Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-12T15:39:33.609Z Has data issue: false hasContentIssue false

Section 5 - Single-Ventricle Physiology

Published online by Cambridge University Press:  09 September 2021

Laura K. Berenstain
Affiliation:
Cincinnati Children's Hospital Medical Center
James P. Spaeth
Affiliation:
Cincinnati Children's Hospital Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Congenital Cardiac Anesthesia
A Case-based Approach
, pp. 187 - 238
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Norwood, W. I., Lang, P., and Hansen, D. D.. Physiologic repair of aortic atresia-hypoplastic left heart syndrome. N Engl J Med 1983; 308: 23–6.CrossRefGoogle ScholarPubMed
Sano, S., Ishino, K., Kawada, M., et al. Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2003; 126: 504–9.CrossRefGoogle ScholarPubMed
Pearl, J. M., Nelson, D. P., Schwartz, S. M., et al. First-stage palliation for hypoplastic left heart syndrome in the twenty-first century. Ann Thorac Surg 2002; 73: 331–39.CrossRefGoogle ScholarPubMed
Nicolson, S. C., Steven, J. M., Diaz, L. K., et al. Anesthesia for the patient with a single ventricle. In Andropoulos, D. B., Stayer, S., Mossad, E. B. et al., eds. Anesthesia for Congenital Heart Disease, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2015; 567–97.Google Scholar
Sakka, S. G., Huettemann, E., Petrat, G., et al. Transesophageal echocardiographic assessment of haemodynamic changes during laparoscopic herniorrhaphy in small children. Br J Anaesth 2000; 84: 330–4.CrossRefGoogle ScholarPubMed
Gueugniaud, P. Y., Abisseror, M., Moussa, M., et al. The hemodynamic effects of pneumoperitoneum during laparoscopic surgery in healthy infants: assessment by continuous esophageal aortic blood flow echo-Doppler. Anesth Analg 1998; 86: 290–3.Google ScholarPubMed
Pennant, J. H.. Anesthesia for laparoscopy in the pediatric patient. Anesthesiol Clin North Am 2001; 19: 6988.CrossRefGoogle ScholarPubMed
Wulkan, M. L. and Vasudevan, S. A.. Is end-tidal CO2 an accurate measure of arterial CO2 during laparoscopic procedures in children and neonates with cyanotic congenital heart disease? J Pediatr Surg 2001; 36: 1234–6.CrossRefGoogle ScholarPubMed
Kim, J., Sun, Z., Englum, B. R., et al. Laparoscopy is safe in infants and neonates with congenital heart disease: a national study of 3684 patients. J Laparoendosc Adv Surg Tech A 2016; 26: 836–9.CrossRefGoogle ScholarPubMed
Slater, B., Rangel, S., Ramamoorthy, C., et al. Outcomes after laparoscopic surgery in neonates with hypoplastic left heart syndrome. J Pediatr Surg 2007; 42: 1118–21.CrossRefGoogle Scholar
Gulack, B. C. H. and Adibe, O. O.. Laparoscopic antireflux surgery in infants with single ventricle physiology: a review. J Laparoendosc Adv Surg Tech A 2013; 23: 733–7.CrossRefGoogle ScholarPubMed
Chu, D. I., Tan, J. M., Mattei, P., et al. Mortality and morbidity after laparoscopic surgery in children with and without congenital heart disease. J Pediatr 2017; 185: 8893.CrossRefGoogle ScholarPubMed
Gillory, L. A., Megison, M. L., Harmon, C. M., et al. Laparoscopic surgery in children with congenital heart disease. J Pediatr Surg 2012; 47: 1084–8.CrossRefGoogle ScholarPubMed
Garey, C. L., Laituri, C. A., Aguayo, P., et al. Outcomes in children with hypoplastic left heart syndrome undergoing open fundoplication. J Pediatr Surg 2011; 46: 859–62.CrossRefGoogle ScholarPubMed
Craig, B. T., Rellinger, E. J., Metter, B. A., et al. Laparoscopic Nissen fundoplication in infants with hypoplastic left heart syndrome. J Pediatr Surg 2016; 51: 7680.CrossRefGoogle ScholarPubMed
Gupta, A., Daggett, C., Drant, S., et al. Prospective randomized trial of ketorolac after congenital heart surgery. J Cardiothorac Vasc Anesth 2004; 18: 454–7.CrossRefGoogle ScholarPubMed

