholarPubMed
Moawad, NS, Santamaria, E, Rhoton-Vlasak, A, Lightsey, JL. Laparoscopic ovarian transposition before pelvic cancer treatment: ovarian function and fertility preservation. J Minim Invasive Gynecol, 2017;24:2835.CrossRefGoogle ScholarPubMed
Fernandez-Pineda, I, Davidoff, AM, Lu, L et al. Impact of ovarian transposition before pelvic irradiation on ovarian function among long-term survivors of childhood Hodgkin lymphoma: A report from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer, 2018;65: e27232.CrossRefGoogle ScholarPubMed
Oktay, K, Oktem, O. Fertility preservation medicine: a new field in the care of young cancer survivors. Pediatr Blood Cancer, 2009;53:267273.CrossRefGoogle ScholarPubMed
Smith, KL, Gracia, C, Sokalska, A, Moore, H. Advances in fertility preservation for young women with cancer. Am Soc Clin Oncol Educ Book, 2018;38:2737.CrossRefGoogle ScholarPubMed
Blumenfeld, Z. How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. Oncologist, 2007;12:10441054.CrossRefGoogle ScholarPubMed
Blumenfeld, Z, Zur, H, Dann, EJ. Gonadotropin-releasing hormone agonist cotreatment during chemotherapy may increase pregnancy rate in survivors. Oncologist, 2015;20:12831289.CrossRefGoogle ScholarPubMed
Practice Committees of American Society for Reproductive Medicine SfART. Mature oocyte cryopreservation: a guideline. Fertil Steril, 2013;99:3743.CrossRefGoogle Scholar
Nightingale, CL, Quinn, GP, Shenkman, EA et al. Health-related quality of life of young adult survivors of childhood cancer: a review of qualitative studies. J Adolesc Young Adult Oncol, 2011;1:124132.CrossRefGoogle ScholarPubMed
Ginsberg, JP, Li, Y, Carlson, CA et al. Testicular tissue cryopreservation in prepubertal male children: an analysis of parental decision-making. Pediatr Blood Cancer, 2014;61:16731678.CrossRefGoogle ScholarPubMed
Sullivan-Pyke, CS, Carlson, CA, Prewitt, M, Gracia, CR, Ginsberg, JP. Ovarian tissue cryopreservation (OTC) in prepubertal girls and young women: an analysis of parents’ and patients’ decision-making. J Assist Reprod Genet, 2018;35:593600.CrossRefGoogle Scholar
Nahata, L, Caltabellotta, NM, Yeager, ND et al. Fertility perspectives and priorities among male adolescents and young adults in cancer survivorship. Pediatr Blood Cancer, 2018;65: e27019.CrossRefGoogle Scholar
Overbeek, A, van den Berg, M, Louwe, L et al. Practice, attitude and knowledge of Dutch paediatric oncologists regarding female fertility. Neth J Med, 2014;72:264270.Google ScholarPubMed
Ataman, LM, Rodrigues, JK, Marinho, RM et al. Creating a global community of practice for oncofertility. J Glob Oncol, 2016;2:8396.Google ScholarPubMed
Fitzmaurice, C, Akinyemiju, TF, Al Lami, FH et al. for the Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol, 2018 June 2. DOI:10.1001/jamaoncol.2018.2706. [Epub ahead of print]CrossRefGoogle Scholar
Engholm, G, Ferlay, J, Christensen, N et al. NORDCAN: Cancer Incidence, Mortality, Prevalence and Survival in the Nordic Countries. Association of the Nordic Cancer Registries. Danish Cancer Society 2014.Google Scholar
Surveillance, Epidemiology, and End Results (SEER) 5-year relative survival by site. SEER cancer statistics review 1975–2008. www.seer.cancer.govGoogle Scholar
Oktay, K, Harvey, BE, Partridge, AH et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol, 2018 July 1;36(19):19942001.CrossRefGoogle ScholarPubMed
