Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-w6k7h Total loading time: 0.372 Render date: 2022-06-27T22:26:40.266Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

12 - Nanomagnetic logic: from magnetic ordering to magnetic computing

from Section IV - Spin-based devices

Published online by Cambridge University Press:  05 February 2015

György Csaba
Affiliation:
University of Notre Dame
Gary H. Bernstein
Affiliation:
University of Notre Dame
Alexei Orlov
Affiliation:
University of Notre Dame
Michael T. Niemier
Affiliation:
University of Notre Dame
X. Sharon Hu
Affiliation:
University of Notre Dame
Wolfgang Porod
Affiliation:
University of Notre Dame
Tsu-Jae King Liu
Affiliation:
University of California, Berkeley
Kelin Kuhn
Affiliation:
Cornell University, New York
Get access

Summary

Magnetic computing defined

Magnetic computing – in the broadest sense – is about using magnetic signals (nanomagnets, domain walls) to represent and process information. Nowadays, when “information processing” and “electronics” is synonymous, this concept sounds rather exotic. However, before the triumphant era of CMOS logic devices, non-charge based computers were serious candidates for information processing – for example, ingenious magnetic computing circuits were invented by R. J. Spain [1–3]. It was Cowburn [4] who first realized that the properties of nanoscale, single-domain magnets – which are very different from large, multi-domain magnets – are well suited for digital computing.

This chapter deals with one approach to magnetic computing, nanomagnet logic (or NML) [5, 6]. In NML devices, binary information is represented by the state (magnetization direction) of single domain nanomagnets and the magnetically represented information is propagated and processed by magnetic dipole–dipole interactions. From the circuit architecture point of view, NML builds on the concept of “quantum-dot cellular automata” [7] – they both share the idea of representing binary signals by bistable nanosystems and processing them through field-interactions. For this reason, nanomagnet logic was formerly called “magnetic quantum-dot cellular automata” (QCA), or field-coupled computing.

