Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T20:15:40.790Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  27 October 2022

Marcelo Aguiar
Affiliation:
Cornell University, Ithaca
Swapneel Mahajan
Affiliation:
Indian Institute of Technology, Mumbai
Get access

Summary

The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras.

The building blocks of the theory are geometric objects associated to a reflection arrangement such as faces, flats, lunes, and their orbits under the action of the Coxeter group. A generalized notion of zeta and Möbius function play a fundamental role in all aspects of the theory, including exp-log correspondences and results such as the Poincarö–Birkhoff–Witt theorem. The Tits algebra and its invariant subalgebra also play key roles.

This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.

Type
Chapter
Information
Coxeter Bialgebras , pp. 826 - 841
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, E., Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980, Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. 380, 516Google Scholar
Abramenko, P. and Brown, K. S., Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008, Theory and applications. 97, 98CrossRefGoogle Scholar
Ad´amek, J., Theory of mathematical structures, D. Reidel Publishing Co., Dordrecht, 1983. 156Google Scholar
Aguiar, M., Bergeron, N., Sottile, F., Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compos. Math. 142 (2006), no. 1, 130. 518, 519Google Scholar
Aguiar, M. and Lauve, A., The characteristic polynomial of the Adams operators on graded connected Hopf algebras, Algebra Number Theory 9 (2015), no. 3, 547583. 454Google Scholar
Aguiar, M. and Mahajan, S., Coxeter groups and Hopf algebras, Fields Institute Monographs, vol. 23, American Mathematical Society, Providence, RI, 2006, With a foreword by Nantel Bergeron. xi, xii, 40, 92, 95, 96, 97, 156, 214, 245, 455, 515, 518, 519, 520, 521Google Scholar
Aguiar, M. and Mahajan, S., Monoidal functors, species and Hopf algebras, CRM Monograph Series, vol. 29, American Mathematical Society, Providence, RI, 2010, With forewords by Kenneth Brown and Stephen Chase and Andr´e Joyal. xi, xii, xiii, xv, 38, 43, 95, 96, 97, 115, 156, 157, 213, 214, 215, 245, 251, 297, 361, 381, 432, 451, 452, 453, 454, 455, 478, 516, 518, 519, 520, 521, 558, 560, 639, 673, 684, 685, 686, 712, 713, 757, 758, 785, 807, 815, 825Google Scholar
Aguiar, M. and Mahajan, S., Hopf monoids in the category of species, Hopf algebras and tensor categories, Contemp. Math., vol. 585, Amer. Math. Soc., Providence, RI, 2013, pp. 17124. xi, xii, xv, 156, 213, 214, 215, 245, 272, 297, 298, 785CrossRefGoogle Scholar
Aguiar, M. and Mahajan, S., On the Hadamard product of Hopf monoids, Canad. J. Math. 66 (2014), no. 3, 481504. 214, 297, 713Google Scholar
Aguiar, M. and Mahajan, S., Topics in hyperplane arrangements, Mathematical Surveys and Monographs, vol. 226, American Mathematical Society, Providence, RI, 2017. xii, xv, xvi, xix, 10, 20, 21, 23, 25, 27, 29, 31, 33, 34, 36, 37, 48, 49, 57, 61, 62, 63, 65, 66, 78, 81, 83, 84, 87, 90, 95, 96, 97, 98, 121, 150, 158, 214, 224, 258, 260, 297, 379, 448, 450, 469, 470, 509, 516, 519, 553, 696, 815Google Scholar
Aguiar, M. and Mahajan, S., Bimonoids for hyperplane arrangements, Encyclopedia of Mathematics and its Applications, vol. 173, Cambridge University Press, Cambridge, 2020. xi, xii, xiv, xv, xvi, xvii, xix, 6, 9, 10, 11, 20, 21, 36, 48, 55, 63, 65, 66, 68, 72, 74, 76, 78, 81, 82, 84, 93, 95, 96, 97, 98, 103, 115, 116, 119, 131, 135, 136, 137, 139, 146, 147, 148, 149, 150, 153, 154, 156, 157, 158, 159, 161, 162, 165, 166, 167, 168, 169, 174, 176, 178, 180, 181, 183, 185, 187, 188, 190, 191, 192, 193, 194, 195, 196, 200, 202, 203, 205, 206, 208, 210, 211, 212, 213, 214, 215, 216, 220, 221, 222, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 245, 246, 250, 253, 258, 260, 261, 264, 266, 267, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 295, 296, 297, 298, 380, 381, 405, 419, 432, 448, 450, 451, 452, 453, 454, 455, 515, 521, 541, 554, 560, 577, 578, 579, 585, 590, 606, 616, 617, 638, 640, 666, 684, 697, 806, 824, 825, 847Google Scholar
Aguiar, M. and Sottile, F., Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math. 191 (2005), no. 2, 225275. 96, 519, 520, 521Google Scholar
Aigner, M., A course in enumeration, Graduate Texts in Mathematics, vol. 238, Springer, Berlin, 2007. 97Google Scholar
Andr´e, M., L’algèbre de Lie d’un anneau local, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 337375. 585Google Scholar
Andr´e, M., Hopf algebras with divided powers, J. Algebra 18 (1971), 1950. 517, 585, 640Google Scholar
Andr´e, M., Hopf and Eilenberg-MacLane algebras, Reports of the Midwest Category Seminar, V (Zu¨rich, 1970), Lecture Notes in Mathematics, Vol. 195, Springer, Berlin, 1971, pp. 128. 640Google Scholar
Andrews, G. E., Askey, R., Roy, R., Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. 97Google Scholar
Andrews, G. E. and Eriksson, K., Integer partitions, Cambridge University Press, Cambridge, 2004. 97Google Scholar
Arbib, M. A. and Manes, E. G., Arrows, structures, and functors, Academic Press, New York-London, 1975, The categorical imperative. 156Google Scholar
Ardizzoni, A. and Menini, C., Milnor-Moore categories and monadic decomposition, J. Algebra 448 (2016), 488563. 381Google Scholar
Arvola, W. A., Complexified real arrangements of hyperplanes, Manuscripta Math. 71 (1991), no. 3, 295306. 96Google Scholar
Atkinson, M. D., Solomon’s descent algebra revisited, Bull. London Math. Soc. 24 (1992), no. 6, 545551. 97Google Scholar
Aubry, M., Twisted Lie algebras and idempotent of Dynkin, S´em. Lothar. Combin. 62 (2009/10), Art. B62b, 22. 272Google Scholar
Aubry, M., Hall basis of twisted Lie algebras, J. Algebraic Combin. 32 (2010), no. 2, 267286. 272Google Scholar
Awodey, S., Category theory, second ed., Oxford Logic Guides, vol. 52, Oxford University Press, Oxford, 2010. xivGoogle Scholar
Bachmann, H., The algebra of bi-brackets and regularized multiple Eisenstein series, J. Number Theory 200 (2019), 260294. 639Google Scholar
Baez, J. C., Hochschild homology in a braided tensor category, Trans. Amer. Math. Soc. 344 (1994), no. 2, 885906. 381Google Scholar
Barr, M., Coalgebras over a commutative ring, J. Algebra 32 (1974), no. 3, 600610. 453Google Scholar
Barr, M. and Wells, C., Category theory for computing science, Repr. Theory Appl. Categ. (2012), no. 22, xviii+538. 825Google Scholar
Barratt, M. G., Twisted Lie algebras, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 915. 157, 245, 272CrossRefGoogle Scholar
Belbachir, H., A combinatorial contribution to the multinomial Chu-Vandermonde convolution, Les Annales RECITS 1 (2014), 2732. 97Google Scholar
B´enabou, J., Structures alg´ebriques dans les cat´egories, Cahiers Topologie G´eom. Diff´erentielle 10 (1968), 1126. 156Google Scholar