Armuand, GM, Rodriguez-Wallberg, KA, Wettergren, L et al. Sex differences in fertility-related information received by young adult cancer survivors. J Clin Oncol, 2012;30(17):21472153.CrossRefGoogle ScholarPubMed
Armuand, GM, Wettergren, L, Rodriguez-Wallberg, KA, Lampic, C. Women more vulnerable than men when facing risk for treatment-induced infertility: a qualitative study of young adults newly diagnosed with cancer. Acta Oncol, 2015 February;54(2):243552.CrossRefGoogle ScholarPubMed
Fredholm, H, Eaker, S, Frisell, J et al. Breast cancer in young women: poor survival despite intensive treatment. PLoS One, 2009;4:e76957.CrossRefGoogle ScholarPubMed
Curigliano, G, Burstein, HJ, Winer, EP et al.; Panel Members of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol, 2018 May 3. DOI:10.1093/annonc/mdx806.[Epub ahead of print]CrossRefGoogle Scholar
Rodriguez-Wallberg, KA. Principles of cancer treatment: impact on reproduction. Adv Exp Med Biol, 2012;732:18.CrossRefGoogle ScholarPubMed
Sonmezer, M, Oktay, K. Fertility preservation in young women undergoing breast cancer therapy. Oncologist, 2006;11(5):422434.CrossRefGoogle ScholarPubMed
Rodriguez-Wallberg, KA, Oktay, K. Fertility preservation and pregnancy in women with and without BRCA mutation-positive breast cancer. Oncologist, 2012;17:14091417.CrossRefGoogle ScholarPubMed
Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in patients facing gonadotoxic therapies: an Ethics Committee opinion. Fertil Steril, 2018 August;110(3):380386.CrossRefGoogle Scholar
Lambertini, M, Fontana, V, Massarotti, C et al. Prospective study to optimize care and improve knowledge on ovarian function and/or fertility preservation in young breast cancer patients: results of the pilot phase of the PREgnancy and FERtility (PREFER) study. Breast, 2018 June 22;41:5156.CrossRefGoogle ScholarPubMed
Rodriguez-Wallberg, KA, Tanbo, T, Tinkanen, H et al. Ovarian tissue cryopreservation and transplantation among alternatives for fertility preservation in the Nordic countries – compilation of 20 years of multicenter experience. Acta Obstet Gynecol Scand, 2016 September;95(9):10151026.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E, Davis, O et al. Fertility preservation in breast cancer patients: IVF and embryo cryopreservation after ovarian stimulation with tamoxifen. Hum Reprod, 2003;18(1):9095.CrossRefGoogle ScholarPubMed
Meirow, D, Raanani, H, Maman, E et al. Tamoxifen co-administration during controlled ovarian hyperstimulation for in vitro fertilization in breast cancer patients increases the safety of fertility-preservation treatment strategies. Fertil Steril, 2014 August;102(2):488495.CrossRefGoogle ScholarPubMed
Fisk, NM, Templeton, AA, Papadopoulos, GC, Matlin, SA, Wu, ZY. Lack of effect of high-dose antioestrogen on the maturation and in-vitro fertilization of human oocytes. Hum Reprod, 1989 July;4(5):584587.CrossRefGoogle ScholarPubMed
Tulandi, T, Martin, J, Al-Fadhli, R et al. Congenital malformations among 911 newborns conceived after infertility treatment with letrozole or clomiphene citrate. Fertil Steril, 2006;85(6):17611765.CrossRefGoogle ScholarPubMed
Ata, B, Tulandi, T. Reassurance of safety of letrozole and suggested approaches in controlled ovarian hyperstimulation. Fertil Steril, 2009 July;92(1):e6.CrossRefGoogle ScholarPubMed
Oktay, K, Hourvitz, A, Sahin, G et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab, 2006;91(10):38853890.CrossRefGoogle ScholarPubMed