Type
Chapter
Information
CMOS and Beyond
Logic Switches for Terascale Integrated Circuits
, pp. 301 - 334
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spain, R. J., “Controlled domain tip propagation – part I.” Journal of Applied Physics, 37, 2572 (1966)CrossRefGoogle Scholar
Spain, R. J., “Controlled domain tip propagation – part II.” Journal of Applied Physics, 37, 2584 (1966)CrossRefGoogle Scholar
Spain, R. J., Jauvtis, H. I., & Duben, F. T., “DOT memory systems.” In Proceedings of the National Computer Conference and Exposition, May 6–10, 1974, pp. 841–846 (1974).
Cowburn, R. P. & Welland, M. E., “Room temperature magnetic quantum cellular automata.” Science, 287 (2000).CrossRefGoogle ScholarPubMed
Csaba, G., Imre, A., Bernstein, G. H., Porod, W., & Metlushko, V., “Nanocomputing by field-coupled nanomagnets.” IEEE Transactions on Nanotechnology, 1(4), 209–213 (2002).CrossRefGoogle Scholar
Csaba, G., Porod, W., & Csurgay, A. I., “A computing architecture composed of field-coupled single domain nanomagnets clocked by magnetic field.” International Journal of Circuit Theory and Applications, 31, 67–82 (2003).CrossRefGoogle Scholar
Lent, C., Tougaw, P. D., Porod, W., & Bernstein, G. H., “Quantum cellular automata.” Nanotechnology, 4(1), 49 (1993).CrossRefGoogle Scholar
Allwood, D. A., Xiong, G., Faulkner, C. C., Atkinson, D., Petit, D., & Cowburn, R. P., “Magnetic domain-wall logic.” Science, 309(5741), 1688–1692 (2005).CrossRefGoogle ScholarPubMed
Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G. H., & Porod, W., “Majority logic gate for magnetic quantum-dot cellular automata.” Science, 311(5758), 205–208 (2006).CrossRefGoogle ScholarPubMed
Varga, E., Csaba, G., Bernstein, G. H., & Porod, W.. “Implementation of a nanomagnetic full adder circuit.” In Nanotechnology (IEEE-NANO), 2011 IEEE Conference on, pp. 1244–1247 (2011).
See the “Emerging Research Devices” section of the International Technology Roadmap for Semiconductors, .
Csaba, G., Lugli, P., Csurgay, A., & Porod, W., “Simulation of power gain and dissipation in field-coupled nanomagnets.” Journal of Computational Electronics, 4(1–2), 105 (2005).CrossRefGoogle Scholar
Key, M., “Material and quantum cellular magnetic automata radiation effects characterization report/test plan.” Internal report, 2010, Naval Surface Warfare Center, Crane, IN.
Akerman, J., Brown, P., DeHerrera, M. et al., “Demonstrated reliability of 4-mb MRAM.” IEEE Transactions on Device and Materials Reliability, 4(3), 428–435 (2004).CrossRefGoogle Scholar
Orlov, A., Imre, A., Csaba, G., Ji, L., Porod, W., & Bernstein, G. H., “Magnetic quantum-dot cellular automata: recent developments and prospects.” Journal of Nanoelectronics and Optoelectronics, 3(1), 55–68 (2008).CrossRefGoogle Scholar
Bernstein, G. H., Imre, A., Metlushko, V. et al., “Magnetic QCA systems.” Microelectronics Journal, 36(7), 619–624 (2005).CrossRefGoogle Scholar
Niemier, M. T., Bernstein, G. H., Csaba, G. et al., “Nanomagnet logic: progress toward system-level integration.” Journal of Physics: Condensed Matter, 23(49), 493202 (2011).Google ScholarPubMed
Hubert, A. & Schaefer, R., Magnetic Domains: The Analysis of Magnetic Microstructures, corrected edition (New York: Springer, 2008).Google Scholar
Aharoni, A., Introduction to the Theory of Ferromagnetism, 2nd edn (New York: Oxford University Press, 2001).Google Scholar
Csaba, G., Becherer, M., & Porod, W.. “Development of CAD tools for nanomagnetic logic devices.” International Journal of Circuit Theory and Applications (2012).
Donahue, M. J. and Porter, D. G., OOMMF User’s Guide, Version 1.0, Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999).
Imre, A., Experimental study of nanomagnets for magnetic quantum- dot cellular automata (MQCA) logic applications, PhD thesis, University of Notre Dame (2005).Google Scholar