Benson, D. B., Bialgebras: some foundations for distributed and concurrent computation, Fund. Inform. 12 (1989), no. 4, 427486. 454, 518Google Scholar
Berezin, F. A. and Kac, G. I., Lie groups with commuting and anticommuting parameters, Mat. Sb. (N.S.) 82 (124) (1970), 343359. 585Google Scholar
Bergeron, F., Bergeron, N., Howlett, R. B., E. Taylor, D., A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1 (1992), no. 1, 2344. 95, 97Google Scholar
Bergeron, F., Labelle, G., Leroux, P., Combinatorial species and tree-like structures, Cambridge University Press, Cambridge, 1998, Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota. 156, 214, 245Google Scholar
Bertet, K., Krob, D., Morvan, M., Novelli, J.-C., H. D. Phan, T., Thibon, J.-Y., An overview of Λ-type operations on quasi-symmetric functions, Comm. Algebra 29 (2001), no. 9, 42774303, Special issue dedicated to Alexei Ivanovich Kostrikin. 519Google Scholar
Bhaskaracharya, Siddhantashiromani, 1150. 96Google Scholar
Bialynicki-Birula, I., Mielnik, B., Pleban´ski, J., Explicit solution of the continuous Baker-Campbell-Hausdorff problem and a new expression for the phase operator, Ann. of Phys. 51 (1969), no. 1, 187200. 98Google Scholar
Bidigare, T. P., Hyperplane arrangement face algebras and their associated Markov chains, Ph.D. thesis, University of Michigan, 1997. 95Google Scholar
Bidigare, T. P., Hanlon, P., Rockmore, D., A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements, Duke Math. J. 99 (1999), no. 1, 135174. 95, 96Google Scholar
Billera, L. J., Brown, K. S., Diaconis, P., Random walks and plane arrangements in three dimensions, Amer. Math. Monthly 106 (1999), no. 6, 502524. 96Google Scholar
Birkhoff, G., On the structure of abstract algebras, Mathematical Proceedings of the Cambridge Philosophical Society 31 (1935), no. 4, 433454. 95Google Scholar
Birkhoff, G., Representability of Lie algebras and Lie groups by matrices, Ann. of Math. (2) 38 (1937), no. 2, 526532. 585, 639Google Scholar
Birkhoff, G., Lattice theory, third ed., American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, Providence, RI, 1979. 95Google Scholar
Bj¨orner, A. and Brenti, F., Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. 96, 97, 98, 465Google Scholar
Bj¨orner, A., M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler, Oriented matroids, Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge, 1993. 96Google Scholar
Bland, R. G., Complementary orthogonal subspaces of Rn and orientability of matroids, Ph.D. thesis, Cornell University, 1974. 95Google Scholar
Blessenohl, D. and Laue, H., Algebraic combinatorics related to the free Lie algebra, S´eminaire Lotharingien de Combinatoire (Thurnau, 1992), Pr´epubl. Inst. Rech. Math. Av., vol. 1993/33, Univ. Louis Pasteur, Strasbourg, 1993, pp. 121. 97Google Scholar
Blessenohl, D. and Schocker, M., Noncommutative character theory of the symmetric group, Imperial College Press, London, 2005. 518, 520Google Scholar
Boardman, J. M. and Vogt, R. M., Homotopy invariant algebraic structures on topological spaces, Springer-Verlag, Berlin, 1973, Lecture Notes in Mathematics, Vol. 347. 560Google Scholar
Borceux, F., Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994, Basic category theory. 825Google Scholar
Borceux, F., Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994, Categories and structures. 825Google Scholar
Borel, A., Sur la cohomologie des espaces fibr´es principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115207. 380, 451, 638Google Scholar
Borel, A., Sur l’homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273342. 451Google Scholar
Borel, A., Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397432. 451Google Scholar
Borovik, A. V. and Borovik, A., Mirrors and reflections, Universitext, Springer, New York, 2010, The geometry of finite reflection groups. 98Google Scholar
Borovik, A. V., Gelfand, I. M., White, N., Coxeter matroids, Progress in Mathematics, vol. 216, Birkh¨auser Boston, Inc., Boston, MA, 2003. 98Google Scholar
Bourbaki, N., E´l´ements de math´ematique. 22. Première partie: Les structures fondamentales de l’analyse. Livre 1: Th´eorie des ensembles. Chapitre 4: Structures, Actualit´es Sci. Ind. no. 1258, Hermann, Paris, 1957. 156Google Scholar
Bourbaki, N., Elements of mathematics. Theory of sets, Translated from the French, Hermann, Publishers in Arts and Science, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. 156Google Scholar
Bourbaki, N., E´l´ements de math´ematique, Masson, Paris, 1981, Groupes et algèbres de Lie. Chapitres 4, 5 et 6. 98Google Scholar
Bremner, M. R. and Dotsenko, V., Algebraic operads, CRC Press, Boca Raton, FL, 2016, An algorithmic companion. 214, 245, 560Google Scholar
Browder, W., On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153176. 451Google Scholar
Brown, K. S., Semigroups, rings, and Markov chains, J. Theoret. Probab. 13 (2000), no. 3, 871938. 95, 96Google Scholar
Brown, K. S., Semigroup and ring theoretical methods in probability, Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI, 2004, pp. 326. 95Google Scholar
Brown, K. S. and Diaconis, P., Random walks and hyperplane arrangements, Ann. Probab. 26 (1998), no. 4, 18131854. 95Google Scholar
Brown, R., Groupoids as coefficients, Proc. London Math. Soc. (3) 25 (1972), 413426. 825Google Scholar
Brown, R., Topology and groupoids, BookSurge, LLC, Charleston, SC, 2006. 825Google Scholar
Brown, R., Higgins, P. J., Sivera, R., Nonabelian algebraic topology, EMS Tracts in Mathematics, vol. 15, European Mathematical Society (EMS), Zu¨rich, 2011, Filtered spaces, crossed complexes, cubical homotopy groupoids. 157, 825Google Scholar
Bruned, Y., Curry, C., Ebrahimi-Fard, K., Quasi-shuffle algebras and renormalisation of rough differential equations, Bull. Lond. Math. Soc. 52 (2020), no. 1, 4363. 639Google Scholar
Bucur, I. and Deleanu, A., Introduction to the theory of categories and functors, With the collaboration of Peter J. Hilton and Nicolae Popescu. Pure and Applied Mathematics, Vol. XIX, Interscience Publication John Wiley & Sons, Ltd., London-New York-Sydney, 1968. 156Google Scholar
Bui, V. C., H. E. Duchamp, G., Minh, H. N., H. Ngˆo, Q., Tollu, C., (Pure) transcendence bases in ϕ-deformed shuffle bialgebras, S´em. Lothar. Combin. 74 ([2015-2018]), Art. B74f, 22. 639Google Scholar
Carlitz, L., Sums of products of multinomial coefficients, Elem. Math. 18 (1963), 37– 39. 97Google Scholar
Cartan, H., S´eminaire Henri Cartan de l’Ecole Normale Sup´erieure, 1954/1955. Algèbres d’Eilenberg-MacLane et homotopie, Secr´etariat math´ematique, 11 rue Pierre Curie, Paris, 1956, 2ème ´ed. 517Google Scholar
Cartan, H. and Eilenberg, S., Homological algebra, Princeton University Press, Princeton, N. J., 1956. 380, 381, 455, 585Google Scholar
Carter, R. W., Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989, Reprint of the 1972 original, A Wiley-Interscience Publication. 98Google Scholar