Azim, AA, Costantini-Ferrando, M, Lostritto, K, Oktay, K. Relative potencies of anastrozole and letrozole to suppress estradiol in breast cancer patients undergoing ovarian stimulation before in vitro fertilization. J Clin Endocrinol Metab, 2007;92(6):21972200.CrossRefGoogle ScholarPubMed
Oktay, K, Hourvitz, A, Sahin, G et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab, 2006 October;91(10):38853890.CrossRefGoogle ScholarPubMed
Oktay, K, Türkçüoglu, I, Rodriguez-Wallberg, KA. GnRH agonist trigger for women with breast cancer undergoing fertility preservation by aromatase inhibitor/FSH stimulation. Reprod Biomed Online, 2010;20(6):783788.CrossRefGoogle ScholarPubMed
Sönmezer, M1, Türkçüoğlu, I, Coşkun, U, Oktay, K. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril, 2011 May;95(6):2125.e911.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E, Rodriguez-Wallberg, KA, Sahin, G. In vitro maturation improves oocyte or embryo cryopreservation outcome in breast cancer patients undergoing ovarian stimulation for fertility preservation. Reprod Biomed Online, 2010 May;20(5):634638.CrossRefGoogle ScholarPubMed
Gellert, SE, Pors, SE, Kristensen, SG et al. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet, 2018 April;35(4):561570.CrossRefGoogle ScholarPubMed
Azim, AA, Costantini-Ferrando, M, Oktay, K. Safety of fertility preservation by ovarian stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. J Clin Oncol, 2008;26:26302635.CrossRefGoogle ScholarPubMed
Kim, J, Turan, V, Oktay, K. Long-term safety of letrozone and gonadotropin stimulation for fertility preservation in women with breast cancer. J Clin Endocrinol Metab, 2016;101(4):13641371, jc20153878.CrossRefGoogle ScholarPubMed
Rodriguez-Wallberg, KA, Eloranta, S, Krawiec, K et al. Safety of fertility preservation in breast cancer patients in a register-based matched cohort study. Breast Cancer Res Treat 2018 February;167 (3):761769.CrossRefGoogle Scholar
Kroman, N, Jensen, MB, Wohlfahrt, J, Ejlertsen, B; Danish Breast Cancer Cooperative Group. Pregnancy after treatment of breast cancer–a population-based study on behalf of Danish Breast Cancer Cooperative Group. Acta Oncol, 2008;47(4):545549.CrossRefGoogle Scholar
Azim, HA Jr, Santoro, L, Pavlidis, N et al. Safety of pregnancy following breast cancer diagnosis: a meta-analysis of 14 studies. Eur J Cancer, 2011 January;47(1):7483.CrossRefGoogle ScholarPubMed
Hartman, EK, Eslick, GD. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. Breast Cancer Res Treat, 2016 November;160(2):347360.CrossRefGoogle ScholarPubMed
Sankila, R, Heinävaara, S, Hakulinen, T. Survival of breast cancer patients after subsequent term pregnancy: “healthy mother effect”. Am J Obstet Gynecol, 1994 March;170(3):818823.CrossRefGoogle Scholar
Dalberg, K, Eriksson, J, Holmberg, L. Birth outcome in women with previously treated breast cancer–a population-based cohort study from Sweden. PLoS Med, 2006;3(9):e336.CrossRefGoogle ScholarPubMed
Marklund, A, Nasiell, J, Berger, AS, Fagerberg, A, Rodriguez-Wallberg, KA. Pregnancy achieved using donor eggs in cancer survivors with treatment-induced ovarian failure: obstetric and perinatal outcome. J Womens Health (Larchmt), 2018 July;27(7):939945.CrossRefGoogle ScholarPubMed
Oktem, O, Urman, B. Options of fertility preservation in female cancer patients. Obstet Gynecol Surv, 2010;65(8):531542.CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA Cancer J Clin, 2018;68(1):730.CrossRefGoogle ScholarPubMed