Suggested Reading

Chu, D. I., Tan, J. M., Mattei, P., et al. Outcomes of laparoscopic and open surgery in children with and without congenital heart disease. J Pediatr Surg 2018; 53: 1980–8.Google Scholar
Nicolson, S. C., Steven, J. M., Diaz, L. K., et al. Anesthesia for the patient with a single ventricle. In Andropoulos, D. B., Stayer, S. A., Mossad, E. B., et al., eds. Anesthesia for Congenital Heart Disease, 3rd ed. Hoboken, NJ: John Wiley & Sons, 2015; 356–72.Google Scholar
Quintessenza, J., DeSena, H. C., Justice, L., et al. Hypoplastic left heart syndrome. In Ungerleider, R. M., Meliones, J. N., Nelson McMillan, K. et al., eds. Critical Heart Disease in Infants and Children, 3rd ed. Philadelphia: Mosby Elsevier, 2019; 778–95.Google Scholar
Short, J. A., Paris, S. T., Booker, P. D., et al. Arterial to end-tidal carbon dioxide tension difference in children with congenital heart disease. Br J Anaesth 2001; 86: 349–53.CrossRefGoogle ScholarPubMed
Watkins, S., Morrow, S. E., McNew, B. S., et al. Perioperative management of infants undergoing fundoplication and gastrostomy after stage I palliation of hypoplastic left heart syndrome. Pediatr Cardiol 2012; 33: 697704.CrossRefGoogle Scholar

References

Freedom, R. M., Nykanen, D., and Benson, L. N.. The physiology of the bidirectional cavopulmonary connection. Ann Thorac Surg 1998; 66: 664–7.CrossRefGoogle ScholarPubMed
Von Ungern-Sternberg, B. S., Boda, K., Chambers, N. A., et al. Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet 2010; 376: 773–83.Google Scholar
White, M. C. and Peyton, J. M.. Anaesthetic management of children with congenital heart disease for non-cardiac surgery. Cont Educ Anesth Crit Care Pain 2012; 12: 1722.CrossRefGoogle Scholar
Nishimura, R. A., Otto, C. M., Bonow, R. O., et al. AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017; 135: e1159–95.CrossRefGoogle Scholar
Al-Eyadhy, A.. Mechanical ventilation strategy following Glenn and Fontan surgeries: on going challenge! J Saudi Heart Assoc 2009; 21: 153–7.CrossRefGoogle ScholarPubMed
Bradley, S. M., Simsic, J. M., and Mulvihill, D. M.. Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg 2003; 126: 1033–9.CrossRefGoogle ScholarPubMed

Suggested Reading

Feinstein, J. A., Benson, D. W., Dubin, A. M., et al. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol 2012; 59: S142.CrossRefGoogle ScholarPubMed
Freedom, R. M., Nykanen, D., and Benson, L. N. The physiology of the bidirectional cavopulmonary connection. Ann Thorac Surg 1998; 66: 664–7.CrossRefGoogle ScholarPubMed
Gupta, B., Gupta, A., Agarwal, M., et al. Glenn shunt: anaesthetic concerns for a non-cardiac surgery. North J ISA 2017; 2: 3642.Google Scholar
White, M. C. and Peyton, J. M. Anaesthetic management of children with congenital heart disease for non-cardiac surgery. Cont Educ Anesth Crit Care Pain 2012; 12: 1722.Google Scholar