Li, P., Csaba, G., Sankar, V. K., Ju, X. et al., “Direct measurement of magnetic coupling between nanomagnets for nanomagnetic logic applications.” IEEE Transactions on Magnetics, 48(11), 4402–4405 (2012).CrossRefGoogle Scholar
Varga, E., Csaba, G., Bernstein, G. H., & Porod, W., “Implementation of a nanomagnetic full adder circuit.” In Nanoelectronic Device Applications Handbook, eds. Morris, J. E. & Iniewski, K. (Boca Raton, FL: CRC Press), pp. 765–779.
Liu, S., Csaba, G., Hu, X. S. et al., “Minimum-energy state guided physical design for nanomagnet logic.” In Proceedings of the 50th Annual Design Automation Conference, p. 106 (2013).
Varga, E., Orlov, A., Niemier, M. T., Hu, X. S., Bernstein, G. H., & Porod, W., “Experimental demonstration of fanout for nanomagnetic logic.”, IEEE Transactions on Nanotechnology, 9(6), 668–670 (2010).CrossRefGoogle Scholar
Wei, Wang, Walus, K., & Jullien, G. A., “Quantum-dot cellular automata adders.” In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, vol. 1, pp. 461–464 (2003).Google Scholar
Cowburn, R. P., “Probing antiferromagnetic coupling between nanomagnets.” Physical Review B, 65(9), 9 (2002).CrossRefGoogle Scholar
Carlton, D., Lambson, B, Scholl, A. et al., “Investigation of defects and errors in nanomagnetic logic circuits.” IEEE Transactions on Nanotechnology, 11(4), 760–762 (2012).CrossRefGoogle Scholar
Li, P., Csaba, G., Sankar, V. K. et al., “Switching behavior of lithographically fabricated nanomagnets for logic applications.” Journal of Applied Physics, 111(7), 07B911–07B911 (2012).CrossRefGoogle Scholar
Csaba, G. & Porod, W., “Simulation of field coupled computing architectures based on magnetic dot arrays.” Journal of Computational Electronics, 1(1–2), 87–89 (2002).CrossRefGoogle Scholar
Csaba, G. & Porod, W., “Behavior of nanomagnet logic in the presence of thermal noise. In Proceedings of the 14th International Workshop on Computational Electronics (IEEE-IWCE), pp. 26–29 (2010).
Csaba, G., Lugli, P., & Porod, W., “Power dissipation in nanomagnetic logic devices.” In Nanotechnology, 2004. 4th IEEE Conference on, pp. 346–348 (2004).
Porod, W., Grondin, R. O., Ferry, D. K., & Porod, G.. “Dissipation in computation.” Physical Review Letters, 52(3), 232–235 (1984).CrossRefGoogle Scholar
Toffoli, T., “Comment on ‘Dissipation in computation’,” Physical Review Letters 53(12) 1204–1204 (1984).CrossRefGoogle Scholar
Lambson, B., Carlton, D., & Bokor, J., “Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit.” Physical Review Letters, 107(1), 010604 (2011).CrossRefGoogle ScholarPubMed
Csaba, G., Imre, A., Bernstein, G. H., Porod, W., & Metlushko, V., “Signal processing with coupled ferromagnetic dots.” In Nanotechnology, 2002. IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on, pp. 59–62 (2002).
Dingler, A., Niemier, M. T., Hu, X. S., & Lent, E., “Performance and energy impact of locally controlled NML circuits.” Journal of Emergent Technology in Computer Systems, 7(1), 1–24 (2011).CrossRefGoogle Scholar
Alam, M. T., Siddiq, M. J., Bernstein, G. H., Niemier, M., Porod, W., & Hu, X. S., “On-chip clocking for nanomagnet logic devices.” IEEE Transactions on Nanotechnology, 9(3), 348–351 (2011).CrossRefGoogle Scholar
Pietambaram, S. V., Rizzo, N. D., Dave, R. W. et al., “Low-power switching in magnetoresistive random access memory bits using enhanced permeability dielectric films.” Applied Physics Letters, 90(14) 143510–143510 (2007).CrossRefGoogle Scholar
Peng, L., Sankar, V. K., Csaba, G. et al., “Magnetic properties of enhanced permeability dielectrics for nanomagnetic logic circuits.” IEEE Transactions on Magnetics, 48(11), 3292–3295 (2012).Google Scholar
Csaba, G., Kiermaier, J., Becherer, M. et al., “Clocking magnetic field-coupled devices by domain walls.” Journal of Applied Physics, 111(7), 07E337–07E337–3 (2012).CrossRefGoogle Scholar