Smith, A, Howell, D, Patmore, R, Jack, A, Roman, E. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer, 2011;105(11):16841692.CrossRefGoogle ScholarPubMed
Oktem, O, Kim, SS, Selek, U, Schatmann, G, Urman, B. Ovarian and uterine functions in female survivors of childhood cancers. Oncologist, 2018;23(2):214224.CrossRefGoogle ScholarPubMed
Plowchalk, DR, Mattison, DR. Phosphoramide mustard is responsible for the ovarian toxicity of cyclophosphamide. Toxicol Appl Pharmacol, 1991;107(3):472481.CrossRefGoogle ScholarPubMed
Oktem, O, Oktay, K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer, 2007;110(10):22222229.CrossRefGoogle ScholarPubMed
Meirow, D, Dor, J, Kaufman, B et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod, 2007;22(6):16261633.CrossRefGoogle ScholarPubMed
Bildik, G, Akin, N, Senbabaoglu, F et al. GnRH agonist leuprolide acetate does not confer any protection against ovarian damage induced by chemotherapy and radiation in vitro. Hum Reprod, 2015;30(12):29122925.Google Scholar
Kalich-Philosoph, L, Roness, H, Carmely, A et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med, 2013;5(185):185ra162.CrossRefGoogle ScholarPubMed
Morgan, S, Lopes, F, Gourley, C, Anderson, RA, Spears, N. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin. PLoS One, 2013;8(7):e70117.CrossRefGoogle ScholarPubMed
Himelstein-Braw, R, Peters, H, Faber, M. Morphological study of the ovaries of leukaemic children. Br J Cancer, 1978;38(1):8287.CrossRefGoogle ScholarPubMed
Epstein, RJ. Drug-induced DNA damage and tumor chemosensitivity. J Clin Oncol, 1990;8(12):20622084.CrossRefGoogle ScholarPubMed
Antal, Z, Sklar, CA. Gonadal function and fertility among survivors of childhood cancer. Endocrinol Metab Clin North Am, 2015;44(4):739749.CrossRefGoogle ScholarPubMed
Oktem, O, Oktay, K. The ovary: anatomy and function throughout human life. Ann N Y Acad Sci, 2008;1127:19.CrossRefGoogle ScholarPubMed
Oktem, O, Oktay, K. Preservation of menstrual function in adolescent and young females. Ann N Y Acad Sci, 2008;1135:237243.CrossRefGoogle ScholarPubMed
Bines, J, Oleske, DM, Cobleigh, MA. Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer. J Clin Oncol, 1996;14(5):17181729.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, AB, Kelsey, TW. The radiosensitivity of the human oocyte. Hum Reprod, 2003;18(1):117121.CrossRefGoogle ScholarPubMed
Ashwood-Smith, MJ, Edwards, RG. DNA repair by oocytes. Mol Hum Reprod, 1996;2(1):4651.CrossRefGoogle ScholarPubMed
Adriaens, I, Smitz, J, Jacquet, P. The current knowledge on radiosensitivity of ovarian follicle development stages. Hum Reprod Update, 2009;15(3):359377.CrossRefGoogle ScholarPubMed
Jaroudi, S, Kakourou, G, Cawood, S et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod, 2009;24(10):26492655.CrossRefGoogle ScholarPubMed
Himelstein-Braw, R, Peters, H, Faber, M. Influence of irradiation and chemotherapy on the ovaries of children with abdominal tumours. Br J Cancer, 1977;36(2):269275.CrossRefGoogle ScholarPubMed
Oktem, O, Oktay K. Preservation of menstrual function in adolescent and young females. Ann N Y Acad Sci, 2008; 1135:237–243.CrossRefGoogle Scholar
Green DM, Kawashima T, Stovall M et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Cli Oncol, 2009;27(16):2677–2685.CrossRefGoogle Scholar
Critchley, HO, Wallace, WH. Impact of cancer treatment on uterine function. J Natl Cancer Inst Monogr, 2005;34:6468.CrossRefGoogle ScholarPubMed