References

Schilling, C., Dalsiel, K., Nunn, R., et al. The Fontan epidemic: population projections from Australia and New Zealand Fontan registry. Int J Cardiol 2016; 219: 1419.CrossRefGoogle ScholarPubMed
Herrera Soto, J. A., Vander Hare, K. L., Barry-Lane, P., et al. Retrospective study on the development of spinal deformities following sternotomy for congenital heart disease. Spine 2007; 32: 19982004.CrossRefGoogle ScholarPubMed
Kadhim, M., Pizarro, C., Holmes, L., et al. Prevalence of scoliosis in patients with Fontan circulation. Arch Dis Child 2013; 98: 170–5.CrossRefGoogle ScholarPubMed
Soliman, D. E., Maslow, A. D., Bokesch, P. M., et al. Transesophageal echocardiography during scoliosis repair: comparison with CVP monitoring. Can J Anaesth 1998; 45: 925–32.CrossRefGoogle ScholarPubMed
Walker, C., Martin, D., Klamar, J., et al. Perioperative management of a patient with Fontan physiology for posterior spinal fusion. J Med Cases 2014; 5: 392–6.Google Scholar
Brown, Z. E., Görges, M., Cooke, E., et al. Changes in cardiac index and blood pressure on positioning children prone for scoliosis surgery. Anaesthesia 2013; 68: 742–6.CrossRefGoogle ScholarPubMed
Rafique, M. B., Stuth, E. A., Tassone, J. C.. Increased blood loss during posterior spinal fusion for idiopathic scoliosis in an adolescent with Fontan physiology. Pediatr Anesth 2006; 16: 206–12.CrossRefGoogle Scholar
Macarrón, C. P. C., Ruiz, E. S., Flores, J. B., et al. Spinal surgery in the univentricular heart – is it viable? Cardiol Young 2014; 24: 73–8.Google Scholar
Vischoff, D., Fortier, L. P., Villeneuve, E., et al. Anaesthetic management of an adolescent for scoliosis surgery with a Fontan circulation. Paediatr Anaesth 2001; 11: 607–10.CrossRefGoogle ScholarPubMed
Leichtle, C. I., Kumpf, M., Gass, M., et al. Surgical correction of scoliosis in children with congenital heart failure (Fontan circulation): case report and literature review. Eur Spine J 2008; 17: 312–17.CrossRefGoogle ScholarPubMed

Suggested Reading

Edgcombe, H., Carter, K., and Yarrow, S. Anaesthesia in the prone position. Br J Anaesth 2008; 100: 165–83.CrossRefGoogle ScholarPubMed
Kadhim, M., Pizarro, C., Holmes, L., et al. Prevalence of scoliosis in patients with Fontan circulation. Arch Dis Child 2013; 98: 170–5.CrossRefGoogle ScholarPubMed
Macarrón, C. P. C., Ruiz, E. S., Flores, J. B., et al. Spinal surgery in the univentricular heart – is it viable? Cardiol Young 2014; 24: 73–8.Google Scholar
Walker, C., Martin, D., Klamar, J., et al. Perioperative management of a patient with Fontan physiology for posterior spinal fusion. J Med Cases 2014; 5: 392–6.Google Scholar

References

Jonas, R. A.. The intra/extracardiac conduit fenestrated Fontan. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annual 2011; 14: 1118.CrossRefGoogle ScholarPubMed
Kay, A., Moe, T., Suter, B., et al. Long term consequences of the Fontan procedure and how to manage them. Prog Cardiovasc Dis 2018; 61: 365–76.CrossRefGoogle Scholar
Ajuba-Iwuji, C. C., Puttreddy, S., Maxwell, B. G., et al. Effect of preoperative angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker use on hemodynamic variables in pediatric patients undergoing cardiopulmonary bypass. World J Pediatr Congenit Heart Surg 2014; 5: 515–21.Google Scholar
Hollmann, C., Fernandes, N. L., and Biccard, B. M.. A systematic review of outcomes associated with withholding or continuing angiotensin-converting enzyme inhibitors and angiotensin receptor blockers before noncardiac surgery. Anesth Analg 2018; 127: 678–87.Google Scholar
Tiouririne, M., De Souza, D. G., Beers, K. T., et al. Anesthetic management of parturients with a Fontan circulation: a review of published case reports. Semin Cardiothorac Vasc Anesth 2015; 19: 203–9.Google Scholar