Cartier, P., Effacement dans la cohomologie des algèbres de Lie, S´eminaire N. Bourbaki; Volume 3. Expos´e no. 116, 19541956, pp. 161167. 585Google Scholar
Cartier, P., Hyperalgèbres et groupes de Lie formels, S´eminaire Sophus Lie; Volume 2, Secr´etariat math´ematique, Paris, 195556. 380, 381, 451, 517, 585, 640Google Scholar
Cartier, P., Th´eorie diff´erentielle des groupes alg´ebriques, C. R. Acad. Sci. Paris 244 (1957), 540542. 451, 640Google Scholar
Cartier, P., Groupes alg´ebriques et groupes formels, Colloq. Th´eorie des Groupes Alg´ebriques (Bruxelles, 1962), Librairie Universitaire, Louvain; GauthierVillars, Paris, 1962, pp. 87111. 640Google Scholar
Cartier, P., Groupes formels associ´es aux anneaux de Witt g´en´eralis´es, C. R. Acad. Sci. Paris S´er. A-B 265 (1967), A49–A52. 518Google Scholar
Cartier, P., On the structure of free Baxter algebras, Adv. Math. 9 (1972), 253265. 452Google Scholar
Cartier, P., A primer of Hopf algebras, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, pp. 537615. 454, 638Google Scholar
Cartier, P. and Patras, F., Classical Hopf algebras and their applications, Algebra and Applications, vol. 29, Springer, Cham, 2021. 157, 380, 638, 712Google Scholar
Chen, K.-t., Algebraic paths, J. Algebra 10 (1968), 836. 517Google Scholar
Chevalley, C., Theory of Lie Groups. I, Princeton Mathematical Series, vol. 8, Princeton University Press, Princeton, N. J., 1946. 585Google Scholar
Chevalley, C., Theory of Lie Groups. I, Princeton Mathematical Series, vol. 8, Princeton University Press, Princeton, N. J., Sur certains groupes simples, Tˆohoku Math. J. (2) 7 (1955), 1466. 96Google Scholar
Chu, S.-C., Ssu yu¨an yu¨ chien (Precious mirror of the four elements), 1303. 97Google Scholar
Cohen, P. B., M. W. Eyre, T., Hudson, R. L., Higher order Itˆo product formula and generators of evolutions and flows, Proceedings of the International Quantum Structures Association, Quantum Structures ’94 (Prague, 1994), vol. 34, 1995, pp. 14811486. 452Google Scholar
Contou-Carrère, C., Buildings and Schubert schemes, CRC Press, Boca Raton, FL, 2017. 98CrossRefGoogle Scholar
Coxeter, H. S. M., Discrete groups generated by reflections, Ann. of Math. (2) 35 (1934), no. 3, 588621. 95Google Scholar
Coxeter, H. S. M., Regular polytopes, third ed., Dover Publications, Inc., New York, 1973. 98Google Scholar
D˘ascalescu, S., C. N˘ast˘asescu, S¸. Raianu, Hopf algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, Inc., New York, 2001, An introduction. 380Google Scholar
Davis, M. W., The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. 96, 98Google Scholar
Demazure, M., Lectures on p-divisible groups, Lecture Notes in Mathematics, Vol. 302, Springer-Verlag, Berlin-New York, 1972. 640Google Scholar
Demazure, M. and Gabriel, P., Groupes alg´ebriques. Tome I: G´eom´etrie alg´ebrique, g´en´eralit´es, groupes commutatifs, Masson & Cie, E´diteur, Paris; North-Holland Publishing Co., Amsterdam, 1970. 453, 640Google Scholar
Deshpande, P., Arrangements of spheres and projective spaces, Rocky Mountain J. Math. 46 (2016), no. 5, 14471487. 96Google Scholar
Dieudonn´e, J., Introduction to the theory of formal groups, Marcel Dekker, Inc., New York, 1973, Pure and Applied Mathematics, 20. 638Google Scholar
Ditters, E. J., Curves and exponential series in the theory of noncommutative formal groups, Ph.D. thesis, University of Nijmegen, 1969. 518, 639Google Scholar
Ditters, E. J., Sur une s´erie exponentielle non commutative d´efinie sur les corps de caract´eristique p, C. R. Acad. Sci. Paris S´er. A-B 268 (1969), A580–A582. 518Google Scholar
Ditters, E. J., Curves and formal (co)groups, Invent. Math. 17 (1972), 120. 518, 639Google Scholar
Ditters, E. J., Groupes formels, U. E. R. Math´ematique, Universit´e de Paris XI, Orsay, 1975, Cours de 3e cycle 19731974, Publications Math´ematiques d’Orsay, No. 149 75.42. 518, 640Google Scholar
Ditters, E. J. and Scholtens, A. C. J., Free polynomial generators for the Hopf algebra QSym of quasisymmetric functions, J. Pure Appl. Algebra 144 (1999), no. 3, 213227. 518Google Scholar
Dixmier, J., Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996, Revised reprint of the 1977 translation. 640Google Scholar
Doubilet, P., Rota, G.-C., P. Stanley, R., On the foundations of combinatorial theory. VI. The idea of generating function, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, 1972, pp. 267318. 516Google Scholar
Duchamp, G. H. E., Hivert, F., Thibon, J.-Y., Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), no. 5, 671717. 518, 520Google Scholar
Duchamp, G. H. E., Klyachko, A., Krob, D., Thibon, J.-Y., Noncommutative symmetric functions. III. Deformations of Cauchy and convolution algebras, Discrete Math. Theor. Comput. Sci. 1 (1997), no. 1, 159216, Lie computations (Marseille, 1994). 454, 517, 518Google Scholar
Ebrahimi-Fard, K., M. Gracia-Bond´ıa, J., Patras, F., A Lie theoretic approach to renormalization, Comm. Math. Phys. 276 (2007), no. 2, 519549. 98, 453Google Scholar
Ebrahimi-Fard, K., J. A. Malham, S., Patras, F., Wiese, A., The exponential Lie series for continuous semimartingales, Proc. A. 471 (2015), no. 2184, 20150429, 19. 96, 98, 639Google Scholar
Ebrahimi-Fard, K., J. A. Malham, S., Patras, F., Wiese, A., Flows and stochastic Taylor series in Itˆo calculus, J. Phys. A 48 (2015), no. 49, 495202, 17. 98Google Scholar
Ebrahimi-Fard, K., Manchon, D., Patras, F., A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogoliubov’s recursion, J. Noncommut. Geom. 3 (2009), no. 2, 181222. 98, 453Google Scholar
Eckmann, B. and Hilton, P. J., Group-like structures in general categories. I. Multiplications and comultiplications, Math. Ann. 145 (1961/1962), 227255. 157Google Scholar
Ehrenborg, R., On posets and Hopf algebras, Adv. Math. 119 (1996), no. 1, 125. 519Google Scholar
Ehresmann, C., Gattungen von lokalen Strukturen, Jber. Deutsch. Math.-Verein. 60 (1957), 4977. 825Google Scholar
Ehresmann, C., Cat´egories structur´ees, Ann. Sci. E´cole Norm. Sup. (3) 80 (1963), 349426. 157Google Scholar
Ehresmann, C., Cat´egories et structures, Dunod, Paris, 1965. 156, 157, 825Google Scholar
Eilenberg, S. and Mac Lane, S., On the groups of H, n). I, Ann. of Math. (2) 58 (1953), 55106. 96Google Scholar
Epstein, H., Trees, Nuclear Phys. B 912 (2016), 151171. 95Google Scholar
Epstein, H., Glaser, V. J., Stora, R., Geometry of the n point p space function of quantum field theory, Hyperfunctions and theoretical physics (Rencontre, Nice, 1973; d´edi´e a la m´emoire de A. Martineau), 1975, pp. 143162. Lecture Notes in Math., Vol. 449. 95Google Scholar
Epstein, H., Glaser, V. J., Stora, R., General properties of the n-point functions in local quantum field theory, Structural analysis of collision amplitudes, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1976, Lectures delivered at Les Houches, E´cole d’E´t´e de Physique Th´eorique, 2-27 June 1975, pp. 794. 95Google Scholar
Ernst, D. C., Cell complexes for arrangements with group actions, Master’s thesis, Northern Arizona University, 2000. 96Google Scholar