Sudour, H, Chastagner, P, Claude, L et al. Fertility and pregnancy outcome after abdominal irradiation that included or excluded the pelvis in childhood tumor survivors. Int J Radiat Oncol Biol Phys, 2010;76(3):867873.CrossRefGoogle ScholarPubMed
Beneventi, F, Locatelli, E, Giorgiani, G et al. Gonadal and uterine function in female survivors treated by chemotherapy, radiotherapy, and/or bone marrow transplantation for childhood malignant and non-malignant diseases. BJOG, 2014;121(7):856865; discussion 865.CrossRefGoogle ScholarPubMed
Hawkins, MM, Smith, RA. Pregnancy outcomes in childhood cancer survivors: probable effects of abdominal irradiation. Int J Cancer, 1989;43(3):399402.CrossRefGoogle ScholarPubMed
Knopman, JM, Papadopoulos, EB, Grifo, JA et al. Surviving childhood and reproductive-age malignancy: effects on fertility and future parenthood. Lancet Oncol, 2010;11(5):490–498.CrossRefGoogle Scholar
Critchley, HO, Bath, LE, Wallace, WH, Radiation damage to the uterus – review of the effects of treatment of childhood cancer. Hum Fertil (Camb), 2002;5(2):61–66.CrossRefGoogle Scholar
Norwitz, ER, Stern, HM, Grier, H, Lee-Parritz, A. Placenta percreta and uterine rupture associated with prior whole body radiation therapy. Obstet Gynecol, 2001;98(5 Pt 2):929931.Google ScholarPubMed
Teh, WT et al. The impact of uterine radiation on subsequent fertility and pregnancy outcomes. Biomed Res Int, 2014;2014:482968.CrossRefGoogle Scholar
Barton, SE et al. Infertility, infertility treatment, and achievement of pregnancy in female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol, 2013; 14(9):873881.CrossRefGoogle ScholarPubMed
Gill, S, Blackstock, AW, Goldberg, RM, Colorectal cancer. Mayo Clin Proc, 2007; 82(1):114129.CrossRefGoogle ScholarPubMed
Maindrault-Goebel, F, et al. Oxaliplatin added to the simplified bimonthly leucovorin and 5-fluorouracil regimen as second-line therapy for metastatic colorectal cancer (FOLFOX6). GERCOR. Eur J Cancer, 1999; 35(9):13381342.CrossRefGoogle ScholarPubMed
Fuchs, CS et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICCC Study. J Clin Oncol, 2007; 25(30):47794786.CrossRefGoogle ScholarPubMed
Douillard, JY et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med, 2013; 369(11):10231034.CrossRefGoogle ScholarPubMed
Cercek, A et al. Incidence of chemotherapy-induced amenorrhea in premenopausal women treated with adjuvant FOLFOX for colorectal cancer. Clin Colorectal Cancer, 2013;12(3):163167.CrossRefGoogle ScholarPubMed
Wan, J et al. Incidence of chemotherapy- and chemoradiotherapy-induced amenorrhea in premenopausal women with stage II/III colorectal cancer. Clin Colorectal Cancer, 2015;14(1):3134.CrossRefGoogle ScholarPubMed
Utsunomiya, T et al. A novel molecular mechanism for anticancer drug-induced ovarian failure: Irinotecan HCl, an anticancer topoisomerase I inhibitor, induces specific FasL expression in granulosa cells of large ovarian follicles to enhance follicular apoptosis. Int J Oncol, 2008;32(5):9911000.Google ScholarPubMed
Tanaka, T et al. Irinotecan HCl, an anticancer topoisomerase I inhibitor, frequently induces ovarian failure in premenopausal and perimenopausal women. Oncol Rep, 2008;19(5):11231133.Google ScholarPubMed
Zamah, AM et al. Will imatinib compromise reproductive capacity? Oncologist, 2011;16(10):14221427.CrossRefGoogle ScholarPubMed
Christopoulos, C, Dimakopoulou, V, Rotas, E. Primary ovarian insufficiency associated with imatinib therapy. N Engl J Med, 2008;358(10):10791080.CrossRefGoogle ScholarPubMed