Suggested Reading

Kiran, U., Aggarwal, S., Choudhary, A., et al. The Blalock and Taussig shunt revisited. Ann Card Anaesth 2017; 20: 323–30.Google ScholarPubMed
McClain, C. D., McGowan, F. X., and Kovatsis, P. G. Laparoscopic surgery in a patient with Fontan physiology. Anesth Analg 2006; 103: 856–8.Google Scholar
Nayak, S. and Booker, P. The Fontan circulation. Cont Educ Anaesth Crit Care Pain 2008; 8: 2630.CrossRefGoogle Scholar

References

Nasr, V. G., Staffa, S.J., Zurakowski, D., et al. Pediatric risk stratification is improved by integrating both patient comorbidities and intrinsic surgical risk. Anesthesiology 2019; 130: 971–80.CrossRefGoogle ScholarPubMed
Diller, G. P., Kempny, A., Alonso-Gonzalez, R., et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation 2015; 132: 2118–25.CrossRefGoogle Scholar
Deal, B. J. and Jacobs, M. L.. Management of the failing Fontan circulation. Heart 2012; 98: 1098–104.CrossRefGoogle ScholarPubMed
Goldberg, D. J., Shaddy, R. E., Ravishankar, C., et al. The failing Fontan: etiology, diagnosis and management. Expert Rev Cardiovasc Ther 2011; 9: 785–93.CrossRefGoogle ScholarPubMed
Senzaki, H., Masutani, S., Ishido, H., et al. Cardiac rest and reserve function in patients with Fontan circulation. J Am Coll Cardiol 2006; 47: 2528–35.CrossRefGoogle ScholarPubMed
Eagle, S. S. and Daves, S. M.. The adult with Fontan physiology: systematic approach to perioperative management for noncardiac surgery. J Cardiothorac Vasc Anesth 2011; 25: 320–34.CrossRefGoogle ScholarPubMed
Karbassi, A., Nair, K., Harris, L., et al. Atrial tachyarrhythmia in adult congenital heart disease. World J Cardiol 2017; 9: 496507.Google Scholar
Pitkin, A. D., Wesley, M. C., Guleserian, K.J., et al. Perioperative management of a patient with failed Fontan physiology. Semin Cardiothorac Vasc Anesth 2013; 17: 61–5.CrossRefGoogle ScholarPubMed
Bailey, P. D. and Jobes, D. R.. The Fontan patient. Anesth Clin 2009; 27: 285300.CrossRefGoogle ScholarPubMed
Wilson, W., Taubert, K. A., Gewitz, M., et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J Am Dent Assoc 2008; 139: 3S24S.Google Scholar
Ovroutski, S., Dahnert, I., Alexi-Meskishvili, V., et al. Preliminary analysis of arrhythmias after the Fontan operation with extracardiac conduit compared with intra-atrial lateral tunnel. Thorac Cardiovasc Surg 2001; 49: 334–7.CrossRefGoogle ScholarPubMed
Marino, B. S., Tabbutt, S., MacLaren, G., et al. Cardiopulmonary resuscitation in infants and children with cardiac disease: a scientific statement from the American Heart Association. Circulation 2018; 137: e691782.CrossRefGoogle ScholarPubMed
Noss, C., Anderson, K. J., and Gregory, A. J.. Erector spinae plane block for open-heart surgery: a potential tool for improved analgesia. J Cardiothorac Vasc Anesth 2019; 33: 376–7.Google Scholar
Griffiths, E. R., Kaza, A. K., Wyler von Ballmoos, M. C., et al. Evaluating failing Fontans for heart transplantation: predictors of death. Ann Thorac Surg 2009; 88: 558–64.CrossRefGoogle ScholarPubMed

Suggested Reading

Jolley, M., Colan, S. D., Rhodes, J., et al. Fontan physiology revisited. Anesth Anal 2015; 121: 172–82.CrossRefGoogle ScholarPubMed
Windsor, J., Townsley, M. M., Briston, D., et al. Fontan palliation for single-ventricle physiology: perioperative management for noncardiac surgery and analysis of outcomes. J Cardiothorac Vasc Anesth 2017; 31: 2296–303.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×