Ernst, T., A comprehensive treatment of q-calculus, Birkh¨auser/Springer Basel AG, Basel, 2012. 97Google Scholar
Etienne, G., Linear extensions of finite posets and a conjecture of G. Kreweras on permutations, Discrete Math. 52 (1984), no. 1, 107111. 95Google Scholar
Eyre, T. M. W., Quantum stochastic calculus and representations of Lie superalgebras, Lecture Notes in Mathematics, vol. 1692, Springer-Verlag, Berlin, 1998. 452Google Scholar
Fiedorowicz, Z. and Loday, J.-L., Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), no. 1, 5787. 157Google Scholar
Foissy, L., Quantification de l’algèbre de Hopf de Malvenuto et Reutenauer, preprint 2005. 520Google Scholar
Foissy, L., Patras, F., Thibon, J.-Y., Deformations of shuffles and quasi-shuffles, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 1, 209237. 639Google Scholar
Fox, T. F., Universal coalgebras, Ph.D. thesis, McGill University (Canada), 1976. 453Google Scholar
Fox, T. F., The coalgebra enrichment of algebraic categories, Comm. Algebra 9 (1981), no. 3, 223234. 453Google Scholar
Fox, T. F., The tensor product of Hopf algebras, Rend. Istit. Mat. Univ. Trieste 24 (1992), no. 1-2, 6571 (1994). 453Google Scholar
Fresse, B., On the homotopy of simplicial algebras over an operad, Trans. Amer. Math. Soc. 352 (2000), no. 9, 41134141. 157, 560Google Scholar
Fresse, B., Koszul duality of operads and homology of partition posets, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 115215. 560Google Scholar
Fresse, B., Modules over operads and functors, Lecture Notes in Mathematics, vol. 1967, Springer-Verlag, Berlin, 2009. 560Google Scholar
Fresse, B., Homotopy of operads and Grothendieck-Teichmu¨ller groups. Part 1, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017, The algebraic theory and its topological background. 560, 638Google Scholar
Fresse, B., Homotopy of operads and Grothendieck-Teichmu¨ller groups. Part 2, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017, The applications of (rational) homotopy theory methods. 560Google Scholar
Fro¨hlich, A., Formal groups, Lecture Notes in Mathematics, No. 74, Springer-Verlag, Berlin-New York, 1968. 640Google Scholar
Fulton, W., Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry. 518Google Scholar
Gabriel, P., Expos´e VII, Etude infinitesimale des schemas en groupes, Sch´emas en groupes. I: Propri´et´es g´en´erales des sch´emas en groupes, S´eminaire de G´eom´etrie Alg´ebrique du Bois Marie 1962/64 (SGA 3). Dirig´e par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970, pp. xv+564. 640Google Scholar
Gabriel, P. and Zisman, M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. 825Google Scholar
Gaines, J. G., The algebra of iterated stochastic integrals, Stochastics Stochastics Rep. 49 (1994), no. 3-4, 169179. 452Google Scholar
Gaines, J. G., A basis for iterated stochastic integrals, Math. Comput. Simulation 38 (1995), no. 1-3, 711, Probabilit´es num´eriques (Paris, 1992). 452Google Scholar
Garrett, P., Buildings and classical groups, Chapman & Hall, London, 1997. 98Google Scholar
Garsia, A. M., Combinatorics of the free Lie algebra and the symmetric group, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 309382. 453Google Scholar
Garsia, A. M. and Reutenauer, C., A decomposition of Solomon’s descent algebra, Adv. Math. 77 (1989), no. 2, 189262. 95, 97, 98Google Scholar
Gauss, C. F., Summatio quarumdam serierum singularium, (1808). 97Google Scholar
Geissinger, L., Hopf algebras of symmetric functions and class functions, Combinatoire et repr´esentation du groupe sym´etrique (Actes Table Ronde C.N.R.S., Univ. LouisPasteur Strasbourg, Strasbourg, 1976), Springer, Berlin, 1977, pp. 168181. Lecture Notes in Math., Vol. 579. 518Google Scholar
Gelfand, I. M., The center of an infinitesimal group ring, Mat. Sbornik N.S. 26(68) (1950), 103112. 585Google Scholar
Gelfand, I. M., Center of the infinitesimal group ring, Collected papers. Vol. II, Edited by S. G. Gindikin, V. W. Guillemin, A. A. Kirillov, B. Kostant and S. Sternberg, SpringerVerlag, Berlin, 1988, pp. 2230. 585Google Scholar
Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., S. Retakh, V., Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218348. 98, 454, 518, 519, 520, 639Google Scholar
Gerstenhaber, M., The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267288. 585Google Scholar
Gerstenhaber, M. and Schack, S. D., The shuffle bialgebra and the cohomology of commutative algebras, J. Pure Appl. Algebra 70 (1991), no. 3, 263272. 454Google Scholar
Gessel, I. M., Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), Amer. Math. Soc., Providence, RI, 1984, pp. 289317. 95, 519, 521Google Scholar
Ginzburg, V. and Kapranov, M., Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203272. 560Google Scholar
Goerss, P. G., Barratt’s desuspension spectral sequence and the Lie ring analyzer, Quart. J. Math. Oxford Ser. (2) 44 (1993), no. 173, 4385. 272Google Scholar
Goldman, J. and Rota, G.-C., On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions, Studies in Appl. Math. 49 (1970), 239258. 516Google Scholar
Gould, H. W., The q-series generalization of a formula of Sparre Andersen, Math. Scand. 9 (1961), 9094. 97Google Scholar
Grandis, M., Higher dimensional categories, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020, From double to multiple categories. 157Google Scholar
Greene, C., On the M¨obius algebra of a partially ordered set, Adv. Math. 10 (1973), 177187. 95Google Scholar
Grinberg, D. and Reiner, V., Hopf algebras in combinatorics, available at arXiv:1409.8356. 518, 519, 520Google Scholar
Grothendieck, A., Expos´e VI, Cat´egories fibr´ees et descente, S´eminaire de G´eom´etrie Alg´ebrique du Bois Marie 19601961 (SGA 1), Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971. 825Google Scholar
Grove, L. C. and Benson, C. T., Finite reflection groups, second ed., Graduate Texts in Mathematics, vol. 99, Springer-Verlag, New York, 1985. 98Google Scholar
Gru¨nenfelder, L. A., U¨ber die struktur von Hopf-algebren, Ph.D. thesis, ETH-Zurich, 1969. 640Google Scholar
Gru¨nenfelder, L. A., Hopf-algebren und coradikal, Math. Z. 116 (1970), 166182. 640Google Scholar
Gru¨nenfelder, L. A., (Co-)homology of commutative coalgebras, Comm. Algebra 16 (1988), no. 3, 541576. 638Google Scholar
Gru¨nenfelder, L. A. and Mastnak, M., On bimeasurings, J. Pure Appl. Algebra 204 (2006), no. 2, 258269. 453Google Scholar
Gru¨nenfelder, L. A. and Mastnak, M., On bimeasurings. II, J. Pure Appl. Algebra 209 (2007), no. 3, 823832. 453Google Scholar
Guo, L. and Keigher, W., Baxter algebras and shuffle products, Adv. Math. 150 (2000), no. 1, 117149. 452Google Scholar
Gurevich, D. I., Algebraic aspects of the quantum Yang-Baxter equation, Algebra i Analiz 2 (1990), no. 4, 119148. 381Google Scholar
Hadamard, J. S., Th´eorème sur les s´eries entières, Acta Math. 22 (1899), no. 1, 5563. 452Google Scholar