Varga, E., Csaba, G., Bernstein, G. H., & Porod, W.. “Domain-wall assisted switching of single-domain nanomagnets.” IEEE Transactions on Magnetics, 48(11) 3563–3566 (2012).CrossRefGoogle Scholar
Cheong, S. W. & Mostovoy, M., “Multiferroics: a magnetic twist for ferroelectricity.” Nature Materials, 6, 20 (2007).CrossRefGoogle ScholarPubMed
Saleh, F. M., Roy, K., Atulasimha, J., & Bandyopata, S., “Magnetization dynamics, Bennett clocking and associated energy dissipation in multiferroic logic.” Nanotechnology, 22, 155201 (2011).Google Scholar
Khitun, A., Mingqiang, B., & Wang, K. L., “Spinwave magnetic nanofabric: a new approach to spin-based logic.” IEEE Transactions on Magnetics, 44(9), 2141–2152 (2008).CrossRefGoogle Scholar
Bauer, U., Przybylski, M., Kirschner, J., & Beach, G. S. D., “Magnetoelectric charge trap memory.” Nano letters, 12(3), 1437–1442 (2012).CrossRefGoogle ScholarPubMed
Carlton, D. B., Lambson, B., Scholl, A. et al., “Computing in thermal equilibrium with dipole-coupled nanomagnets.” IEEE Transactions on Nanotechnology, 10(6), 1401–1404 (2011).CrossRefGoogle Scholar
Kiermaier, J., Breitkreutz, S., Csaba, G., Schmitt-Landsiedel, D., & Becherer, M., “Electrical input structures for nanomagnetic logic devices.” Journal of Applied Physics, 111(7), 07E341–07E341 (2012).CrossRefGoogle Scholar
Siddiq, M. A., Niemier, M. T., Csaba, G., Hu, X. S., Porod, W., & Bernstein, G. H., “Demonstration of field-coupled input scheme on line of nanomagnets.” IEEE Transactions on Magnetics, 49(7), 4460–4463 (2013).CrossRefGoogle Scholar
Kiermaier, J., Breitkreutz, S., Ju, X., Csaba, G., Schmitt-Landsiedel, D., & Becherer, M., “Field-coupled computing: investigating the properties of ferromagnetic nanodots.” Solid-State Electronics, 65, 240–245 (2011).CrossRefGoogle Scholar
Becherer, M., Kiermaier, J., Breitkreutz, S. et al., “On-chip extraordinary Hall-effect sensors for characterization of nanomagnetic logic devices.” Solid-State Electronics, 54(9), 1027–1032 (2010).CrossRefGoogle Scholar
Kanungo, D., Pratyush, A. I., Bin, W. et al., “Gated hybrid Hall effect device on silicon.” Microelectronics Journal, 36(3), 294–297 (2005).CrossRefGoogle Scholar
Chen, E., Apalkov, D., Diao, Z. et al., “Advances and future prospects of spin-transfer torque random access memory.” IEEE Transactions on Magnetics, 46(6), 1873–1878 (2010).CrossRefGoogle Scholar
Liu, X. Shiliang, Hu, S., Nahas, J. J., Niemier, M., Porod, W., & Bernstein, G. H., “Magnetic-electrical interface for nanomagnet logic.” IEEE Transactions on Nanotechnology, 10(4), 757–763 (2011).Google Scholar
Liu, S., Hu, X., Niemier, M. T. et al., “Exploring the design of the magnetic-electrical interface for nanomagnet logic.” IEEE Transactions on Nanotechnology, 12(2), 203–214 (2013).CrossRefGoogle Scholar
Lyle, A., Klemm, A., Harms, J. et al., “Probing dipole coupled nanomagnets using magnetoresistance read.” Applied Physics Letters, 98, 092502 (2011).CrossRefGoogle Scholar
Parkin, Stuart, private communication.
Becherer, M., Csaba, G., Porod, W., Emling, R., Lugli, P., & Schmitt-Landsiedel, D., “Magnetic ordering of focused-ion-beam structured cobalt-platinum dots for field-coupled computing.” IEEE Transactions on Nanotechnology, 7(3), 316–320 (2008).CrossRefGoogle Scholar
Hellwig, O., Berger, A., Kortright, J. B., & Fullerton, E. E., “Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films.” Journal of Magnetism and Magnetic Materials, 319(1), 13–55 (2007).CrossRefGoogle Scholar
Becherer, M., Csaba, G., Emling, R., Porod, W., Lugli, P., & Schmitt-Landsiedel, D., “Field-coupled nanomagnets for interconnect-free, nonvolatile computing” IEEE International Solid-State Circuits Conference (ISSCC), Digest, Technical Papers, pp. 474–475 (2009).
Ju, X., Wartenburg, S., Rezgani, J. et al., “Nanomagnet logic from partially irradiated Co/Pt nanomagnets.” IEEE Transactions on Nanotechnology, 11(1), 97–104 (2012).Google Scholar