Gonfloni, S et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy induced death. Nat Med, 2009;15(10):11791185.CrossRefGoogle ScholarPubMed
Kerr, JB et al. Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat Med, 2012;18(8):11701172; author reply 1172–1174.CrossRefGoogle Scholar
Bildik, G C-Abl is not activated in DNA damage-induced and Tap63-mediated oocyte apoptosis in human ovary. Cell Death Dis, 2018;9(10):943.CrossRefGoogle Scholar
Jou, E, Rajdev, L. Current and emerging therapies in unresectable and recurrent gastric cancer. World J Gastroenterol, 2016;22(20):48124823.CrossRefGoogle ScholarPubMed
Berliere, M et al. Incidence of reversible amenorrhea in women with breast cancer undergoing adjuvant anthracycline-based chemotherapy with or without docetaxel. BMC Cancer, 2008;8:56.CrossRefGoogle ScholarPubMed
Nabholtz, JPT, Mackey, J. Phase III trial comparing TAC (docetaxel, doxorubicin, cyclophosphamide) with FAC (5-fluorouracil, doxorubicin, cyclophosphamide) in the adjuvant treatment of node positive breast cancer (BC) patients: interim analysis of the BCIRG 001 study. Proc Annu Meet Am Soc Clin Oncol, 2002;141 (Abstract).Google Scholar
Hortobagyi, GN et al. Immediate and long-term toxicity of adjuvant chemotherapy regimens containing doxorubicin in trials at M.D. Anderson Hospital and Tumor Institute. NCI Monogr, 1986(1):105–109.Google Scholar
Gastrointestinal Tumor Study Group. Prolongation of the disease-free interval in surgically treated rectal carcinoma. N Engl J Med, 1985;312(23):14651472.CrossRefGoogle Scholar
Krook, JE et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med, 1991;324(11):709715.CrossRefGoogle ScholarPubMed
Tveit, KM et al. Randomized controlled trial of postoperative radiotherapy and short-term time scheduled 5-fluorouracil against surgery alone in the treatment of Dukes B and C rectal cancer. Norwegian Adjuvant Rectal Cancer Project Group. Br J Surg, 1997;84(8):11301135.Google Scholar
O’Connell, MJ et al. Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med, 1994;331(8):502507.CrossRefGoogle ScholarPubMed
Tepper, JE et al. Adjuvant postoperative fluorouracil-modulated chemotherapy combined with pelvic radiation therapy for rectal cancer: initial results of intergroup 0114. J Clin Oncol, 1997;15(5):20302039.CrossRefGoogle ScholarPubMed
Tepper, JE et al. Adjuvant therapy in rectal cancer: analysis of stage, sex, and local control–final report of intergroup 0114. J Clin Oncol, 2002;20(7):17441750.CrossRefGoogle ScholarPubMed
Fietkau, R, Rodel, C. [Postoperative radiochemotherapy of rectal carcinoma reduces the incidence of locoregional recurrences but does not improve the prognosis of patients–the results of a randomized study of the NSABP-R02. National Surgical Adjuvant Breast and Bowel Project Protocol]. Strahlenther Onkol, 2000;176(8):381382.Google Scholar
Wolmark, N et al. Randomized trial of postoperative adjuvant chemotherapy with or without radiotherapy for carcinoma of the rectum: National Surgical Adjuvant Breast and Bowel Project Protocol R-02. J Natl Cancer Inst, 2000;92(5):388396.CrossRefGoogle ScholarPubMed
Lee, JH et al. Randomized trial of postoperative adjuvant therapy in stage II and III rectal cancer to define the optimal sequence of chemotherapy and radiotherapy: a preliminary report. J Clin Oncol, 2002;20(7):17511758.CrossRefGoogle ScholarPubMed
Frykholm GJ, Glimelius B, Pahlman L. Preoperative or postoperative irradiation in adenocarcinoma of the rectum: final treatment results of a randomized trial and an evaluation of late secondary effects. Dis Colon Rectum, 1993;36(6):564–572.CrossRefGoogle Scholar