Hall, P., A Contribution to the Theory of Groups of Prime-Power Order, Proc. London Math. Soc. (2) 36 (1934), 2995. 585Google Scholar
Hall, P., The Eulerian functions of a group, Quarterly J. Math. 7 (1936), no. 1, 134151. 97Google Scholar
Halpern, E., On the structure of hyperalgebras. Class 1 Hopf algebras, Portugal. Math. 17 (1958), 127147. 381Google Scholar
Halpern, E., Twisted polynomial hyperalgebras, Mem. Amer. Math. Soc. no. 29 (1958), 61 pp. (1958). 381Google Scholar
Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900915. 585Google Scholar
Halpern, E., On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 2896. 585Google Scholar
Hartl, M., Pirashvili, T., Vespa, C., Polynomial functors from algebras over a set-operad and nonlinear Mackey functors, Int. Math. Res. Not. IMRN (2015), no. 6, 14611554. 158Google Scholar
Hasse, M. and Michler, L., Theorie der Kategorien, Mathematische Monographien, Band 7, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. 156Google Scholar
Hazewinkel, M., Generalized overlapping shuffle algebras, J. Math. Sci. (New York) 106 (2001), no. 4, 31683186, Pontryagin Conference, 8, Algebra (Moscow, 1998). 452Google Scholar
Hazewinkel, M., Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions, Acta Appl. Math. 75 (2003), no. 1-3, 5583, Monodromy and differential equations (Moscow, 2001). 521Google Scholar
Hazewinkel, M., Formal groups and applications, AMS Chelsea Publishing, Providence, RI, 2012, Corrected reprint of the 1978 original. 518, 640Google Scholar
Hazewinkel, M., Gubareni, N., Kirichenko, V. V., Algebras, rings and modules, Mathematical Surveys and Monographs, vol. 168, American Mathematical Society, Providence, RI, 2010, Lie algebras and Hopf algebras. 380, 518, 520Google Scholar
Heyneman, R. G. and Sweedler, M. E., Affine Hopf algebras. I, J. Algebra 13 (1969), 192241. 453Google Scholar
Heyneman, R. G. and Sweedler, M. E., Affine Hopf algebras. II, J. Algebra 16 (1970), 271297. 638Google Scholar
Hiller, H., Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. 98Google Scholar
Hilton, P. J., Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. 157Google Scholar
Hochschild, G. P., The structure of Lie groups, Holden-Day, Inc., San FranciscoLondon-Amsterdam, 1965. 454Google Scholar
Hochschild, G. P., Introduction to affine algebraic groups, Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam, 1971. 453Google Scholar
Hochschild, G. P., Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York-Berlin, 1981. 453, 640Google Scholar
Hoffman, M. E., Quasi-shuffle products, J. Algebraic Combin. 11 (2000), no. 1, 4968. 452, 638, 639Google Scholar
Hopf, H., Sur la topologie des groupes clos de Lie et de leurs g´en´eralisations, C. R. Acad. Sci. Paris 208 (1939), 12661267. 638Google Scholar
Hopf, H., U¨ber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. (2) 42 (1941), 2252. 380, 451, 638, 639Google Scholar
Hopf, H., Selecta Heinz Hopf, Herausgegeben zu seinem 70. Geburtstag von der Eidgen¨ossischen Technischen Hochschule Zu¨rich, Springer-Verlag, Berlin-New York, 1964. 380Google Scholar
Hopf, H., Collected papers/Gesammelte Abhandlungen, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013, Edited and with a preface and foreword by Beno Eckmann, With appendices by Peter J. Hilton, P. Alexandroff, Eckmann and Hopf. Reprint of the 2001 edition. 380Google Scholar
Hudson, R. L. and Parthasarathy, K. R., The Casimir chaos map for U(N ), Tatra Mt. Math. Publ. 3 (1993), 8188, Measure theory (Liptovsky´ Ja´n, 1993). 452Google Scholar
Humphreys, J. E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. 96, 97, 98Google Scholar
Jacobs, B., Categorical logic and type theory, Studies in Logic and the Foundations of Mathematics, vol. 141, North-Holland Publishing Co., Amsterdam, 1999. 825Google Scholar
Jacobson, N., Rational methods in the theory of Lie algebras, Ann. of Math. (2) 36 (1935), no. 4, 875881. 585Google Scholar
Jensen, J. L. W. V., Studier over en afhandling af Gauss, Nyt tidsskrift for matematik 29 (1918), 2936. 97Google Scholar
Johnson, N. and Yau, D., 2-dimensional categories, Oxford University Press, Oxford, 2021. 157, 825Google Scholar
Johnstone, P. T., Sketches of an elephant: a topos theory compendium. Vol. 1, Oxford Logic Guides, vol. 43, The Clarendon Press, Oxford University Press, New York, 2002. 825Google Scholar
Joni, S. A. and Rota, G.-C., Coalgebras and bialgebras in combinatorics, Umbral calculus and Hopf algebras (Norman, Okla., 1978), Contemp. Math., vol. 6, Amer. Math. Soc., Providence, RI, 1982, pp. 147. 516Google Scholar
Joyal, A., Une th´eorie combinatoire des s´eries formelles, Adv. Math. 42 (1981), no. 1, 182. 156, 214Google Scholar
Joyal, A., Foncteurs analytiques et espèces de structures, Combinatoire ´enum´erative (Montreal, Que., 1985/Quebec, Que., 1985), Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 126159. 156, 272, 298Google Scholar
Kac, V. G. and Cheung, P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002. 97Google Scholar
Kane, R., Reflection groups and invariant theory, CMS Books in Mathematics, vol. 5, Springer-Verlag, New York, 2001. 98CrossRefGoogle Scholar
Kashina, Y., A generalized power map for Hopf algebras, Hopf algebras and quantum groups (Brussels, 1998), Lecture Notes in Pure and Appl. Math., vol. 209, Dekker, New York, 2000, pp. 159175. 454Google Scholar
Kashina, Y., Montgomery, S., Ng, S.-H., On the trace of the antipode and higher indicators, Israel J. Math. 188 (2012), 5789. 454Google Scholar
Kashina, Y., Sommerh¨auser, Y., Zhu, Y., On higher Frobenius-Schur indicators, Mem. Amer. Math. Soc. 181 (2006), no. 855, viii+65. 455Google Scholar
Kassel, C., Quantum groups, Graduate Texts in Mathematics, vol. 155, SpringerVerlag, New York, 1995. 97, 380, 516Google Scholar
Kelly, G. M., On the operads of J. P. May, Repr. Theory Appl. Categ. (2005), no. 13, 113. 157, 560Google Scholar
Kharchenko, V. K., Quantum Lie theory, Lecture Notes in Mathematics, vol. 2150, Springer, Cham, 2015, A multilinear approach. 381Google Scholar
Koppinen, M., A Skolem-Noether theorem for coalgebra measurings, Arch. Math. (Basel) 57 (1991), no. 1, 3440. 453Google Scholar
Kostant, B., Groups over Z, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, RI, 1966, pp. 9098. 453Google Scholar
Koszul, J.-L., Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65127. 451Google Scholar
Krob, D., Leclerc, B., Thibon, J.-Y., Noncommutative symmetric functions. II. Transformations of alphabets, Internat. J. Algebra Comput. 7 (1997), no. 2, 181264. 98, 454, 518, 519Google Scholar
Krob, D. and Thibon, J.-Y., Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0, J. Algebraic Combin. 6 (1997), no. 4, 339376. 518Google Scholar
Krob, D. and Thibon, J.-Y., Noncommutative symmetric functions. V. A degenerate version of Uq(glN ), Internat. J. Algebra Comput. 9 (1999), no. 3-4, 405430, Dedicated to the memory of Marcel-Paul Schu¨tzenberger. 518Google Scholar