Breitkreutz, S., Kiermaier, J., Ju, X., Csaba, G., Schmitt-Landsiedel, D., & Becherer, Markus. “Nanomagnetic logic: demonstration of directed signal flow for field-coupled computing devices.” In Solid-State Device Research Conference (ESSDERC), 2011 Proceedings of the European, pp. 323–326 (2011).
Sharrock, M. P., “Time-dependent magnetic phenomena and particle-size effects in recording media.” IEEE Transactions on Magnetics, 26, 1 (1990).CrossRefGoogle Scholar
Breitkreutz, S., Kiermaier, J., Eichwald, I. et al., “Majority gate for nanomagnetic logic with perpendicular magnetic anisotropy.” IEEE Transactions on Magnetics, 48(11), 4336–4339 (2012).CrossRefGoogle Scholar
Lambson, B., Zheng, G., Carlton, D. et al., “Cascade-like signal propagation in chains of concave nanomagnets.” Applied Physics Letters, 100(15), 152406–152406 (2012).CrossRefGoogle Scholar
Eichwald, I., Bartel, A., Kiermaier, J. et al., “Nanomagnetic logic: error-free, directed signal transmission by an inverter chain.” IEEE Transactions on Magnetics, 48(11), 4332–4335 (2012).CrossRefGoogle Scholar
Kiermaier, J., Breitkreutz, S., Eichwald, I. et al., “Information transport in field-coupled nanomagnetic logic devices.” Journal of Applied Physics 113(17) 17B902–17B902 (2013).CrossRefGoogle Scholar
Becherer, M., Kiermaier, J., Breitkreutz, S., Eichwald, I., Csaba, G., & Schmitt-Landsiedel, D., “Nanomagnetic logic clocked in the MHz regime.” In ESSDERC (2013).
Breitkreutz, S., Kiermaier, J., Eichwald, I. et al., “Experimental demonstration of a 1-bit full adder in perpendicular nanomagnetic logic.” IEEE Transactions on Magnetics, 49(7), 4464–4467 (2013).CrossRefGoogle Scholar
Eichwald, I., Kiermaier, J., Breitkreutz, S. et al., “Towards a signal crossing in double-layer nanomagnetic logic.” IEEE Transactions on Magnetics, 49(7), 4468–4471 (2013).CrossRefGoogle Scholar
Breitkreutz, S., Kiermaier, J., Yilmaz, C. et al., “Nanomagnetic logic: compact modeling of field-coupled computing devices for system investigations.” Journal of Computational Electronics, 10(4), 352–359 (2011).CrossRefGoogle Scholar
Niemier, M., Varga, E., Bernstein, G. et al., “Shape engineering for controlled switching with nanomagnet logic.” IEEE Transactions on Nanotechnology, 35(3), 281–293 (2007).Google Scholar
Csaba, G., Porod, W., Lugli, P., & Csurgay, A., “Activity in field-coupled nanomagnet arrays.” International Journal of Circuit Theory and Applications, 35, 281–293 (2007).CrossRefGoogle Scholar
Varga, E., Niemier, M. T., Csaba, G., Bernstein, G. H., & Porod, W., “Experimental realization of a nanomagnet full adder using slanted-edge magnets.” IEEE Transactions on Magnetics, 49(7), 4452–4455 (2013).CrossRefGoogle Scholar
Ju, X., Niemier, M. T., Becherer, M., Porod, W., Lugli, P., & Csaba, G., “Systolic pattern matching hardware with out-of-plane nanomagnet logic devices.” IEEE Transactions on Nanotechnology, 12(3), 399–407 (2013).CrossRefGoogle Scholar
Crane, H. D., “A high-speed logic system using magnetic elements and connecting wire only.” Proceedings of the IRE, 47(1), 63–73 (1959).CrossRefGoogle Scholar
Gschwind, H. W., Design of Digital Computers (New York: Springer, 1965).Google Scholar
Braun, E. L., Digital Computer Design (New York/London: Academic Press, 1963).Google Scholar
Gray, H. J., Digital Computer Engineering (Englewood Cliffs, NJ: Prentice-Hall, 1963).Google Scholar
Geyger, W. A., Magnetic-amplifier Circuits, 2nd edn. (New York: McGraw-Hill, 1957).Google Scholar
Ettinger, G. M., Magnetic Amplifiers (New York: Wiley, 1957).Google Scholar
Lavrijsen, R., Lee, J.-H., Amalio, F.-P., Petit, D., Mansell, R., & Cowburn, R. P., “Magnetic ratchet for three-dimensional spintronic memory and logic.” Nature, 493(7434), 647–650 (2013).CrossRefGoogle ScholarPubMed
5
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×