Sauer, R et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med, 2004;351(17):1731–1740.CrossRefGoogle Scholar
Behringer, K et al. Gonadal function and fertility in survivors after Hodgkin lymphoma treatment within the German Hodgkin Study Group HD13 to HD15 trials. J Clin Oncol, 2013;31(2):231–239.CrossRefGoogle Scholar
Jadoul P, Kim SS, IP Committee, Fertility considerations in young women with hematological malignancies. J Assist Reprod Genet, 2012;29(6):479–487.CrossRefGoogle Scholar
Kiserud CE et al. Post-treatment parenthood in Hodgkin’s lymphoma survivors. Br J Cancer, 2007;96(9):1442–1449.CrossRefGoogle Scholar
Hodgson DC et al. Fertility among female Hodgkin lymphoma survivors attempting pregnancy following ABVD chemotherapy. Hematol Oncol, 2007;25(1):11–15.CrossRefGoogle Scholar
Behringer K et al. Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial. Ann Oncol, 2012;23(7):1818–1825.CrossRefGoogle Scholar
De Bruin ML et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. Blood, 2008;111(1):101–108.CrossRefGoogle Scholar
Donnez J et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med, 2011;43(6):437–450.CrossRefGoogle Scholar
Bittinger SE et al. Detection of Hodgkin lymphoma within ovarian tissue. Fertil Steril, 2011;95(2):803 e3–6.CrossRefGoogle Scholar
Chorlton I, Norris HJ, King FM. Malignant reticuloendothelial disease involving the ovary as a primary manifestation: a series of 19 lymphomas and 1 granulocytic sarcoma. Cancer, 1974;34(2):397–407.3.0.CO;2-0>CrossRefGoogle Scholar
Meirow D et al. Ovarian tissue banking in patients with Hodgkin’s disease: is it safe? Fertil Steril, 1998;69(6):996–998.Google Scholar
Seshadri T et al. Lack of evidence of disease contamination in ovarian tissue harvested for cryopreservation from patients with Hodgkin lymphoma and analysis of factors predictive of oocyte yield. Br J Cancer, 2006;94(7):1007–1010.CrossRefGoogle Scholar
Elis A et al. Fertility status among women treated for aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma, 2006;47(4):623–627.CrossRefGoogle Scholar
Seshadri T et al. The effect of the Hyper-CVAD chemotherapy regimen on fertility and ovarian function. Leuk Res, 2006;30(4):483–485.CrossRefGoogle Scholar
Shaw JM et al. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod, 1996;11(8):1668–1673.CrossRefGoogle Scholar
Dolmans MM et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood, 2010;116(16):2908–2914.CrossRefGoogle Scholar
Dolmans MM et al. Efficacy of in vitro fertilization after chemotherapy. Fertil Steril, 2005;83(4):897–901.CrossRefGoogle Scholar
Gellert SE et al. Transplantation of frozen thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet, 2018;35(4):561–570.CrossRefGoogle Scholar
Bastings L et al. Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update, 2013;19(5):483–506.CrossRefGoogle Scholar
Cuellar S et al. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. J Oncol Pharm Pract, 2018;24(6):433–452.CrossRefGoogle Scholar
Carlsson IB et al. Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction, 2006;131(4):641–649.CrossRefGoogle Scholar
Kim SY et al. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death Differ, 2013;20(8):987–997.CrossRefGoogle Scholar
Tuppi M et al. Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nat Struct Mol Biol, 2018;25(3):261–269.CrossRefGoogle Scholar