Lambek, J., Deductive systems and categories. II. Standard constructions and closed categories, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 76– 122. 560Google Scholar
Landers, R., Montgomery, S., Schauenburg, P., Hopf powers and orders for some bismash products, J. Pure Appl. Algebra 205 (2006), no. 1, 156188. 454Google Scholar
Larson, R. G., Hopf algebras and group algebras, Ph.D. thesis, The University of Chicago, 1965. 451Google Scholar
Las Vergnas, M., Matro¨ıdes orientables, C. R. Acad. Sci. Paris S´er. A-B 280 (1975), Ai, A61–A64. 98Google Scholar
Las Vergnas, M., Convexity in oriented matroids, J. Combin. Theory Ser. B 29 (1980), no. 2, 231243. 98Google Scholar
Lazard, M., Lois de groupes et analyseurs, Ann. Sci. Ecole Norm. Sup. (3) 72 (1955), 299400. 560Google Scholar
Lazard, M., Lois de groupes et analyseurs, S´eminaire Bourbaki, Vol. 3, Soc. Math. France, Paris, 1995, pp. Exp. No. 109, 7791. 560Google Scholar
Leinster, T., Higher operads, higher categories, London Mathematical Society Lecture Note Series, vol. 298, Cambridge University Press, Cambridge, 2004. 560Google Scholar
Leinster, T., Basic category theory, Cambridge Studies in Advanced Mathematics, vol. 143, Cambridge University Press, Cambridge, 2014. xivGoogle Scholar
Leray, J., Sur la forme des espaces topologiques et sur les points fixes des repr´esentations, J. Math. Pures Appl. (9) 24 (1945), 95167. 380, 451, 454, 639Google Scholar
Li, C. W. and Liu, X. Q., Algebraic structure of multiple stochastic integrals with respect to Brownian motions and Poisson processes, Stochastics Stochastics Rep. 61 (1997), no. 1-2, 107120. 452Google Scholar
Linchenko, V. V. and Montgomery, S., A Frobenius-Schur theorem for Hopf algebras, Algebr. Represent. Theory 3 (2000), no. 4, 347355, Special issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday. 454Google Scholar
Livernet, M., From left modules to algebras over an operad: application to combinatorial Hopf algebras, Ann. Math. Blaise Pascal 17 (2010), no. 1, 4796. 639, 713Google Scholar
Livernet, M. and Patras, F., Lie theory for Hopf operads, J. Algebra 319 (2008), no. 12, 48994920. 157Google Scholar
Loday, J.-L., Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1998. 453CrossRefGoogle Scholar
Loday, J.-L. and Ronco, M. O., On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123155. 639Google Scholar
Loday, J.-L. and Vallette, B., Algebraic operads, Grundlehren der Mathematischen Wissenschaften, vol. 346, Springer, Heidelberg, 2012. 214, 452, 560Google Scholar
Lorenz, M., A tour of representation theory, Graduate Studies in Mathematics, vol. 193, American Mathematical Society, Providence, RI, 2018. 380Google Scholar
Mac Lane, S., Cohomology theory of Abelian groups, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 814. 96Google Scholar
Mac Lane, S., Cohomology theory of Abelian groups, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. 96Google Scholar
Mac Lane, S., Cohomology theory of Abelian groups, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. 108, 560Google Scholar
Mac Lane, S. andI. Moerdijk, Sheaves in geometry and logic, Universitext, SpringerVerlag, New York, 1994. 825Google Scholar
Macdonald, I. G., Symmetric functions and Hall polynomials, second ed., The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. 518, 520Google Scholar
Mackenzie, K. C. H., Double Lie algebroids and second-order geometry. I, Adv. Math. 94 (1992), no. 2, 180239. 157Google Scholar
Mackey, G. W., Ergodic theory, group theory, and differential geometry, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 11841191. 825Google Scholar
Mackey, G. W., Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187207. 825Google Scholar
Magnus, W., Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111 (1935), no. 1, 259280. 585Google Scholar
Magnus, W., U¨ber Beziehungen zwischen h¨oheren Kommutatoren, J. Reine Angew. Math. 177 (1937), 105115. 585Google Scholar
Mahajan, S., Shuffles, shellings and projections, Ph.D. thesis, Cornell University, 2002. 96Google Scholar
Majid, S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995. 380Google Scholar
Malvenuto, C., Produits et coproduits des fonctions quasi-sym´etriques et de l’algèbre des descents, Ph.D. thesis, Laboratoire de combinatoire et d’informatique math´ematique (LACIM), Univ. du Qu´ebec à Montr´eal, 1994. 519, 520, 638Google Scholar
Malvenuto, C. and Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967982. 519, 520Google Scholar
Manchon, D., Hopf algebras in renormalisation, Handbook of algebra. Vol. 5, Elsevier/North-Holland, Amsterdam, 2008, pp. 365427. 98, 453, 455Google Scholar
Manchon, D. and Paycha, S., Nested sums of symbols and renormalized multiple zeta values, Int. Math. Res. Not. IMRN (2010), no. 24, 46284697. 639Google Scholar
Markl, M., Shnider, S., Stasheff, J. D., Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002. 560Google Scholar
Mastnak, M., On the cohomology of a smash product of Hopf algebras, available at arXiv:math/0210123. 453Google Scholar
May, J. P., The geometry of iterated loop spaces, Springer-Verlag, Berlin, 1972, Lectures Notes in Mathematics, Vol. 271. 560CrossRefGoogle Scholar
May, J. P. and Ponto, K., More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012, Localization, completion, and model categories. 380Google Scholar
McMullen, P. and Schulte, E., Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, Cambridge, 2002. 98Google Scholar
Melan¸con, G. and Reutenauer, C., Lyndon words, free algebras and shuffles, Canad. J. Math. 41 (1989), no. 4, 577591. 638Google Scholar
M´eliot, P.-L., Representation theory of symmetric groups, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2017. 518, 519, 520Google Scholar
M´endez, M. A., Set operads in combinatorics and computer science, SpringerBriefs in Mathematics, Springer, Cham, 2015. 156, 214, 245Google Scholar
Michaelis, W., Lie coalgebras (with a proof of an analogue of the Poincar´e-BirkhoffWitt theorem), Ph.D. thesis, University of Washington, 1974. 585, 640Google Scholar
Michaelis, W., Lie coalgebras, Adv. Math. 38 (1980), no. 1, 154. 585, 640Google Scholar
Michaelis, W., The dual Poincar´e-Birkhoff-Witt theorem, Adv. Math. 57 (1985), no. 2, 93– 162. 585, 640Google Scholar
Michaelis, W., Coassociative coalgebras, Handbook of algebra, Vol. 3, Elsevier/NorthHolland, Amsterdam, 2003, pp. 587788. 585Google Scholar
Mielnik, B. and Pleban´ski, J., Combinatorial approach to Baker-Campbell-Hausdorff exponents, Ann. Inst. H. Poincar´e Sect. A (N.S.) 12 (1970), 215254. 98Google Scholar
Milnor, J. W. and Moore, J. C., On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211264. 380, 381, 451, 453, 455, 585, 639, 640Google Scholar
Milnor, J. W. and Moore, J. C., On the structure of Hopf algebras (preprint, 1959), Collected papers of John Milnor. V. Algebra, Edited by Bass, Hyman and Lam, T. Y., American Mathematical Society, Providence, RI, 2010, pp. 736. 380, 381, 453, 455, 585, 639, 640Google Scholar
Minh, H. N., Structure of polyzetas and Lyndon words, Vietnam J. Math. 41 (2013), no. 4, 409450. 639Google Scholar
M¨obius, A. F., U¨ber eine besondere Art von Umkehrung der Reihen, J. Reine Angew. Math. 9 (1832), 105123. 97Google Scholar
Montgomery, S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, American Mathematical Society, Providence, RI, 1993. 380, 453, 455, 516Google Scholar
Montgomery, S., Vega, M. D., Witherspoon, S., Hopf automorphisms and twisted extensions, J. Algebra Appl. 15 (2016), no. 6, 1650103, 14. 454Google Scholar
Moore, J. C., Mimeographed notes of the algebraic topology seminar, Princeton, 1957– 1958. 380, 455, 639Google Scholar
Moore, J. C., Algèbres de Hopf universelles, S´eminaire Henri Cartan; Volume 12. Expos´e no. 10, Secr´etariat math´ematique, Paris, 19591960, pp. 111. 452, 518Google Scholar
Moore, J. C., Compl´ements sur les algèbres de Hopf, S´eminaire Henri Cartan; Volume 12. Expos´e no. 4, Secr´etariat math´ematique, Paris, 19591960, pp. 112. 639Google Scholar
Moszkowski, P., Puissance d’un triplet de formes, C. R. Acad. Sci. Paris S´er. I Math. 299 (1984), no. 4, 9395. 95Google Scholar
Musson, I. M., Lie superalgebras and enveloping algebras, Graduate Studies in Mathematics, vol. 131, American Mathematical Society, Providence, RI, 2012. 585Google Scholar
Neisendorfer, J., Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces, Pacific J. Math. 74 (1978), no. 2, 429460. 585Google Scholar
Newman, K. W., Topics in the theory of irreducible Hopf algebras, Ph.D. thesis, Cornell University, 1970. 452, 639Google Scholar
Newman, K. W., The structure of free irreducible, cocommutative Hopf algebras, J. Algebra 29 (1974), 126. 452, 639Google Scholar
Newman, K. W. and Radford, D. E., The cofree irreducible Hopf algebra on an algebra, Amer. J. Math. 101 (1979), no. 5, 10251045. 452, 639Google Scholar
Nichols, W. D., Bialgebras, Ph.D. thesis, The University of Chicago, 1975. 453, 585, 638, 640Google Scholar
Nichols, W. D., Pointed irreducible bialgebras, J. Algebra 57 (1979), no. 1, 6476. 453, 585, 638, 640Google Scholar
Nichols, W. D. and Sweedler, M. E., Hopf algebras and combinatorics, Umbral calculus and Hopf algebras (Norman, Okla., 1978), Contemp. Math., vol. 6, Amer. Math. Soc., Providence, RI, 1982, pp. 4984. 516Google Scholar
Nijenhuis, A. and Richardson, R. W. Jr., Cohomology and deformations of algebraic structures, Bull. Amer. Math. Soc. 70 (1964), 406411. 585Google Scholar
Novelli, J.-C., Patras, F., Thibon, J.-Y., Natural endomorphisms of quasi-shuffle Hopf algebras, Bull. Soc. Math. France 141 (2013), no. 1, 107130. 98Google Scholar
Orlik, P. and Terao, H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin, 1992. 96Google Scholar
Patras, F., Homoth´eties simpliciales, Ph.D. thesis, Universit´e Paris 7, 1992. 638Google Scholar
Patras, F., La d´ecomposition en poids des algèbres de Hopf, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 10671087. 453, 454Google Scholar
Patras, F., L’algèbre des descentes d’une bigèbre gradu´ee, J. Algebra 170 (1994), no. 2, 547566. 454, 638Google Scholar
Patras, F. and Reutenauer, C., Lie representations and an algebra containing Solomon’s, J. Algebraic Combin. 16 (2002), no. 3, 301314 (2003). 521Google Scholar
Patras, F. and Reutenauer, C., On descent algebras and twisted bialgebras, Mosc. Math. J. 4 (2004), no. 1, 199216, 311. 157, 245, 712Google Scholar
Patras, F. and Schocker, M., Twisted descent algebras and the Solomon-Tits algebra, Adv. Math. 199 (2006), no. 1, 151184. 157, 712Google Scholar
Patras, F. and Schocker, M., Trees, set compositions and the twisted descent algebra, J. Algebraic Combin. 28 (2008), no. 1, 323. 157, 712Google Scholar
Petersen, T. K., Eulerian numbers, Birkh¨auser Advanced Texts: Basler Lehrbu¨cher, Birkh¨auser/Springer, New York, 2015, With a foreword by Richard Stanley. 98Google Scholar
Poincar´e, H., Sur les groupes continus, C. R. Acad. Sci. Paris 128 (1899), 10651069. 585, 639Google Scholar
Poincar´e, H., Sur les groupes continus, Trans. Cambr. Philos. Soc. 18 (1900), 220255. 585, 639Google Scholar
Poirier, S. and Reutenauer, C., Algèbres de Hopf de tableaux, Ann. Sci. Math. Qu´ebec 19 (1995), no. 1, 7990. 520Google Scholar
Porst, H.-E., On categories of monoids, comonoids, and bimonoids, Quaest. Math. 31 (2008), no. 2, 127139. 453Google Scholar
Quillen, D., Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205295. 454, 639, 640Google Scholar
Radford, D. E., Rationality and the theory of coalgebras, Ph.D. thesis, The University of North Carolina at Chapel Hill, 1970. 453Google Scholar
Radford, D. E., A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra 58 (1979), no. 2, 432454. 638Google Scholar
Radford, D. E., Hopf algebras, Series on Knots and Everything, vol. 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. 380, 455Google Scholar
Ree, R., Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210220. 454, 517Google Scholar
Reidemeister, K., Einfu¨hrung in die kombinatorische Topologie, Chelsea Publishing Co., New York, 1950, Reprint of the 1932 original. 825Google Scholar
Reutenauer, C., Theorem of Poincar´e-Birkhoff-Witt, logarithm and symmetric group representations of degrees equal to Stirling numbers, Combinatoire ´enum´erative (Montreal, Que., 1985/Quebec, Que., 1985), Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 267284. 453Google Scholar
Reutenauer, C., Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993, Oxford Science Publications. 98, 453, 454, 517, 518, 519, 585, 638Google Scholar
Reutenauer, C., Free Lie algebras, Handbook of algebra, Vol. 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 887903. 585, 638Google Scholar
Riehl, E., Category theory in context, Aurora, Dover Publications, 2016. xiv, 825Google Scholar
Riordan, J., Combinatorial identities, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979, Reprint of the 1968 original. 97Google Scholar
Roman, S., An introduction to the language of category theory, Compact Textbooks in Mathematics, Birkha¨user/Springer, Cham, 2017. xiv, 825Google Scholar
Ronan, M., Lectures on buildings, University of Chicago Press, Chicago, IL, 2009, Updated and revised. 98Google Scholar
Ross, L. E., On representations and cohomology of graded Lie algebras, Ph.D. thesis, University of California, Berkeley, 1964. 585Google Scholar
Ross, L. E., Representations of graded Lie algebras, Trans. Amer. Math. Soc. 120 (1965), 1723. 585Google Scholar
Rota, G.-C., On the foundations of combinatorial theory. I. Theory of Mo¨bius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340368 (1964). 97Google Scholar
Sagan, B. E., The symmetric group, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001, Representations, combinatorial algorithms, and symmetric functions. 518Google Scholar
Saliola, F. V., On the quiver of the descent algebra, J. Algebra 320 (2008), no. 11, 38663894. 95Google Scholar
Saliola, F. V., The face semigroup algebra of a hyperplane arrangement, Canad. J. Math. 61 (2009), no. 4, 904929. 95Google Scholar
Sam, S. V. and Snowden, A., Introduction to twisted commutative algebras, available at arXiv:1209.5122. 214, 452Google Scholar
Samelson, H., Beitr¨age zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math. (2) 42 (1941), 10911137. 380, 639Google Scholar
Scheunert, M., The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979, An introduction. 585Google Scholar
Schmitt, W. R., Incidence Hopf algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 299330. 455, 815Google Scholar
Schocker, M., The module structure of the Solomon-Tits algebra of the symmetric group, J. Algebra 301 (2006), no. 2, 554586. 95, 98Google Scholar
Schur, J., Bemerkungen zur Theorie der beschr¨ankten Bilinearformen mit unendlich vielen Ver¨anderlichen, J. Reine Angew. Math. 140 (1911), 128. 453CrossRefGoogle Scholar
Serre, J.-P., Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 2006, 1964 lectures given at Harvard University, Corrected fifth printing of the second (1992) edition. 640Google Scholar
Sj¨odin, G., Hopf algebras and derivations, J. Algebra 64 (1980), no. 1, 218229. 640Google Scholar
Skowron´ski, A. and Yamagata, K., Frobenius algebras. I, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zu¨rich, 2011, Basic representation theory. 380Google Scholar
Smirnov, V. A., On the cochain complex of topological spaces, Mat. Sb. (N.S.) 115(157) (1981), no. 1, 146158, 160. 214, 560Google Scholar
Smirnov, V. A., Simplicial and operad methods in algebraic topology, Translations of Mathematical Monographs, vol. 198, American Mathematical Society, Providence, RI, 2001, Translated from the Russian manuscript by G. L. Rybnikov. 560Google Scholar
Smoke, W. H., Differential operators on homogeneous spaces, Ph.D. thesis, University of California, Berkeley, 1965. 639Google Scholar
Smoke, W. H., Invariant differential operators, Trans. Amer. Math. Soc. 127 (1967), 460– 494. 639Google Scholar
Solomon, L., The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376393. 96, 97CrossRefGoogle Scholar
Solomon, L., The Burnside algebra of a finite group, J. Combinatorial Theory 2 (1967), 603615. 95Google Scholar
Solomon, L., On the Poincar´e-Birkhoff-Witt theorem, J. Combinatorial Theory 4 (1968), 363375. 98, 640Google Scholar
Solomon, L., A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), no. 2, 255264. 95Google Scholar
Spivak, D. I., Category theory for the sciences, MIT Press, Cambridge, MA, 2014. 825Google Scholar
Stanley, R. P., Hyperplane arrangements, parking functions and tree inversions, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., vol. 161, Birkh¨auser Boston, Boston, MA, 1998, pp. 359375. 97Google Scholar
Stanley, R. P., Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota. 518, 519, 520, 521Google Scholar
Stanley, R. P., An introduction to hyperplane arrangements, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 389496. 97Google Scholar
Stanley, R. P., Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. 97Google Scholar
Stasheff, J. D., Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275292; II, 293312. 560Google Scholar
Steinberg, R., Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. 97Google Scholar
Stover, C. R., The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring, J. Pure Appl. Algebra 86 (1993), no. 3, 289326. 157, 272, 297, 298, 712, 757Google Scholar
Sweedler, M. E., Cocommutative Hopf algebras with antipode, Ph.D. thesis, Massachusetts Institute of Technology, 1966. 453, 640Google Scholar
Sweedler, M. E., Hopf algebras with one grouplike element, Trans. Amer. Math. Soc. 127 (1967), 515526. 638Google Scholar
Sweedler, M. E., The Hopf algebra of an algebra applied to field theory, J. Algebra 8 (1968), 262276. 453CrossRefGoogle Scholar
Sweedler, M. E., Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. xv, 380, 451, 453, 455, 517, 638, 640Google Scholar
Taft, E. J., Combinatorial sequences as sequences of divided powers, Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982), vol. 36, 1982, pp. 2326. 516Google Scholar
Takeuchi, M., Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561582. 455Google Scholar
Takeuchi, M., Survey of braided Hopf algebras, New trends in Hopf algebra theory (La Falda, 1999), Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 301323. 381Google Scholar
Tauber, S., On multinomial coefficients, Amer. Math. Monthly 70 (1963), 10581063. 97Google Scholar
Thibon, J.-Y., Lectures on noncommutative symmetric functions, Interaction of combinatorics and representation theory, MSJ Mem., vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 3994. 519Google Scholar
Thibon, J.-Y. and Ung, B.-C.-V., Quantum quasi-symmetric functions and Hecke algebras, J. Phys. A 29 (1996), no. 22, 73377348. 521Google Scholar
Thomas, A., Geometric and topological aspects of Coxeter groups and buildings, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zu¨rich, 2018. 98CrossRefGoogle Scholar
Tits, J., Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. 95Google Scholar
Tits, J., Two properties of Coxeter complexes, J. Algebra 41 (1976), no. 2, 265268, Appendix to “A Mackey formula in the group ring of a Coxeter group” (J. Algebra 41 (1976), no. 2, 255264) by Louis Solomon. 95Google Scholar
Underwood, R. G., Fundamentals of Hopf algebras, Universitext, Springer, Cham, 2015. 380Google Scholar
Vandermonde, A.-T., M´emoire sur des irrationnelles de diff´erens ordres avec une application au cercle, Mem. Acad. Roy. Sci. Paris (1772), 489498. 97Google Scholar
Varchenko, A., Bilinear form of real configuration of hyperplanes, Adv. Math. 97 (1993), no. 1, 110144. 96Google Scholar
Ward, M., The algebra of lattice functions, Duke Math. J. 5 (1939), no. 2, 357371. 97Google Scholar
Weisner, L., Abstract theory of inversion of finite series, Trans. Amer. Math. Soc. 38 (1935), no. 3, 474484. 97Google Scholar
Weiss, R. M., The structure of spherical buildings, Princeton University Press, Princeton, NJ, 2003. 98Google Scholar
Witt, E., Treue Darstellung Liescher Ringe, J. Reine Angew. Math. 177 (1937), 152– 160. 585, 639Google Scholar
Witt, E., Spiegelungsgruppen und Aufz¨ahlung halbeinfacher Liescher Ringe, Abh. Math. Sem. Hansischen Univ. 14 (1941), 289322. 95, 97Google Scholar
Wraith, G. C., Hopf algebras over Hopf algebras, Ann. Mat. Pura Appl. (4) 76 (1967), 149163. 453Google Scholar
Zaslavsky, T., Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. issue 1, 154, vii+102. 98Google Scholar
Zelevinsky, A. V., Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin, 1981, A Hopf algebra approach. 518Google Scholar
Ziegler, G. M., Algebraic combinatorics of hyperplane arrangements, Ph.D. thesis, Massachusetts Institute of Technology, 1987. 95, 96Google Scholar
Zisman, M., Espaces de Hopf, algèbres de Hopf, S´eminaire Henri Cartan; Volume 12. Expos´e no. 2, Secr´etariat math´ematique, Paris, 19591960, pp. 117. 381Google Scholar